Design of Alternating Magnetic Field Generator for Magnetic Fluid Hyperthermia Research Application

Document Type : Article

Authors

Electrical and Electronics Engineering Department, Shiraz University of Technology, Modares blvd., Shiraz

Abstract

Hyperthermia utilizing nanoparticles is a novel cancer therapy which relies on the heat released when nanoparticles inside a tumor are exposed to an alternating magnetic field. The field strength and frequency are the main variants affect performance of nanoparticles for heat generation. Besides the characteristics of nanoparticle, which is the main criteria for tuning amplitude and frequency of magnetic field generated by an alternating magnetic field generator (AMFG), several parameters should be considered for an optimum design, which is related to AMFG design. These parameters are input voltage range, copper tube resistance used for solenoid coil, coil number of turns, and etc. According to these criteria, design procedure of AMFG for research applications is performed to maximize the heat released by nanoparticles. In order to validate the design, an experimental set up of AMFG is prepared which is used for in vivo hyperthermia tests. The experimental results are shown and compared to the simulations.

Keywords

Main Subjects


References
1. Kunisaki, J., Saito, T., Morita, M., Yamada, T.,
and Takemura, Y. Temperature rise of resonant
circuits for hyperthermia excited by weak RF magnetic
eld", IEEE Int. Magnetics Conf. INTERMAG'06.,
San Diego, California, USA (2006).
2. Wust, P., Hildebrandt, B., and Sreenivasa, G. Hyperthermia
in combined treatment of cancer", The Lancet
Oncology, 3(8), pp. 487-497 (2002).
3. Falk, M. and Issels, R. Hyperthermia in oncology",
Int. Jour. of Hyperthermia, 17(1), pp. 1-18 (2001).
4. Chang, E., Alexander, H., and Libutti, S. Laparoscopic
continuous hyperthermic peritoneal perfusion",
J. of the American College of Surgeons, 193(2), pp.
225-229 (2001).
5. Tasci, T., Vargel, I., Arat, A., Guzel, E., Korkusuz,
P., and Atalar, E. Focused RF hyperthermia using
magnetic
uids", Med. Phys., 36(5), pp. 1906-1912
(2009).
6. Glockl, G., Hergt, R., Zeisberger, M., Dutz, S., Nagel,
S., and Weitschies, W. The e ect of eld parameters,
nanoparticle properties and immobilization on the speci
c heating power in magnetic particle hyperthermia",
J. Phys.: Condens. Matter, 18(38), pp. 2935-2949
(2006).
7. Natividad, E., Castro, M., and Mediano, A. Accurate
measurement of the speci c absorption rate using a
suitable adiabatic magnetothermal setup", Appl. Phys.
Lett., 92(9), pp. 093116-093116-3 (2008).
8. Natividad, E., Castro, M., and Mediano, A. Adiabatic
vs. non-adiabatic determination of speci c absorbtion
rate of ferro
uids", J. Magn. Magn. Mater., 321(10),
pp. 1497-1500 (2009).
9. Atsumi, T., Jeyadevan, B., Sato, Y., and Tohji, K.
Heating eciency of magnetite particles exposed to
AC magnetic eld", J. Magn. Magn. Mater., 310(2),
pp. 2841-2843 (2007).
10. Eggeman, A., Majetich, S., Farrell, D., and Pankhurst,
Q. Size and concentration e ects on high frequency
hysteresis of iron oxide nanoparticles", IEEE Trans.
Magn., 43(6), pp. 2451-2453 (2007).
11. Rosensweig, R. Heating magnetic
uid with alternating
magnetic eld", J. Magn. Magn. Mater., 252, pp.
370-374 (2002).
12. Kuznetsov, A., Shlyakhtin, O., Brusentsov, N., and
Kuznetsov, O. Smart mediators for self-controlled
inductive heating", European Cells and Materials,
3(2), pp. 75-77 (2002).
13. Nedelcu, G. The heating study of two types of colloids
with magnetite nanoparticles for tumours therapy",
Digest J. of Nanomaterials and Biostructures, 3(2),
pp. 99-102 (2008).
14. Zhao, M., Hun, J., Zou, J., Zhao, B., and Li. Y. Characteristics
of a magnetic
uid under an orthogonal
alternating magnetic eld", J. Magn. Magn. Mater.,
409, pp. 66-70 (2016).
15. Branquinho, L., Carri, M., Costa, A., Zufelato, N.,
Sousa, M., Sousa, R., Miotto, R., Ivkov, A., and
Bakuzis, A. E ect of magnetic dipolar interactions on
nanoparticle heating eciency: Implications for cancer
hyperthermia", Scienti c Reports, 3, pp. 1-10 (2013).
16. Khandhar, A., Ferguson, R., Simon, J., and Krishnan,
K. Enhancing cancer therapeutics using sizeoptimized
magnetic
uid hyperthermia", J. Appl.
Phys., 111(7), pp. 7B306-7B3063 (2012).
3516 M. Mohseni and A. Rajaei/Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3507{3516
17. Skumiel, A., Leszczynski, B., Molcan, M., and Timko,
M. The comparison of magnetic circuits used in
magnetic hyperthermia", J. Magn. Magn. Mater., 420,
pp. 177-184 (2016).
18. Bekovic, M. and Hamler, A. Determination of the
heating e ect of magnetic
uid in alternating magnetic
eld", IEEE Trans. on Magnetics, 46(2), pp. 552-555
(2010).
19. Rosensweig, R. Heating magnetic
uid with alternating
magnetic eld", J. Magn. Magn. Mater., 252, pp.
370-374 (2002).
20. Carrey, J., Mehdaoui, B., and Respaud, M. Simple
models for dynamic hysteresis loop calculations of
magnetic single-domain nanoparticles: application to
magnetic hyperthermia optimization", J. Appl. Phys.,
109(8), pp. 083921-17 (2011).
21. Wang, X., Chen, Y., Huang, C., Wang, X., Zhao,
L., Zhang, X., and Tang, J. Contribution of a 300
kHz alternating magnetic eld on magnetic hyperthermia
treatment of HepG2 cells", Bio Electromagnetics,
34(2), pp. 95-103 (2013).
22. Wu, J., Cai, D., Cao, X., and Tang, J. A novel
alternating magnetic eld measuring device for magnetic
induction hyperthermia", Int. Conf. on Complex
Medical Engineering, Beijing, China (2013).
23. Boekelheide, Z., Hussein, Z., and Hartzell, S. Electronic
measurements in an alternating magnetic eld
(AMF) for studying magnetic nanoparticle hyperthermia:
Minimizing eddy current heating", IEEE Trans.
on Magnetics, 52(7), pp. 1-4 (2016).
24. Kastnera, E., Reevesb, R., Bennetta, W., Misraa, A.,
Petrykb, J., Petryka, A., and Hoopesb, P. Alternating
magnetic eld optimization for IONP hyperthermia
cancer treatment", Proc. of SPIE Conf., San Francisco,
California, USA (2015).
25. Nemkov, V., Runi, R., Goldstein, R., Jackowski, J.,
DeWeese, T., and Ivkov, R. Magnetic eld generating
inductor for cancer hyperthermia research", The Int.
J. for Computation and Mathematics in Elec. and
Electronic Eng., 30(5), pp. 1626-1636 (2011).
26. Bordelon, D., Goldstein, R., Nemkov, V., Kumar, A.,
Jackowski, J., DeWeese, T., and Ivkov, R. Modi ed
solenoid coil that eciently produces high amplitude
AC magnetic elds with enhanced uniformity
for biomedical applications", IEEE Trans. Magnetics,
48(1), pp. 47-52 (2012).
27. Kazimierczuk, M. and Czarkowski, D., Resonant
Power Converters, 2nd Edn., Wiley-IEEE Press
(2011).
28. Salehinia, A., Haghifam, M., Shahabi, M., and Mahdloo,
F. Energy loss reduction in distribution systems
using GA-based optimal allocation of xed and
switched capacitors", 2010 IEEE International Energy
Conference, Manama, pp. 835-840 (2010).
29. International Recti er IR, IR1404 Datasheet, IR Corporation,
CA (2003).
30. IXYS Low-Side Ultrafast MOSFET Driver, IXDD414
datasheet, IXYS Corporation, CA (2004).
31. Raikher, Y. and Stepanov, V. Linear and cubic
dynamic susceptibilities of superparamagnetic ne particles",
Phys. Rev. B, 55(22), pp. 15005-15017 (1997).