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Abstract. This paper proposes the observer design method for linear and nonlinear
singular discrete-time systems with constant time delays. By constructing appropriate
Lyapunov-Krasovskii functional and using Linear Matrix Inequality (LMI) technique, the
asymptotic convergence criterion is developed in terms of LMIs, which can be solved
numerically using MATLABr LMIr toolbox. The su�cient condition for the existence
of a full-order observer is obtained and the states are estimated using Schur complement
and S-procedure lemma very well. Moreover, an extension procedure for the observer design
of a singular linear system with a time-varying delay is presented. Simulation results are
included to prove the e�ciency of the suggested approach.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The singular systems are used to describe many prac-
tical applications such as robotic systems, biological
systems, electrical networks, economic systems, so-
cial systems, constrained mechanical systems, space
navigation systems, chemical processing, astrophysics,
aircraft modelling, etc. [1-6]. Over the past years,
the control problem of these classes of systems has
been widely studied, and many researches, such as
feedback control [7], robust H1 control [8,9], opti-
mal control [10], impulsive control [11], sliding mode
control [12], passive control [13], and fault-tolerant
control [14], have been investigated in this �eld. The
control procedure of the singular systems is often
based on state-feedback [15,16]. However, in some
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applications, the states of the system are not available
for the measurement purpose. For most complex
dynamical systems, it is not always feasible to measure
all states of the system using a direct measurement
procedure [17]. Hence, for the purposes of controller
design and dynamic characterization, it is required to
design a suitable observer to obtain estimates of the
system states, which cannot be measured directly [18].
In this regard, the problem of state observation for the
singular systems has undeniable importance. In recent
years, many signi�cant works have been investigated in
observer design for singular systems.

In [19], the concept of the singular stochastic
�nite-time boundedness was presented, and �nite-time
H1 controller design using observer-based state feed-
back was addressed for singular Markovian jump sys-
tems with time-varying norm-bounded disturbances.
The problem of output regulation was considered in [20]
for singular systems via dual observer-based compen-
sators where the control purpose can be achieved
under weak conditions. The stability analysis and the
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robust dynamic output-feedback control method were
proposed in [21] for uncertain continuous-time singular
systems with time delays. The design problems of
an observer and an observer-based controller based
on two LMI conditions were presented in [22] for
nonlinear time delay singular systems. In [23], the
problem of disturbance-observer-based controller and
H1 control for Markovian jump singular systems with
nonlinearities and disturbances was investigated. The
problem of observer-based H1 control was studied
in [24] for an uncertain time delay singular system
with actuator saturation. Osorio-Gordillo et al. [25]
are concerned with the fault-detection and isolation for
singular systems via a dynamical observer. In [26], the
design method of an observer-based H1 SMC for the
uncertain time delay stochastic singular systems with
input nonlinearity was planned. In [27], the design
approach to the full-order observer was concerned with
time delay singular systems with Lipschitz nonlineari-
ties. Nevertheless, most of the existing researches have
been employed in continuous-time singular systems.
Design of the state observers for discrete-time singular
systems has received little consideration. The observer
design problem for discrete-time systems is important
due to the prevalence of exibility and simplicity of
design methods for digital systems, as compared to
continuous ones. Because it is not tackled in the exist-
ing techniques, the proposed work is an important step
towards that. In [28], the LMI-based observer design
problem was concerned with rectangular discrete-time
singular systems with time-varying delays. In [29],
the observer-based �nite-time H1 control problem
was investigated for discrete-time Markovian jump
singular systems with time-varying norm-bounded dis-
turbances. The problem of the observer-based robust
controller design was considered in [30] for discrete-
time singular systems with time-varying delays and
norm-bounded uncertainties. The functional observer
design was considered in [31] for switched discrete-time
singular systems in the presence of unknown inputs,
arbitrary switching sequences, and state delays.

In this paper, the observer design is considered
for linear and nonlinear singular discrete-time systems
with a constant time delay. The proposed observer
guarantees asymptotic stability of the singular discrete-
time systems containing Lipschitz nonlinearities and
time delays. Using the Lyapunov-Krasovskii func-
tional, Schur complement, and S-procedure lemmas,
the asymptotic stability conditions are established
in the form of LMIs and the observer gain, L, is
determined via LMIs. The main contributions of the
proposed method are listed as follows:

(a) Design of a state-observer for the linear and non-
linear singular systems with constant time delays;

(b) Satisfaction of the stability of the overall system

with Lipschitz nonlinearity and time delays based
on the Lyapunov theory and LMI technique;

(c) Usability of the same approach to continuous-time
systems with small changes.

The paper is organized as follows. Section 2
presents the problem formulation of the linear and
nonlinear singular discrete-time systems with time
delays and introduces two necessary lemmas. Section 3
presents the observer design for the discrete-time linear
and nonlinear singular systems and expresses them in
the form of LMI formulations. Section 4 gives two
simulations to illustrate the validity of our results.
Finally, conclusions and future recommendations are
drawn in Sections 5 and 6, respectively.

2. Problem description and assumptions

2.1. Singular linear system
Consider the singular linear discrete-time system with
a constant time delay as follows [32]:(

Ex(k + 1) = Ax(k) +A1x(k � d) +Bu(k)
y(k) = Cx(k)

(1)

where E 2 Rn�n is a singular matrix, i.e., rank(E) < n.
Vectors x(k) 2 Rn, u(k) 2 Rp, and y(k) 2 Rq represent
the state, input and output of the system, respectively.
Matrices A, A1, B, C, and E are known as constant
matrices with appropriate dimensions, and d is the non-
negative integer representing the interval time delay.

It is assumed that system (1) is observable,
meaning that [32]:

rank
�
E
C

�
= n; (2)

and:

rank
�
zE �A
C

�
= n; 8 z 2 C; (3)

where jzj � 1 is a �nite scalar. Since rank
�
E
C

�
= n,

there exists a full rank matrix
�
T N

�
such that [33]:

TE +NC = In: (4)

Remark 1. Matrices T and N can be obtained
by using the singular value decomposition of matrix�
E
C

�
[34,35]. The general solution for T and N is:

�
T N

�
=
�
E
C

�y
+ Z

�
Iq+n �

�
E
C

� �
E
C

�y�
;

where Z is an arbitrary matrix designed, such that T



1692 R. Hajmohammadi and S. Mobayen/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1690{1699

is of full rank and Ey denotes the pseudo-inverse of
matrix E.

Lemma 1 (Schur complement) [36-38]: If there
exist matrices S1, S2, S3 where S1 = ST1 , S3 = ST3 ,
then inequality S1 � S2S�1

3 ST2 < 0 is equivalent to:�
S1 S2
ST2 S3

�
< 0: (5)

2.2. Singular nonlinear system
In this section, a class of nonlinear systems with the
Lipschitz condition is presented. Consider the singular
nonlinear discrete-time system with time delays as
follows:(

Ex(k+1)=Ax(k)+A1x(k�d)+Bu(k)+f(x(k))
y(k) = Cx(k) (6)

where nonlinear function f(x(k)) 2 Rn is a time-
varying vector with f(0) = 0.

Assumption 1. Nonlinear function f(x(k)) is Lips-
chitz for all x(k) 2 Rn and x̂(k) 2 Rn which satisfy [39-
41]:

kf(x(k))� f(x̂(k))k � �kx(k)� x̂(k)k; (7)

where � > 0 is a Lipschitz constant. For x̂(k) = 0,
Lipschitz Inequality (7) can be rewritten as follows:

fT (x(k))f(x(k)) � �2xT (k)x(k): (8)

Lemma 2 (S-procedure) [42-44]. Let Z0; � � � ; Zn
be symmetric matrices. Consider the following condi-
tion on Z0; � � � ; Zn:

�TZ0� > 0 for all � 6= 0;

such that:

�TZj� � 0; j = 1; � � � ; n: (9)

If there exists non-negative scalars �j for j = 1; � � � ; n,
such that T0�Pn

j=1 �jTj > 0 holds, then Eq. (9) holds.

3. Main results

3.1. Observer design for a singular linear
system

The control goal is to design an observer by the
following form:

x̂(k + 1) = TAx̂(k) + TA1x̂(k � d) + TBu(k)

+ L(y(k)� Cx̂(k)) +Ny(k + 1); (10)

where x̂(k) 2 Rn is the estimation of x(k). Matrices

T and N are determined by Eq. (4), and L is a
matrix which will be designed such that x̂(k) converges
asymptotically to x(k).

Using Eq. (4), dynamics (Eq. (1)) can be written
as follows:

x(k + 1) = TAx(k) + TA1x(k � d) + TBu(k)

+Ny(k + 1): (11)

Our aim is to �nd a gain matrix L such that the
corresponding estimation error is as follows:

e(k) = x(k)� x̂(k); (12)

is asymptotically stable. From Eqs. (10)-(12), the
dynamics of the estimation error is given by:

e(k + 1) = (TA� LC)e(k) + TA1e(k � d): (13)

The following theorem gives the necessary and su�-
cient LMI conditions to design an observer for sys-
tem (1).

Theorem 1. Consider the singular linear discrete-
time system (1) and the state observer (10). If there
exist matrices P > 0, Q > 0, and W with appropriate
dimensions, such that the following LMI is satis�ed:24�P +Q (TA)TP (TA1)� CTWT (TA1)

� (TA1)TP (TA1)�Q
� �

(TA)TP � CTWT

0
�P

35 < 0; (14)

and then by using L = P�1W in Eq. (10), the error
dynamics (Eq. (13)) is asymptotically stable.

Proof. Consider the Lyapunov-Krasovskii candidate
functional as follows:

V (k) = eT (k)Pe(k) +
k�1X
i=k�d

eT (i)Qe(i): (15)

De�ning �V (k) = V (k + 1)� V (k), we have:

�V (k) = eT (k + 1)Pe(k + 1)� eT (k)Pe(k)

+ eT (k)Qe(k)� eT (k � d)Qe(k � d): (16)
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Substituting Eq. (13) into Eq. (16) gives:

�V (k) = eT (k)(TA� LC)TP (TA� LC)e(k)

+ eT (k)(TA� LC)TP (TA1)e(k � d)

+ eT (k � d)(TA1)TP (TA� LC)e(k)

+ eT (k � d)(TA1)TP (TA1)e(k � d)

� eT (k)Pe(k) + eT (k)Qe(k)

� eT (k � d)Qe(k � d): (17)

Eq. (17) can be written as:

�V (k) =
�

e(k)
e(k � d)

�T
�
(TA� LC)TP (TA� LC)� P +Q

�
(TA� LC)TP (TA1)
(TA1)TP (TA1)�Q

� �
e(k)

e(k � d)

�
: (18)

Inequality �V (k) < 0 holds if and only if:�
(TA� LC)TP (TA� LC)� P +Q

�
(TA� LC)TP (TA1)
(TA1)TP (TA1)�Q

�
< 0: (19)

Using Schur complement for Eq. (19) and substi-
tuting W = PL, LMI (14) is obtained. From Lyapunov
stability theory [45], if LMI (14) is satis�ed, the error
dynamical system (13) is asymptotically stable. �
3.2. Observer design for a singular nonlinear

system
The state-observer for the singular nonlinear discrete-
time system (6) is designed as follows:

x̂(k + 1) = TAx̂(k) + TA1x̂(k � d) + TBu(k)

+ L(y(k)� Cx̂(k)) +Ny(k + 1)

+ Tf(x̂(k)); (20)

where matrices T andN are determined by Eq. (4), and
L is a matrix which is obtained later, such that x̂(k)
asymptotically converges to x(k). The obtaining pro-
cedure of the error dynamics is the same as described
for singular linear system. Then, the error dynamics for
the singular nonlinear system (6) is obtained as follows:

e(k + 1)=(TA�LC)e(k)+TA1e(k�d)+�f(x; x̂);
(21)

where:

�f(x; x̂) = T [f(x(k))� f(x̂(k))]:

The following theorem gives the necessary and su�-
cient conditions to design the state observer for the
singular nonlinear system (6).

Theorem 2. Consider the singular nonlinear sys-
tem (6) and state observer (20). For a given scalar
� > 0, if there exist a scalar � > 0 and matrices
P > 0, Q > 0, and W with appropriate dimensions
such that the following LMI holds (see Eq. (22)), where
�1 = ��max(T ) and �max(T ) denotes the maximum
eigenvalue of T , and then error dynamical system (21)
is asymptotically stable, and matrix L is obtained by
L = P�1W .2664�P +Q+ �2

1� (TA)TP (TA1)� CTWT (TA1)
� (TA1)TP (TA1)�Q
� �
� �

(TA)TP � CTWT (TA)TP � CTWT

(TA1)TP 0
P � �I 0
� �P

3775 < 0:
(22)

Proof. Consider the Lyapunov-Krasovskii candidate
functional as follows:

V (k) = eT (k)Pe(k) +
k�1X
i=k�d

eT (i)Qe(i): (23)

De�ning �V (k) = V (k + 1)� V (k), we have:

�V (k) =eT (k + 1)Pe(k + 1)� eT (k)Pe(k)

+ eT (k)Qe(k)� eT (k � d)Qe(k � d): (24)

Substituting Eq. (21) into Eq. (24) gives:

�V (k) = eT (k)(TA� LC)TP (TA� LC)e(k)

+ eT (k)(TA� LC)TP (TA1)e(k � d)

+ eT (k � d)(TA1)TP (TA� LC)e(k)

+ eT (k � d)(TA1)TP (TA1)e(k � d)

� eT (k)Pe(k) + eT (k)(TA� LC)TP�f(x; x̂)

+ eT (k � d)(TA1)TP�f(x; x̂)

+ �f(x; x̂)TP (TA� LC)e(k)

+ �f(x; x̂)TP (TA1)e(k � d)

+ �f(x; x̂)TP�f(x; x̂)

+ eT (k)Qe(k)� eT (k � d)Qe(k � d): (25)
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Eq. (25) can be written as follows:

�V (k) =

24 e(k)
e(k � d)
�f(x; x̂)

35
24(TA� LC)TP (TA� LC)� P +Q

�
�

(TA� LC)TP (TA1) (TA� LC)TP
(TA1)TP (TA1)�Q (TA1)TP

� P

35
24 e(k)
e(k � d)
�f(x; x̂)

35 :
(26)

Inequality �V (k) < 0 holds if and only if:24(TA� LC)TP (TA� LC)� P +Q
�
�

(TA� LC)TP (TA1) (TA� LC)TP
(TA1)TP (TA1)�Q (TA1)TP

� P

35 < 0: (27)

Since the term �f(x; x̂) satis�es the Lipschitz condi-
tion, it is shown that:

k�f(x; x̂)k � �1ke(k)k: (28)

Using Assumption 1, Eq. (28) can be written as follows:24 e(k)
e(k � d)
�f(x; x̂)

35T 24�2
1 0 0

0 0 0
0 0 �I

3524 e(k)
e(k � d)
�f(x; x̂)

35 � 0: (29)

Now, by combining Eqs. (26) and (29) and using
Lemma 2, inequality �V (k) < 0 is satis�ed if there
exists a non-negative scalar � such that:24(TA� LC)TP (TA� LC)� P +Q+ �2

1��
�

(TA� LC)TP (TA1) (TA� LC)TP
(TA1)TP (TA1)�Q (TA1)TP

� P � �I

35 < 0: (30)

Applying Lemma 1 to Eq. (30) and substituting W =
PL, LMI (22) is obtained. From Eq. (30), it is obvious
that �V (k) < 0 is negative de�nite; therefore, the error
dynamics (21) is asymptotically stable. �

3.3. Extension of observer design for the
singular system with time-varying delays

Consider the singular discrete-time system with time-
varying delays as follows:(

Ex(k + 1) = Ax(k) +A1x(k � d(k)) +Bu(k)
y(k) = Cx(k) (31)

where E 2 Rn�n is a singular matrix, i.e., rank(E) < n.
Vectors x(k) 2 Rn, u(k) 2 Rp, and y(k) 2 Rq represent
the state, input and output of the system, respectively.
Matrices A, A1, B, C, and E are known constant
matrices with appropriate dimensions, and d(k) is a
time-varying delay which is bounded as follows:

d � d(k) � �d;
�
d; �d
� 2 N; (32)

where d and �d are minimum and maximum delay
values, respectively.

The control purpose is to design an observer by
the following form:

x̂(k + 1) = TAx̂(k) + TA1x̂(k � d(k)) + TBu(k)

+ L(y(k)� Cx̂(k)) +Ny(k + 1); (33)

where x̂(k) 2 Rn is the estimation of x(k). Matrices T
and N are determined by Eq. (4), and L is a matrix
designed, such that x̂(k) converges asymptotically to
x(k). Using Eq. (4), the dynamics (31) can be written
as follows:
x(k + 1) = TAx(k) + TA1x(k � d(k))

+ TBu(k) +Ny(k + 1): (34)

Our objective is to �nd a gain matrix L such that
the estimation error (12) is asymptotically stable.
Form Eqs. (12), (33), and (34), the dynamics of the
estimation error is given by:

e(k + 1) = (TA� LC)e(k) + TA1e(k � d(k)): (35)

The following theorem gives the necessary and su�-
cient LMI conditions to design observer for singular
system (31).

Theorem 3. Consider the singular linear discrete-
time system (31) and the state observer (33). If there
exist matrices P > 0, Q > 0, and W with appropriate
dimensions such that the following LMI is satis�ed:24�P+

� �d�d+1
�
Q (TA)TP (TA1)�CTWT (TA1)

� (TA1)TP (TA1)�Q
� �

(TA)TP � CTWT

0
�P

35 < 0;
(36)

and then, using L = P�1W in Eq. (33), the error
dynamics (35) is asymptotically stable.
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Proof. Consider the Lyapunov-Krasovskii candidate
functional as follows:

V (k) = V1(k) + V2(k) + V3(k); (37)

where:

V1(k) = eT (k)Pe(k); (38)

V2(k) =
k�1X

i=k�d(k)

eT (i)Qe(i); (39)

V3(k) =
1�dX
j=2� �d

k�1X
i=k+j�1

eT (i)Qe(i): (40)

De�ning �V (k) = V (k + 1)� V (k), we have:

�V1(k) = eT (k + 1)Pe(k + 1)� eT (k)Pe(k); (41)

�V2(k) = eT (k)Qe(k)� eT (k � d(k))Qe(k � d(k))

+
k�1X

i=k�d(k+1)

eT (i)Qe(i)�
k�1X

i=k�d(k)

eT (i)Qe(i);
(42)

�V3(k) =
� �d� d� eT (k)Qe(k)�

k�dX
i=k+1� �d

eT (i)Qe(i):
(43)

The third term in Eq. (42) can be written as follows:

k�1X
i=k�d(k+1)

eT (i)Qe(i) =
k�1X

i=k+1�d
eT (i)Qe(i)

+
k�dX

i=k+1�d(k+1)

eT (i)Qe(i)

�
k�1X

i=k+1�d(k)

eT (i)Qe(i)

+
k�dX

i=k+1� �d

eT (i)Qe(i): (44)

Using Eq. (44) in Eq. (42), we have:

�V2(k) �eT (k)Qe(k)� eT (k � d(k))Qe(k � d(k))

+
k�dX
i=k� �d

eT (i)Qe(i): (45)

By taking into account Eqs. (41), (43), and (45), the
following equation can be obtained:

�V (k) �eT (k + 1)Pe(k + 1)� eT (k)Pe(k)

+
� �d� d+ 1

�
eT (k)Qe(k)

� eT (k � d(k))Qe(k � d(k)) < 0: (46)

Substituting Eq. (35) into Eq. (46) gives:

�V (k) < eT (k)(TA� LC)TP (TA� LC)e(k)

+ eT (k)(TA� LC)TP (TA1)e(k � d(k))

+ eT (k � d(k))(TA1)TP (TA� LC)e(k)

+ eT (k � d(k))(TA1)TP (TA1)e(k � d(k))

� eT (k)Pe(k) +
� �d� d+ 1

�
eT (k)Qe(k)

� eT (k � d(k))Qe(k � d(k)) < 0: (47)

Eq. (47) can be written as follows:

�V (k) <
�

e(k)
e(k � d(k))

�T
�
(TA� LC)TP (TA� LC)� P +

� �d� d+ 1
�
Q

�
(TA� LC)TP (TA1)
(TA1)TP (TA1)�Q)

� �
e(k)

e(k � d(k))

�
< 0:

(48)

Inequality �V (k) < 0 holds if and only if the following
inequality is satis�ed:�

(TA� LC)TP (TA� LC)� P +
� �d� d+ 1

�
Q

�
(TA� LC)TP (TA1)
(TA1)TP (TA1)�Q

�
< 0:

(49)

Using Schur complement for Eq. (49) and substituting
W = PL, LMI (36) is obtained. From the Lyapunov
stability theory, if LMI (36) is satis�ed, the error
dynamical system (35) is asymptotically stable. �

The extension of the observer design for singular
nonlinear systems with time-varying delays will be
proposed in our future work.

4. Simulation results

In this section, two examples are given to demonstrate
the e�ciency of the proposed method.
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Example 1. Consider the following time delay
discrete-time singular system:�

1 2
1 2

� �
x1(k + 1)
x2(k + 1)

�
=
��0:5 0

0 0:4

� �
x1(k)
x2(k)

�
+
�
0:1 0:1
0:3 0

� �
x1(k � 1)
x2(k � 1)

�
+
�
1
0

�
u(k);

y(k) =
�
1 0

� �x1(k)
x2(k)

�
: (50)

For the simulation purpose, the initial conditions are
set as follows: x1(0) = �0:5, x2(0) = 0:4, x̂1(0) = 0:3,
and x̂2(0) = �1:2. The constant time delay is given as
d = 1 second. Matrices T and N are calculated from
Eq. (4) as follows:

T =
��1 1
0:5 0

�
;

N =
�

1
�0:5

�
:

Using Theorem 1, observer gain L is obtained as
follows:

L =
�

0:5601
�0:2470

�
:

Figures 1 and 2 show the states of the system
and their estimates. As seen from these �gures, the
states of the observer converge to the states, appropri-
ately.

Example 2. Consider the following nonlinear time
delay discrete-time singular system:

Figure 1. State x1 and its estimate x̂1.

Figure 2. State x2 and its estimate x̂2.241 2 1
0 2 1
1 0 0

3524 x1(k + 1)
x2(k + 1))
x3(k + 1)

35
=

240:153 0:045 0:069
0:156 0:252 0:156
0:135 �0:171 �0:636

35�x1(k)
x2(k)

�

+

24�0:2 �0:2 0
0:6 �0:5 0
�0:2 0:2 0:7

3524x1(k � 0:2)
x2(k � 0:2)
x3(k � 0:2)

35
+

24 1
1

0:2

35u(k) +

24 0
0:05 sin(x3(k))

0

35 ;
y(k) =

�
1 0 1

� 24x1(k)
x2(k)
x3(k)

35 : (51)

For the simulation purpose, the initial conditions
are set as follows: x1(0) = 0:5, x2(0) = �0:6, x3(0) =
0:4, x̂1(0) = 0:47, x̂2(0) = �0:58, and x̂3(0) = 0:46.
The constant time delay is speci�ed as d = 0:2 second.
The Lipschitz value is given by 0.01. Matrices T and
N are obtained by Eq. (4) as follows:

T =

24 1 �1 0
0:5 0 0
0 0 �1

35 ; N =

24 0
0
�0:5

35 :
The gain of the observer is attained using Theorem 2
as follows:

L =

24�0:1002
0:4053
0:8253

35 :
Figures 3-5 show the states of the system and their

estimates. As observed in these �gures, the states of
the observer system can converge to those of the actual
system as well.
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Figure 3. State x1 and its estimate x̂1.

Figure 4. State x2 and its estimate x̂2.

Figure 5. State x3 and its estimate x̂3.

5. Conclusions

This paper investigated the design problem of the state
observers for linear and nonlinear singular discrete-
time systems with constant time delays. Using Schur
complement and S-procedure lemma, the necessary and
su�cient conditions were given, such that the designed
observers estimated the states of the systems. By
constructing suitable Lyapunov-Krasovskii functional,

the asymptotic convergence criteria were provided in
the form of LMIs. Furthermore, the procedure of the
observer design was extended for singular linear system
with a time-varying delay. Finally, two numerical
examples were provided to illustrate the accuracy and
e�ciency of the proposed method.

Future recommendation

This approach can be considered as a promising way to
implement the practical control problems of singular
discrete-time systems; with a little change, it can be
applied to continuous systems. The extension of the ob-
server design for singular linear and nonlinear systems
with multiple time-varying delays will be presented in
the future work.
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