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Abstract. This paper provides generation companies (GENCOs) with a novel decision-
making tool that accounts for both long-term and short-term risk aversion preferences
and devises optimal strategies to participate in energy and ancillary services markets and
forward contracts, in which the possibility of involvement in arbitrage opportunities is also
considered. Because of the imprecise nature of the decision maker's judgment, appropriate
modelling of risk aversion attitude of the GENCO is another challenge. This paper uses
fuzzy satisfaction theory to express decision maker's attitude toward risk. Conditional
Value at Risk methodology (CVaR) is utilized as the measure of risk and uncertainty
sources include prices for the day-ahead energy market, Automatic Generation Control
(AGC), and reserve markets. By applying the proposed method, not only trading loss
over the whole scheduling horizon can be controlled, but also the amount of imposed loss
during every time period can be reduced. An illustrative case study is provided for further
analysis.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

In �nancial literature, risk management techniques
include at least two aspects: risk assessment and risk
control. Adopting an appropriate risk measure, which
best reects the risk with respect to decision maker's
attitude, is categorized within risk assessment. In this
area, variance criterion and expected utility have been
attractive measures used for several decades. Portfolio
optimization has come a long way since its appearance.
Developments in this area are stimulated by two basic
requirements:
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1. Adequate modeling of utility functions, risks, and
constraints;

2. E�ciency, i.e., ability to handle a large number of
instruments and scenarios [1].

Under this inspiration, downside risk measures such as
Value at Risk (VaR) and Conditional Value at Risk
(CVaR) are introduced [1]. Downside risk measures
focus on undesirable aspects of risk and evaluate the
pro�ts under a speci�ed level or target. On the
contrary, variance measure incorporates information
from both tails of pro�t distribution, so it is a�ected by
high gains as well as high losses. Although introducing
VaR �lled a large gap to assess the extreme risk associ-
ated with a trading plan, it was later demonstrated
that VaR exhibited some undesirable mathematical
characteristics. It was demonstrated by Artzner that
risk measures had to include some properties to reect
the commonly accepted rational behavior of a decision
maker [2]. What VaR lacks is sub-additivity and
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convexity, misleading the investors by providing no
motivation for diversifying their investments. Fortu-
nately, CVaR measure is consistent with diversi�cation
strategies in portfolio optimization. In addition, CVaR
can be combined with analytical or simulation-based
methods and in cases that the uncertainty is modeled
by a �nite number of scenarios, the problem can be
reduced to linear programming [1]. Risk control can
be accomplished by means of two methods: \hedging,"
which is a technique to o�set the particular source of
risk, and \diversi�cation" [3]. In an electricity market,
forward contracts, which omit the risk of price volatil-
ity, are available for hedging against risk, whereas a
variety of spot markets such as Automatic Generation
Control (AGC) and reserve markets are provided for
making diversi�cation in the trading plan. A combina-
tion of di�erent types of transactions for trading energy
in several markets is called energy portfolio and the
problem of constructing an optimal trading plan that
speci�es the contribution of GENCO to each market is
called portfolio optimization problem. Various aspects
of risk management have been applied to the electricity
market. In [4-13] it is aimed to manage risk from a
supplier or a consumer (distribution company) point of
view. The risk management technique proposed in [4-
6] is based on variance measure [7] proposes a bi-level
multi-objective bidding strategy through a combina-
tion of maximizing pro�t and minimizing risk with the
help of a risk-tolerance parameter, which reects the
GENCO's preference toward the risk. CVaR measure is
applied to the strategies proposed in [8-13]. In all of the
previous works, GENCO's �nancial risk is evaluated
over the total planning horizon, called long-term in this
paper, and the risk aversion preferences relating to each
period are ignored. However, it was stated by Artzner
in 2007 [14] that modeling the investment risk, evolving
over several periods of uncertainty, was di�erent from
one-period risk and the actual time evolution of risk
should be taken into account through a relevant risk-
adjusted measurement, so that more than the distribu-
tion of �nal pro�t of a strategy was provided for risk
management. The main reason of Artzner was not only
considering the actual consequences of \bad events" at
the end of the same periods, which were ignored in long-
term models of risk management, but also the necessity
of taking into account the information availability
in some decision making periods that might require
intermediate tactical actions to handle sequences of
unknown future.

In a restructured electricity industry, a generation
company (GENCO) has to participate in various en-
ergy and ancillary services auctions and compete with
other producers in order to sell its products. The
extremely volatile prices of this competitive market are
not only depend on the market players' strategies, but
also a�ected by special characteristics of electricity as

a commodity, which cannot be easily stored and trans-
ported. Furthermore, stochastic nature of the demand
and its dependency on weather conditions, probable
failures of generating units, outages of transmission
lines, etc., extremely inuence the market prices. On
the other hand, GENCO's trading plans have to be
made before clearing successive hourly market sessions
by independent system operator and observing the
realization of market prices. The contributions of the
proposed method for optimal portfolio construction are
as follows:

1. Introducing a multi-period risk management tech-
nique. In addition to managing long-term risk, the
proposed strategy provides suppliers with an extra
measuring and controlling tool to reduce �nancial
risk during shorter intervals, called short-term risk
management in this paper. To the best of the
authors' knowledge, this study has never been done
before;

2. Utilizing fuzzy satisfaction theory to model risk pref-
erences. In order to attain appropriate modelling of
short-term risk preferences of the decision maker,
fuzzy satisfaction theory is utilized to incorporate
the vague and fuzzy nature of human judgment.
Therefore, the risk preferences of the GENCOs are
well modelled and incorporated into the stochastic
decision making problem;

3. Managing market risk by hedging and diversi�ca-
tion tools. The proposed portfolio optimization
approach has the capability of reducing risks by
making \diversi�cation" in the trading plan and
\hedging" through forward contracts. This method
allocates optimal trading proportion to multiple
spot markets while the possibility of signing forward
contracts and involvement in arbitrage opportuni-
ties is also considered;

4. Precise modeling of the production units and uti-
lizing advanced CPLEX solver. By considering
prevailing operational constraints of the thermal
units and utilizing the advanced CPLEX solver un-
der GAMS for solving this stochastic mixed-integer
programming problem, the developed algorithm is
made suitable for practical situations.

The rest of the paper is organized as follows. De-
cision making framework and price characterization
are presented in Section 2. The objectives of optimal
unit commitment and self-scheduling of a producer are
formulated in Section 3. Section 4 provides a detailed
case study for further illustration of the proposed
method. Finally, concluding remarks are given in
Section 5.
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2. Decision framework

In this paper, the considered uncertainty sources in-
clude prices for the day-ahead energy market, auto-
matic generation control, and reserve markets. Uncer-
tainty in market clearing prices is handled by treating
prices as stochastic variables that are modeled by
their probability density functions. It is assumed that
market clearing price and its variance are inputs of
the proposed model. Furthermore, as it is generally
preferred in stochastic programming, instead of dealing
with a continuous probability distribution function for
modeling the price of each time period, continuous
variable is substituted with a set of discrete outcomes,
which are called scenarios, as it is shown in Figure 1.
The abstract structure of scenarios can be represented
by a scenario tree.

2.1. Scenario generation
In this paper, we use Monte Carlo simulation that uti-
lizes statistical sampling techniques for generating ad-
equate number of scenarios with the same probability.
Therefore, a probabilistic approximation of the solution
to the mathematical model can be properly produced.
Large number of scenarios may result in intractability
of the optimization problem. Consequently, scenario
reduction techniques are generally employed to trim
down the number of scenarios while maintaining, as
much as possible, the stochastic properties of the
original scenario tree [15]. In dealing with stochastic
programming, which has the reputation for being
computationally di�cult to solve, a natural temptation
is to substitute a much simpler problem that replaces
all of the random variables by their expected values.
In this situation, the Value of Stochastic Solution
(VSS) is a concept that precisely measures how good
the stochastic solution is. Consider the problem of
maximizing pro�t when stochastic market prices are
replaced by their expected values, called EV , as shown

Figure 1. Multi-stage price scenario tree.

by:

EV = Maximize f(x;E(�t)): (1)

In this equation, f denotes the pro�t function, x is the
decision vector, which belongs to the feasible region,
and E(�t) shows the expected value of hourly prices.
Let x� be the optimal solution to Eq. (1) and EEV the
expected result of using x� according to:

EEV = E� [f(x�; �t)] : (2)

Then, V SS can be calculated as the di�erence between
expected pro�t of stochastic model and EEV [16]. If
the value of V SS is high, dealing with uncertainty
really matters.

3. Problem formulation

Objective function of the optimization problem is
formulated in a stochastic mixed integer programming
framework as follows. Eq. (3) consists of two parts:
pro�t maximization and risk control; the latter term
is incorporated by factor �, representing the decision
maker's risk preferences. A risk-lover GENCO selects
minimum value (� = 0) while a conservative producer
prefers higher amounts:

Max E!

( NIX
i=1

NTX
t=1

�t!i(REt!(i); RSt!(i))

)

+
NIX
i=1

�(i)� E!
( NIX
i=1

NTX
t=1

Ct!(i)

)
+ �:Risk Measure: (3)

3.1. Pro�t maximization
Generally, the revenue of a GENCO can be divided into
two terms:

1. Stochastic revenue obtained from selling energy and
ancillary services in the pool market;

2. Deterministic revenue coming from trading energy
under contracts.

In Eq. (3), �t!i is used to calculate the stochastic
part and �(i) denotes revenue of forward contracts.
Production consists of �xed cost, variable cost, time
varying start-up cost, and shutdown cost. REt!(i) rep-
resents revenues of energy market that are calculated
through multiplying the amount of power allocated to
the energy market at time t and scenario !(PEt!) by
the price of energy market �Et!(i) ($/MWh). RSt!(i)
denotes the revenues obtained through ancillary ser-
vices markets, including automatic generation control,
spinning reserve, and non-spinning reserve. Finally,
�t!i that is the stochastic part of the GENCO's
revenue can be calculated by summation of REt!(i)
and RSt!(i).
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3.1.1. Ancillary services market
The formulation that is presented in this paper is
based on simultaneous clearing of energy and ancillary
services markets, which includes Automatic Gener-
ation Control (AGC), spinning reserve market, and
non-spinning reserve market. In case these markets
clear sequentially, the proposed method can be used
to schedule generation units for energy market and,
then, execute them again by applying energy results.
Consequently, realization of day-ahead market clearing
prices improves scheduling of the units for ancillary
services market. Although reference [5] develops a
probabilistic based approach to model whether reserves
are called and generated, in this paper, it is assumed
that market has enough liquidity to allow generation
units to sell optimal amounts they desire. It is assumed
that ancillary services are the products that generation
companies bid in electricity market in steady state and
uctuations are not in the scope of this work. For more
information, Lei et al. [17-19] address the problem of
devising an optimal AGC for interconnected networks
based on a stochastic multi-agent strategy. It should
be noted that although the amount of power sold in
ancillary services market is not comparable with the
amount of power traded in energy market, ancillary
services are usually generated at low cost [20]. Eqs. (4)-
(10) model the maximum power that can be devoted to
ancillary services market. In these equations, Rxt!(i),
x = fA;S;NU;NDg stands for the amount of power al-
located to AGC, spinning reserve, non-spinning reserve
when unit i is on, and non-spinning reserve when it is
o�. Also, Ut(i) is unit status indicator, which equals
1 if unit i is on at time t and 0 otherwise. According
to Eq. (4), RAt!(i) is limited by maximum capability of
unit i for participating in AGC market and regulating
limits. In this equation, AGCt(i) is a binary variable
that indicates involvement in the AGC market:

RAt!(i)�min
�
RAmax(i)AGCt(i); AL

	
; 8 i; t; !;

(4)

RSt!(i) � RSmax(i)Ut(i); 8 i; t; !; (5)

RNUt! (i) � RNmax(i)Ut(i); 8 i; t; !; (6)

RNDt! (i) � RNmax(i)(1� Ut(i)); 8 i; t; !; (7)

RNUt! (i) +RNDt! (i) � RNmax(i); 8 i; t; !: (8)

It is worth noticing that for selling power to AGC and
spinning reserve markets, units have to be synchronous
with the system, while non-spinning reserve can be pro-
vided by both o�-line and on-line generating resources
that can increase their output power within a certain
time.

AGCt(i) � Ut(i); 8 i; t; (9)

AGCt(i) 2 f0; 1g; 8 i; t: (10)

Total power that can be allocated to various ancillary
services markets is constrained by ramping limits;
Eq. (12) enforces this limitation on the summation of
power allocated to di�erent ancillary services markets
as stated in Eq. (11). P qt! is the output power of unit
i, excluding power to be delivered to ancillary services.
Also, RU(i) and SU(i) in Eq. (12) represent ramp-
up limit and start-up ramp limit of unit i, respec-
tively. Eq. (13) constrains the involvement in energy
market and ancillary services markets to maximum
output power of each generating unit. Finally, revenue
obtained from trading energy in ancillary services
markets, RS, can be calculated by Eq. (14).

RASt! (i) = RAt!(i) +RSt!(i) +RNUt! (i) +RNDt! (i);

8 i; t; !; (11)

RAS(t+1)!(i) + P q(t+1)!(i)� P qt!(i) � [RU(i)Ut(i)

+ SU(i)w(t+1)(i)]; 8 i; t; !; (12)

RASt! (i) + P qt!(i) � Pmax(i); 8 i; t; !; (13)

RSt!(i) =
X
e=A;S

�et!(i)Ret!(i) + �Nt!(i)(RNUt! (i)

+RNDt! (i)); 8 i; t; !: (14)

3.1.2. Contract market
A producer may decide to buy electric energy through
forward contracts to sell in the pool market with
the hope of increasing its pro�t, but at a cost of
higher risk, or sell the produced energy in contracts
to avoid the inherent risk of price volatility of the
pool market. Forward contracts consist of blocks of
power spanning over a period of time with a speci�ed
price in $/MWh. Modeling of price behavior in some
markets, such as European Energy Exchange [21] and
Iberian Electricity Market Operator [22], has shown
that as the quantity sold/bought in contracts increases,
the speci�ed price may decrease/increase. This step-
wise price form reects both high volatility and limited
liquidity of future markets [11]. In this paper, we
assume that the GENCO can sell/buy energy to/from
forward contracts. It is also possible to buy energy from
contract market and sell in the pool. For the sake of
simplicity, it is assumed that selling and buying cannot
be done in the same contract. Following equations are
used for modeling necessary constraints associated with
utilizing forward contracts:
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PEt!(i) =P qt!(i) +
NCBX
c=1

NbBX
b=1

PBcb (i)�
NCSX
c=1

NbSX
b=1

PScb(i);

� PDt!(i) 8i; t; !; (15)

NbSX
b=1

PScb(i) � UcS(i)
NbSX
b=1

PS;max
cb (i); 8c; i; (16)

NbBX
b=1

PBcb (i) � UcB(i)
NbBX
b=1

PB;max
cb (i); 8c; i; (17)

PBcb � PB;max
cb ; 8c; b; (18)

PScb � PS;max
cb ; 8c; b; (19)

UcB(i) + UcS(i) � 1; 8c; i; (20)

P gt!(i) 2 �; 8t; !; i; (21)

PBcb (i); P
S
cb(i) � 0; 8c; b; (22)

PEt!(i) � 0; 8t; !; i; (23)

UcB(i); UcS(i) 2 f0; 1g; 8c; i: (24)

The amount of power sold in the energy market, PEt!, is
denoted by Eq. (15) and is expressed as the summation
of output power of unit i, total power traded through
forward contracts, and what is allocated to its own
loads (e.g., GENCO's demand or other obligations) and
ancillary services market. PScb=PBcb represents the power
sold/purchased through block b of forward contract
c. Also, UcS=UcB is an indicator of selling/buying
through bilateral contract c. Eqs. (16)-(19) specify
the maximum power which can be traded in contracts,
so that the power allocated to each block does not
exceed the maximum capacity of that block in contract
c(PB;max

cb ; PS;max
cb ). Furthermore, the summation of

power allocated to blocks of contract c should be con-
strained by the maximum power that can be sold and
purchased through bilateral contract. Constraint (20)
states that power cannot be sold and bought with the
same forward contract. Moreover, Eqs. (21)-(24) are
used for variable declaration. Symbol � in Eq. (21)
stands for generated power constraints discussed in the
next section. Finally, revenue obtained from trading
energy through contracts can be formulated as follows:

�(i) =
NCX
c=1

NbSX
b=1

�Scb(i)P
S
cb(i)L

S
c

�
NCX
c=1

NbBX
b=1

�Bcb(i)P
B
cb (i)L

B
c : (25)

�Scb(i) and �Bcb(i), respectively, denote prices of block b
for selling and buying in contract c where Lc is time
duration of each forward contract. It should be noticed
that the revenue of contract markets is independent of
price scenarios, which makes them suitable choices to
hedge against pool price uncertainty.

3.1.3. Production cost
In this paper, production cost consists of �xed cost plus
variable cost in piecewise linearized production cost
curve plus time varying start-up cost and shutdown
cost, as illustrated in Eq. (26). Generating power of
unit, i, is presented by Eq. (27):

Ct!(i) =A(i)Ut(i) +
NmX
m=1

pt!m(i)SLm(i)

+wt(i)STCt(i)+zt(i)SC(i); 8i; t; !; (26)

P gt!(i)=pmin(i)Ut(i)+
NmX
m=1

pt!m(i); 8i; t; !: (27)

In these equations, the slope of power block, m,
for unit, i, in piecewise linearized production cost is
de�ned by SLm(i) and the number of blocks is repre-
sented by Nm. A(i), STCt(i), and SC(i) represent the
�xed cost, time varying start-up cost, and shutdown
cost of the ith unit. zt(i)=wt(i) is a binary variable
that equals 1 if the unit is shut down/started up at
time t and 0 otherwise. Furthermore, Pt!m(i) denotes
the power generated in each block and P gt!(i) is the
output power of unit, i, which is the sum of the power
generated in each block plus minimum power output
Pmin(i).

Operating thermal unit is constrained by some
limitations. The set of Formulations (28) and (29) is
utilized to model ramp rate limits:

P g(t+1)!(i)�P gt!(i)� [RU(i)Ut(i)+SU(i)wt+1(i)] ;

8 i; t; !; (28)

P gt!(i)�P g(t+1)!(i)� [RD(i)Ut+1(i)+SD(i)zt+1(i)] ;

8 i; t:!: (29)

Minimum uptime has been modeled through Eqs. (30)-
(32). Eqs. (30) and (31) are utilized in order to
maintain unit i on with respect to its minimum uptime
MU(i) and the number of hours it has been on at the
beginning of the scheduling period, TU0(i). Minimum
uptime limitation for time periods other than the �rst
period is satis�ed by (32):

UT (i)X
t=1

(1� Ut(i)) = 0; 8i; (30)
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UT (i) = max [0;min[NT ; [MU(i)� TU0(i)]Ut0(i)]]

8i; (31)

wt(i) +
min[NT ;t+MU(i)�1]X

m=t+1

zm(i) � 1

8i; t = UT (i) + 1; � � � ; T: (32)

Minimum downtime has been modeled through
Eqs. (33)-(35). Eqs. (33) and (34) are utilized in order
to maintain unit i o� with respect to its minimum
downtime, MD(i), and the number of hours it has been
on at the beginning of the scheduling period, TC0(i).
Minimum downtime limitation for time periods other
than the �rst period is satis�ed by (35):
DT (i)X
t=1

(Ut(i)) = 0; 8i; (33)

DT (i) = max[0;min[NT ; [MD(i)� TC0(i)]

(1� Ut0(i))]]; 8i; (34)

zt(i) +
min[NT ;t+MD(i)�1]X

m=t+1

wm(i) � 1;

8 i; t = DT (i) + 1; � � � ; T: (35)

Maximum/minimum output power constraints are
modeled by Eqs. (36) and (37):

P gt!(i) � pmax(i)Ut(i); 8i; t; !; (36)

pmin(i)Ut(i) � P gt!(i); 8i; t; !: (37)

Furthermore, Eqs. (38)-(45) make linear expression of
exponential start-up cost. In order to de�ne start-up
cost as a function of hours that the unit has been o�,
TCt(i) is utilized as an o�-time counter. The value
of M in Eq. (38) should be as small as possible, but
large enough for a good mixed integer programming
formulation; in this case, M = NT + TC0 [23]. vtk(i)
is a binary variable that equals 1 if unit i is started up
in segment k of the start-up curve. Nk represents the
number of intervals of start-up cost curve. Moreover,
qt(i) is a dummy variable and is used when either unit
i is o� at hour t or it is started up at hour t and has
been o� for Nk hours [24]. Furthermore, STCt denotes
time-varying start-up cost, in which STk(i) represents
start-up cost at segment k in the stair-wise start-up
curve:

0 � TCt(i) �M [1� Ut(i)]; 8i; t; (38)

TCt�1(i)� TCt(i) �MUt(i)� 1; 8i; t; (39)

TCt(i)� TCt�1(i) � 1; 8i; t; (40)

NkX
k=1

vtk(i) = wt(i); 8i; t; (41)

TCt�1(i) =
Nk�1X
k=1

kvtk(i) + qt(i); 8i; t; (42)

qt(i) �M [vtNk(i)� Ut(i) + 1]; 8i; t; (43)

qt(i) � NkvtNk(i); 8i; t; (44)

STCt(i) =
NkX
k=1

STk(i)vtk(i); 8i; t: (45)

Finally, Eqs. (46)-(48) are used for variables declara-
tion [23-25]:

Ut+1(i)� Ut(i) = wt+1(i)� zt+1(i); 8 i; t; (46)

wt(i)� zt(i) � 1; 8 i; t; (47)

Ut(i); wt(i); zt(i); vtk(i): (48)

3.2. Multi-period risk management based on
conditional value at risk

Conditional Value at Risk (CVaR) can be de�ned as
the conditional expectation of pro�ts lower than a
threshold called VaR. It should be noted that the pro�t
might be negative and, thus, in e�ect, constitute a
loss. At the con�dence level �, CVaR is the expected
value of portfolio pro�ts in the (1 � �) � 100% worst
cases. Three common values of � are 0.90, 0.95, and
0.99 [2].

In this paper, portfolio optimization of a GENCO
is handled by assessment of market price risk using the
multi-period CVaR measure. Since stochastic nature
of volatile market prices is handled by considering
enough number of price scenarios, for each realization
of market prices, a value of pro�t for the GENCO
is obtained. Consequently, a pro�t distribution is
generated by considering total planning horizon and 24
pro�t distributions are produced for modelling of the
pro�t of each time period. Long-term risk management
deals with the CVaR of the pro�t distribution function
of the total planning horizon (TCVaR). On the other
hand, the HCVaRs are calculated based on hourly
pro�t distributions and have been used to control short-
term risk. Risk of pro�t variability is modeled through
CVaR methodology by Eqs. (49)-(56). Eqs. (49)-(52)
model the short-term risk preferences of the decision
maker while Eqs. (53)-(56) are used to control long-
term risk. Short-term risk measure is de�ned in
Eq. (49):

Risk measure =
NIX
i=1

NTX
t=1

�t(i)HCV aRt(i); (49)
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HCV aRt(i)=

(
�sht (i)�

�
1

1� �sh
�N!X
!=1

�!�sht!(i)

)
;

8 i; t; (50)

�t!i(REt!(i); RSt!(i)) + �(i)� Ct!(i)

� �sht (i) + �sht!(i) � 0; 8 t; !; i; (51)

�sht!(i) � 0; 8 t; !; i; (52)

TCV aR = �L �
�

1
1� �L

� N!X
!=1

�!�L! ; (53)

TCV aR � 
L0; (54)

NIX
i=1

(NTX
t=1

f�t!i(REt!(i); RSt!(i)g+ �(i)� Ct!(i)

)
� �L + �L! � 0; 8 !;

(55)

�L! � 0; 8 !: (56)

HCV aRt(i) is the short-term CVaR of pro�t of unit
i in the time period t and TCVaR is long-term CVaR
of the GENCO's pro�t. It should be noted that long-
term risk control is achieved by imposing a limitation

L0 on the long-term CVaR while the short-term risk
preferences of the GENCO for unit i are incorporated
into the model by adopting risk aversion coe�cients
�t(i). Since each Locational Marginal Price (LMP)
could be a�ected by various local means such as actions
of competitors and demand behavior of the speci�c
area, the corresponding risk management technique
may be di�erent from one unit to another, so risk
management strategies have been devised in accor-
dance with risk preferences of each unit. Reference [26]
tries to evaluate the relation between pro�t and risk
aversion based on Internal Revenue Service (IRS) data
and estimates changes in risk aversion. It states that
risk aversion has a decreasing trend as the wealth
increases. Consequently, risk aversion of a GENCO
in every market session can be assumed dependent on
its corresponding price. In other words, the higher the
price, the lower the risk aversion would be. From an-
other point of view, volatility in price behavior can be
used to determine decision making strategy. Typically,
price spikes appear in extreme situations such as bad
weather or unexpected outages in the network. In these
situations, by devising a bad bidding strategy, a loss of
millions of dollars within a few days or even hours is
unavoidable. To reduce bidding risks, a GENCO may
prefer to sell power when the market uncertainties are

Figure 2. Fuzzy membership function.

high to capture potential price spikes and buy power
when the market uncertainties are low to avoid risks [4].
In this paper, fuzzy satisfaction theorem based on
linear membership function is utilized to model risk
preferences of the decision maker. As depicted in
Figure 2, fuzzy membership function produces a risk
factor between a and b proportional to expected price
of each hour; a represents maximum risk aversion and
b corresponds to risk loving attitude. �max

t =�min
t is

the maximum/minimum speci�ed price greater/lower
than the price to which the minimum/maximum risk
aversion coe�cient is assigned.

In the following section, the e�ectiveness of the
proposed method is examined by comparing the results
of applying risk neutral, long-term risk management,
and the proposed strategy in the optimal portfolio
selection problem. Figure 3 represents the owchart
of the execution steps of the applied methodology.

4. Numerical results and discussion

The model presented in the previous sections is illus-
trated through a case study. The considered GENCO
owns three thermal units with total maximum gen-
eration capacity of 950 MW. Technical speci�cations
of the units such as output power, rating capability,
minimum uptime/downtime, operation cost, start-up
and shutdown costs, etc. are provided in Tables 1-
3. In this paper, the considered ancillary services
market includes Automatic Generation Control (AGC),
spinning reserve, and non-spinning reserve. Energy and
ancillary services are traded in a pool-based electricity
market where producers are awarded by the market
clearing prices corresponding to each market. Four
types of forward contracts are provided for each gener-
ation unit; selling and buying contracts in peak and
o�-peak hours. Since forward contracts are usually
traded over longer periods of time, peak contracts cover
8 hours and o�-peak contracts are de�ned over a span of
16 hours. It is assumed that each contract can consist
in up to two 30 MW blocks with the price behavior
described in Section 3.1.2. Available contracts and
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Figure 3. Flowchart of the execution steps of the applied methodology.

Table 1. Cost data of the units.

Unit
no.

Pmax

(MW)
Pmin

(MW)
a

($/Mwh)
b

($/Mwh)
c

($)
SC
($)

1005 300 100 0.10875 24.8875 6.78 115
1010 300 100 0.010875 25.8875 6.78 96.4
1011 350 100 0.003 26.76 32.96 126.3

Table 2. Stair-wise start-up cost ($)

Unit no. ST1 ST2 ST3 ST4 ST5

1005 100.88 200.76 300.32 310.45 315.87
1010 102.23 205.43 303.88 309.34 316.55
1011 107.57 210.56 308.34 312.49 317.62
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Table 3. Technical characteristics of the units.

Unit
no.

RU
(MW/h)

RD
(MW/h)

SU
(MW/h)

SD
(MW/h)

DT
(h)

UT
(h)

1005 50 50 100 100 3 4
1010 50 50 100 100 3 4
1011 75 75 150 150 3 4

Table 4. Forward contracts data.

Contract
type

Pc
(MW)

�c ($ MWh)
Block 1 Block 2

Buy O�-peak 60 21.53 21.63
Peak 60 27.661 27.761

Sell O�-peak 60 22.33 22.23
Peak 60 28.461 28.361

Figure 4. Stochastic energy price.

their associated prices are given in Table 4. Stochastic
prices for energy and ancillary services markets are
provided by the Monte Carlo simulation method. The
su�cient number of price scenarios is determined to
be 160 scenarios to ensure traceability and maintain
stochastic nature of the problem. Energy market price
is presented in Figure 4. Prices for other markets are
produced similarly.

The assumed short-term risk aversion coe�cients
based on fuzzy membership function are provided in
Table 5. The parameters `a' and `b' are considered

1 and 0, respectively, where �max
t and �min

t are set
proportional to the expected price. Furthermore, an
appropriate 
L0 is picked up so that the amount of
long-term CVaR is constrained to the minimum ac-
cepted value. The e�ectiveness of the proposed method
is illustrated through analyzing the results of various
portfolio selection methods considering risk neutral
strategy, long-term risk management technique, and
the proposed method. Each of these three strategies
is examined on four cases as represented below:

- Case A: Unit commitment and scheduling for en-
ergy market;

- Case B: Optimal portfolio selection for involvement
in energy market and signing forward contracts;

- Case C: Optimal portfolio selection for involvement
in energy and ancillary services markets;

- Case D: Optimal portfolio selection for involvement
in energy and ancillary services markets and forward
contracts.

Since Case D is the most comprehensive case, Value
of Stochastic Solution (V SS) is calculated in this
case. Expected pro�t of risk neutral strategy based
on stochastic method is $31617, which is by $4078
greater than the expected pro�t obtained solving the
EEV problem. Consequently, V SS is 12.9%, which
emphasizes the importance of modelling uncertainty in
the decision making strategy. Size of the stochastic
problem is given in Table 6. All programs have
been solved using CPLEX 10.1.1 under GAMS on
an x86/MS Windows with two processors clocking at
2.53 GHz and 4 GB RAM.

Strategy 1: Risk neutral strategy
In a risk neutral strategy, the ultimate goal of a

Table 5. Risk aversion coe�cients based on fuzzy membership function.

Hour �t(i) Hour �t(i) Hour �t(i) Hour �t(i)

1 0.54 7 0.54 13 0.16 19 0.14
2 0.74 8 0.47 14 0.20 20 0.00
3 0.95 9 0.42 15 0.21 21 0.05
4 1.00 10 0.30 16 0.18 22 0.15
5 0.92 11 0.21 17 0.16 23 0.28
6 0.79 12 0.18 18 0.16 24 0.58
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Table 6. Computational size of the stochastic model.

Item Number

Continuous variables N!NTNINm +N!NTNI + 3NTNI +N! + 1 115440
Binary variables 3NTNI +NTNINk 660
Constraints 12NTNI + 5N!NTNI + 2NI + 2N! 127680

Table 7. Risk neutral strategy.

Case Expected pro�t
($)

TCVaR
($)

HCVaRworst

($)
HCVaRbest

($)
HCVaRmean

($)
A 14444 -2245 -3656 -338 -1601
B 16820 -4911 -5524 -1103 -3007
C 29241 12752 -2742 -337 -1006
D� 31617 10388 -4151 -1045 -2442

�Solution time of Case D: 55 sec

Table 8. Long-term risk management strategy.

Case Expected pro�t
($)

TCVaR
($)

HCVaRworst

($)
HCVaRbest

($)
HCVaRmean

($)
A 14444 {763 {3655 0 {1601
B 16028 {1992 {3732 {337 {2522
C 29243 14628 {2742 0 {1005
D� 29283 15434 {2302 0 {872

�Solution time of Case D: 2 min 18 sec

GENCO is to maximize the pro�t of participation
in electricity market. Therefore, it is assumed that
in Eq. (3), � = 0 and Risk Constraint (54) is
ignored. The resulting pro�t and corresponding risk
by applying this strategy are indicated in Table 7.
Risk assessment is carried out by calculating long-
term CVaR, which corresponds to the whole planning
horizon (TCVaR), and short-term CVaRs, which are
measured on an hourly basis (HCVaRs). In this sense,
HCVaRworst and HCVaRbest represent the worst and
the best amounts of short-term CVaR in the planning
horizon, respectively, and HCVaRmean is de�ned as
the average HCVaR of 24 hours. For instance, in
Case D, the worst HCVaR and the best HCVaR in the
scheduling day are �$4151 and �$1045, respectively,
which means that even in the best situation, the
expected value of the 5% lowest pro�ts of the GENCO
for an hour is a negative value that shows a great
loss. It is worth mentioning that adopting risk neutral
strategy provides relatively greater pro�ts than the
methods with risk management tools. However, the
GENCO is exposed to high level of risk as it will be
shown in the following.

Strategy 2: Long-term risk management
Self-scheduling of the GENCO for participating in
di�erent markets is carried out considering long-term
risk management technique. It is assumed that the

short-term risk is ignored by the decision maker.
Consequently, risk measure part of the objective
function (3) is substituted by maximizing long-term
CVaR and TCVaR, de�ned by Eq. (53). A weighting
factor (�L) is utilized in order to make desirable
trade-o� between risk and pro�t. The amount of
�L is adjusted according to our proposed fuzzy
approach when the average price of the day has
been used to choose the appropriate value for the
linear fuzzy membership function. Table 8 shows the
result of applying this method when �L = 0:34. As
a result of diversi�cation in the portfolio selection,
the more the investment options provided, the less
the long-term risk is. However, an exception can be
seen when the possibility of involvement in forward
contracts is added. In this case, risk lover GENCO
has chosen to bene�t from arbitrage opportunities
that are provided through purchasing power from
forward contracts and sells power in the pool market;
consequently, the risk has increased.

Strategy 3: Proposed portfolio selection
method with long-term and short-term risk
management
In this part, two examples are provided for making
comparison between the proposed portfolio selection
approach and the two aforementioned strategies.
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Table 9. Proposed portfolio selection strategy (Example 1).

Case Expected pro�t
($)

TCVaR
($)

HCVaRworst

($)
HCVaRbest

($)
HCVaRmean

($)
A 13171 0 {2679 0 {873.5
B 13691 0 {2437 0 {866
C 28806 12752 {1358 182 {418
D� 28338 10388 {985 1077 {77

�Solution time of Case D: 3 mins 31 sec

Figure 5. HCVaRs of the proposed method and risk
neutral portfolio selection strategy (Case D).

Figure 6. Power allocated to energy market (Case D).

Example 1: In the �rst example, the resulting TC-
VaR in the risk neutral strategy is considered as the
minimum accepted value for long-term CVaR of the
GENCO, 
L. In Cases A and B, for which risk neutral
strategy results in a negative TCVaR, 
L is set to zero.
Table 9 shows the results of this example.

By comparing the expected pro�ts of Case D in
Tables 7 and 9, a total pro�t of $31617 is obtained
with risk neutral strategy and $28338 by applying
the proposed method, which is 10.3% lower. Instead,
adopting the proposed portfolio selection strategy
has decreased short-term risk so that HCVaRworst,
HCVaRbest, and HCVaRmean have signi�cantly been
improved by 76.2%, 203%, and 96.8%, respectively.
Figure 5 shows the resulting HCVaR by applying the
proposed methodology and risk neutral portfolio selec-
tion approach. Since Case D is the most comprehensive
case, optimal amount of power, which is allocated to
each market in this case, is depicted in Figures 6-8.
Figure 6 shows the power allocated to energy market
with which risk neutral and the proposed method

Figure 7. Power allocated to ancillary services markets
(Case D).

Figure 8. Power allocated to forward contracts (Case D).

have been applied. Furthermore, the expected energy
price is depicted in this �gure. It should be noted
that in risk neutral strategy, the GENCO purchases
maximum allowed power through forward contracts
and sells it in pool market in hope of gaining more
pro�t in spite of being exposed to higher amount of risk.
Figures 7 and 8 show the power allocated to ancillary
services markets and forward contracts, respectively.
In Figure 8 positive/negative values correspond to
buying/selling power through forward contracts.

Example 2: In this example, the limitation of long-
term risk is considered equal to the TCVaR value
obtained by long-term risk management strategy. Con-
sequently, when the proposed method and long-term
risk management strategy provide the same amount
of TCVaR, a comparison between the expected pro�ts
and short-term risk of these two strategies can be
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Table 10. Proposed portfolio selection strategy (Example 2).

Case Expected pro�t
($)

TCVaR
($)

HCVaRworst

($)
HCVaRbest

($)
HCVaRmean

($)
A 13948 {763 {2679 0 {984
B 13691 {1992 {2437 0 {866
C 28817 14628 {1358 140 {423
D� 28338 15434 {985 1077 {423

�Solution time of Case D: 3 mins 33 sec

Figure 9. HCVaRs of the proposed method and
long-term risk management strategy (Case D).

made. The results of this example are shown in
Table 10. Furthermore, Figure 9 depicts the resulting
HCVaR by applying the proposed methodology and
long-term risk management approach. By comparing
Tables 8 and 10, it can be concluded that with the
same TCVaR value, the proposed risk management
technique improves the HCVaRmean of the scheduling
day by 51.4%, while the expected pro�t is only reduced
by 3.34%. This is a remarkable advantage that clearly
illustrates the e�ectiveness of the proposed method.
From the viewpoint of a decision maker, it is a merit
that the short-term risk is signi�cantly decreased with
a low cost and the desired long-term risk preferences
are satis�ed as well.

5. Conclusions

This paper provides suppliers with a novel decision-
making tool that accounts for both long-term and
short-term risk aversion preferences of the GENCO.
Considering the uncertainty in electricity market price
as the main source of risk, optimal strategies to par-
ticipate in forward contracts, and energy and ancillary
services markets were devised. Because of the imprecise
nature of the decision maker's judgment, appropriate
modelling of risk aversion attitude of the GENCO is
another challenge. This paper used fuzzy satisfaction
theory to express decision maker's attitude toward
risk. By applying the proposed method, not only
trading loss over the whole scheduling horizon could
be controlled, but also the amount of imposed loss
during every time period could be reduced. Precise

modelling of the production units by considering pre-
vailing operational constraints of the thermal units and
utilizing the advanced CPLEX solver under GAMS
for solving this stochastic mixed-integer programming
problem make the developed algorithm suitable for
practical operation.

The advantages of the proposed method were well
illustrated by numerical results and comparing three
di�erent risk management strategies, namely, risk neu-
tral strategy, long-term risk management method, and
the proposed portfolio selection approach, through four
attractive cases. According to the obtained results, by
applying the proposed method, in addition to meeting
the desired long-term risk requirement, the short-term
risk can be substantially decreased in expense of a small
reduction in the expected pro�t.

Finally, in this paper, the optimization of portfo-
lio selection from the viewpoint of a generation com-
pany was analyzed. In future, it would be interesting
to devise an optimal risk management strategy for in-
dependent system operator or other electricity market
players such as transmission or distribution network
providers and customers. Also, this paper focused
on stochastic electricity market price as the main
source of uncertainty, while behavior of other market
participants, operational failure of generation units,
unexpected outages of transmission lines, renewable
resources production, etc. are also attractive ideas to
be explored with this risk assessment strategy.

Nomenclature

Variables

� Revenue obtained from forward
contracts

REt! Revenue obtained from energy market
in period t and scenario !

RSt! Revenue obtained from ancillary
services market in period t and
scenario !

Ct! Production cost in period t and
scenario !

Pt!m Power generated in each production
block m in period t and scenario !
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STCt Time varying start-up cost
qt Dummy variable for computing

start-up cost

PScb Power sold through block b of forward
contract c

PBcb Power bought in block b of forward
contract c

P qt! Output power of unit i in period t and
scenario !

�sht The GENCO's VaR in each time
period t

�L The GENCO's VaR of the total
scheduling horizon

RASt! Total power allocated to di�erent
ancillary services markets in period t
and scenario !

Rxt! The amount of power allocated to
AGC, spinning reserve, and non-
spinning reserve when unit i is on and
to non-spinning reserve when it is o�;
x = fA;S;NU;NDg,

PEt! Power allocated to the energy market
TCt Shutdown time counter

Binary variables

AGCt Indicator of involvement in AGC
market in period t

wt Start-up indicator at time period t
Ut Unit status indicator, which equals 1 if

unit i is on at time t and 0 otherwise
zt Shutdown indicator at time period t
UcS Indicator of selling through bilateral

contract c
UcB Indicator of buying by bilateral

contract c
vtk Indicator of start-up at hour t and

interval k

Stochastic variables

�Et! Price of energy market in period t and
scenario !

�qt! q = A;S;N stands for price of AGC,
spinning reserve, and non-spinning
reserve markets

�sht ; �
L Auxiliary variables used to compute

the short-term and long-term CVaRs

PDt! Own load in period t and scenario !

Constants

�! Probability of occurrence of scenario !
SLm Slope of segment m in linearized cost

function

A Generation cost at the minimum
output power

SC Shutdown cost
STk Cost of the kth interval of start-up

cost function
�sh; �L Con�dence level used to compute the

short-term and long-term CVaRs
� Weighting factor to achieve tradeo�

between pro�t and risk
RU;RD Ramp-up limit and ramp-down limit
SU; SD Start-up ramp limit and shutdown

ramp limit
UT Number of hours that a unit needs to

remain on
TU0 Number of hours that a unit has been

on at the beginning of scheduling
period

MU;MD Minimum up-time and minimum
down-time

DT Number of hours that a unit needs to
remain down

TC0 Number of hours that a unit has been
o� at the beginning of scheduling
period

Pmin; Pmax Minimum and maximum output power

PS;max
c ;PB;max

c Maximum power that can be sold and
purchased through bilateral contract c

RAmax; R
S
max Maximum capability for participating

in AGC and spinning reserve markets

RNmax Maximum capability for participating
in non-spinning reserve market

�Scb; �
B
cb Selling and purchasing prices of block

b in bilateral contract c
Lc Time duration of each forward contract

(h)
AL Regulating limit for participating in

AGC market
SLm Slope of power block m in piecewise

linearized production cost curve

L0 Minimum accepted value for long-term

CVaR
�max
t ; �min

t Maximum and minimum speci�ed
prices greater and lower than prices
to which minimum and maximum risk
aversion coe�cients are assigned

�t(i) Risk aversion coe�cient of unit i in
period t

Numbers

N!; NT ; NI Numbers of scenarios, periods, and
units, respectively
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NCS ; NCB Number of available bilateral contracts

NbS ; NbB Numbers of available selling and
buying blocks in bilateral contracts

Nk Number of intervals of start-up cost
Nm Number of blocks in piecewise

linearized production cost curve
STk Start-up cost at segment k in the

stair-wise start-up curve
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