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Abstract. Symbiotic Organisms Search (SOS) is a brand new and e�ective metaheuristic
optimization algorithm. This paper proposes the SOS algorithm to solve the Economic Load
Dispatch (ELD) problem with valve-point e�ect, which is one of the essential optimization
problems in modern power systems. The proposed algorithm is tested on �ve di�erent
test cases consisting of 3-machine 6-bus, IEEE 5-machine 14-bus, IEEE 6-machine 30-bus,
and 13- and 40-unit test systems both with transmission loss and without transmission
loss. These test cases show that SOS is able to converge on the global optima, successfully.
Moreover, results obtained from the proposed algorithm are compared through di�erent
methods used in solving the ELD problem existing in the literature. According to these
results, SOS produces the best values among all methods.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Economic Load Dispatch (ELD) is one of the most
popular and important optimization problems in mod-
ern power system operation and aims to minimize
the total cost of function scheduling outputs of all
generating units to meet the load demand while satis-
fying some equality and inequality system constraints.
ELD becomes a highly non-linear optimization problem
when the valve-point e�ects, multi-fuel e�ects, etc.
are considered. Therefore, solving this non-smooth
optimization problem and �nding the global optimum
become very di�cult.
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Researchers have made great e�orts to solve the
ELD problem from past to the present. Classical meth-
ods like linear programming [1], interior point [2,3],
and dynamic programming [4] were used in early
times. In order to overcome some drawbacks of these
algorithms, including insecure convergence properties,
long execution time, and algorithmic complexity, many
meta-heuristic based optimization algorithms were de-
veloped and proposed to solve ELD. Simulated An-
nealing (SA) was implemented [5] in ELD problems
and produced nearly optimal solutions in the early
1990s. Then, evolutionary based algorithms were used
for solving ELD problem. Genetic Algorithm (GA) [6]
and its improved versions [7] were also widely used.
Tabu Search (TS) [8], Particle Swarm Optimization
(PSO) [9,10], Di�erential Evolution (DE) [11], Ant
Colony Optimization (ACO) [12,13], Bacterial Forag-
ing Optimization (BFO) [14], Arti�cial Bee Colony
algorithm (ABC) [15], Gravitational Search Algo-
rithm (GSA) [16], Biogeography-Based Optimization
(BBO) [17], Improved Mutative Scale Chaos Opti-
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mization Algorithm (IMSCOA) [18], Pattern Search
method (PS) [19], Seeker Optimization Algorithm
(SOA) [20], Taguchi Method (TM) [21], Modi�ed
Shu�ed Frog Leaping Algorithm (MSFLA) [22], and
Fire
y Algorithm (FA) [23] are other heuristic search
algorithms applied to ELD in course of �nding the
best optimal solution. Besides hybrid algorithms
such as Cultural Self-Organizing Migrating Algo-
rithm (CSOMA) [24], Chaotic Di�erential Evolution
and Quadratic Programming (DEC-SQP) [25], Fuzzy
Adaptive Particle Swarm Optimization (FAPSO) [26],
hybrid Genetic Algorithm approach based on Di�er-
ential Evolution (GA-DE) [27], hybrid population-
based algorithm (PSOGSA) [28], Genetic Algorithm
with Active Power Optimization based on Newton's
second order approach (GA-APO) [29], combination
of Modi�ed Subgradient and Harmony Search (MSG-
HS) [30], hybrid Shu�ed Di�erential Evolution (SDE)
algorithm [31,32], Improved Coordinated Aggregation-
based Particle Swarm Optimization (ICA-PSO) [33],
integrated Particle Swarm Optimization technique
with the Sequential Quadratic Programming (PSO-
SQP) technique [34], modi�ed hybrid Particle Swarm
Optimization and GSA based on fuzzy logic (FP-
SOGSA) [35], Real parameter Quantum Evolutionary
Algorithm (RQEA) [36], etc. have been developed by
authors to solve ELD problem. Even though all of
these algorithms produce good solutions and have some
advantages, each method has its own drawbacks. As it
is declared in [37], SA su�ers from slow convergence
and its parameter determination is di�cult, PSO has a
slow �ne-tuning ability of solution and it has di�culty
in escaping from the local optimum, GA's o�spring pro-
duction capacity is weak and it shows slow convergence
near the best optimal solution, and TS is ine�cient in
describing e�ective memory structures and strategies
adequate for the problem.

Symbiotic Organisms Search algorithm (SOS) is
a brand new and e�ective metaheuristic optimization
algorithm developed by Cheng and Prayogo [38] in
2014. It is an improved algorithm for �nding the
best possible solution to optimization problems with
multi-variable functions and simulates symbiotic inter-
action tactics used by organisms in order to survive
in the nature. Because SOS is an algorithm for a
newborn, no studies have been applied to di�erent
areas. However, Cheng and Prayogo examined it
on 26 di�erent benchmark functions and structural
design optimization problems in order to show the
e�ectiveness of the algorithm. Then, they compared its
performance with other optimization algorithms such
as GA, DE, PSO, Bees Algorithm (BA), Mine Blast
Algorithm (MBA), and Cuckoo Search (CS). According
to results, it was seen that SOS produced better results
than others in all cases. Therefore, SOS algorithm is
chosen to search the globally optimum solution and

investigate the produced results for ELD problem with
valve-point e�ect in this paper. ELD solution, which
is performed using SOS, is examined over standard
power systems including IEEE 3-machine 6-bus, IEEE
5-machine 14-bus, IEEE 6-machine 30-bus, and 13- and
40-unit test systems both with transmission loss and
without transmission loss. The results are compared
with those reported in the literature; they show that
SOS algorithm produces better solutions than other
algorithms to the ELD problem.

The rest of the paper is organized as follows:
problem formulation is described in Section 2. SOS
algorithm and its application to ELD problem are
explained in Section 3. Experimental results are given
in Section 4 and, �nally, Section 5 presents conclusions.

2. Problem formulation

ELD is the most common and most important non-
linear optimization problem in power system operation
and management. The aim of ELD is to meet the load
demand while satisfying some equality and inequality
system constraints by scheduling the generator out-
puts. Outputs of generators having multi-valve steam
turbines should be increased by opening the valves
when an increase occurs in load demand. But, this
process creates ripples on heat rate curve of generat-
ing units and sinusoidal components on their power
outputs. Thus, nonlinear feature of ELD problem
increases. Hence, reaching the solution to this problem
becomes di�cult due to increase in local optimum
points in the search space [35]. When the valve-point
e�ect is taken into account, the ELD problem can be
described as follows:

min f = min
NX
k=1

Fk (Pk); (1)

Fk (Pk) =ak + bkPk + ckP 2
k

+
��dk � sin

�
ek � �Pmin

k � Pk���� ; (2)

where Fk(Pk) is total generation cost of unit k; ak,
bk, and ck are cost coe�cients; dk and ek are cost
coe�cients with valve-point e�ect of unit k; and Pk
is the power output of unit k. The ELD problem
described in Eq. (2) is subject to constraints, which
are power balance and ramp rate limits. According to
the power system constraints, the power generation of
total system is equal to the sum of total system load
(Pd) and total power loss (Pls). It can be described as
follows:

NX
k=1

Pk = Pd + Pls; (3)

where Pls can be calculated by using B-coe�cients as
follows:
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Pls =
NX
k=1

NX
l=1

PkBklPl +
NX
k=1

B0kPk +B00; (4)

where Bkl is the k; l-th elements of loss coe�cient
square matrix, B0k is the k-th vector of matrix, and
B00 is the constant of loss coe�cient.

The second constraint is ramp rate limits. Ac-
cording to this, the power output of each generating
unit is limited with a minimum value and a maximum
one.
Pmin
k � Pk � Pmax

k : (5)

2.1. Computing for slack generator
According to this calculation method, active power
load of �rst (N � 1) generating units is de�ned when
N units generate power subject to the power balance
equality given in Eq. (1). In this instance, the power
output of Nth unit (i.e., slack generator) can be
described as follows [17,35]:

PN = Pd + Pls �
(N�1)X
k=1

Pk; (6)

where Pls is a function of all outputs of generating units
comprising the slack generator and it can be described
as follows:

Pls =
N�1X
k=1

N�1X
l=1

PkBklPl + 2PN

 
N�1X
k=1

BNkPk

!

+BNNP 2
N +

N�1X
k=1

B0kPk +B0NPN +B00: (7)

Eq. (6) becomes Eq. (8) by expanding and rearranging
as follows:

BNNP 2
N +

 
2
N�1X
i=1

BNiPGi +B0N � 1

!
PN

+
�
PD +

N�1X
i=1

N�1X
j=1

PGiBijPGj

+
N�1X
i=1

B0iPGi �
N�1X
i=1

PGi +B00

�
= 0: (8)

Eq. (8) can be calculated via standard algebraic meth-
ods and, thus, the loading of the dependent generation
unit (i.e., Nth) can be found. In order to achieve this,
the following simpli�cations can be used:

�P 2
N + �PN + � = 0; (9)

� = BNN ;

� =

 
2
N�1X
k=1

BNkPk +B0N � 1

!
;

� =
�
Pd +

N�1X
k=1

N�1X
l=1

PkBklPl +
N�1X
k=1

B0kPk

�
N�1X
k=1

Pk +B00

�
: (10)

The positive roots of the equation give output of the
slack generator to satisfy Eq. (6) and it can be found
as follows:

PN =
�� �p�

2�
; (11)

where � = �2 � 4�� � 0.

3. Symbiotic Organisms Search (SOS)
algorithm and application to the ELD
problem

The SOS algorithm is a population-based stochastic
technique developed by Cheng and Prayogo [38] in
2014. It iteratively uses a population of candidate
solutions to the optimization of nonlinear functions at
multi-dimensional space in the process of seeking the
optimal global solution.

SOS consists in a group of organisms in ecosys-
tem. It simulates the interactive behavior seen among
organisms in ecosystem. There is a reliance-based
relationship between the organisms, which is known
as symbiosis. Symbiosis includes relationships that
are mutualistic, parasitic, or commensal and is used
to describe a relationship between any two distinct
organisms. The symbiotic relationships are performed
by applying special operators, namely, mutualism,
commensalism, and parasitism. Mutualism represents
a symbiotic relationship between two di�erent species
in which each individual bene�ts from the activity of
the other. Commensalism is a symbiotic relationship
between two di�erent species in which one organism
bene�ts from the other without a�ecting it. Parasitism
is a non-mutual symbiotic relationship between two
di�erent species in which one species, the parasite, ben-
e�ts at the expense of the other, the host. Organisms
use symbiotic relationships to adapt to changes in their
environment. Thanks to the special operators, �tness
and survival advantage of organisms may increase.

In the SOS algorithm, an initial population, called
the ecosystem, is �rstly created. The ecosystem
consists in a group of organisms generated randomly
in the search space. Every organism in the ecosystem
is a potential solution to the problem and has a certain
�tness value, which points out the degree of adaptation
to the desired objective. General 
owchart of the SOS
algorithm is given in Figure 1.

Now, application of SOS algorithm to ELD prob-
lem is described below step by step according to the

owchart of the algorithm.
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Figure 1. General 
owchart of SOS execution.

Step 1. Create initial ecosystem: The ecosystem is
created in three steps. In the �rst step, organisms are
created. For every organism, a vector (random values
for attributes) is generated in the second step. In the
last step, ecosystem parameters, number of organisms
(eco size), and maximum iteration (max iter) are
determined. Figure 2 shows the ecosystem and
organisms.
Step 2. Evaluate �tness function of each organism
in ecosystem: Depending on values of attributes
([a1; a2; a3; :::; am] is given in Figure 2), the �tness
value ([fvalue]) of each organism is determined by a
�tness function. The information on �tness value of
an organism is used to search for the �ttest organism.

Step 3. Determine mutualism operator:
a. An organism is selected randomly from ecosystem,

Xj , where Xj 6= Xi., through the following codes;
/* j = i;

while i == j
seed = randperm(ecosize);
j = seed(1);

end � =
b. Mutual relationship vector (Mutual Vector) and

bene�t factors (the value of 1 or 2 is assigned
randomly to both BF1 and BF2) are determined.

c. Mutual V ector = (Xi +Xj)=2.
d. Organisms Xi and Xj are modi�ed based on their

mutual relationship by using Eqs. (12) and (13):

Xinew =Xi + rand(0; 1)

� (Xbest �MutualV ector �BF1); (12)

Xjnew =Xj + rand(0; 1)

� (Xbest �MutualV ector �BF2): (13)

e. Fitness values of Xinew and Xjnew are calculated.
If the modi�ed organisms are �tter than the pre-
vious ones, then the modi�cations are accepted.
Otherwise, the modi�cations are rejected and the
previous organisms kept.

Step 4. Determine commensalism operator:
a. An organism is selected randomly from ecosystem,

Xj , where Xj 6= Xi.
b. Organism Xj is used to modify organism Xi by

using Eq. (14):

Xinew = Xi + rand(�1; 1) � (Xbest �Xj): (14)

c. Fitness value of Xinew is calculated. If the

Figure 2. Representation of ecosystem and organisms.
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Figure 3. The pseudocode of SOS algorithm to search the optimum solution.

modi�ed organism is �tter than the previous one,
then the new organism is accepted to replace Xi.
Otherwise, the modi�cation is rejected and the
previous organism kept (Xi).

Step 5. Determine parasitism operator:
a. An organism is selected randomly from ecosystem,

Xj , where Xj 6= Xi.
b. A parasite vector (Parasite Vector) is created

from organism Xi.
c. Fitness value of Xi is calculated. If the �tness

value of Parasite Vector is �tter than Xj , then
organism Xj is replaced with Parasite Vector.
Otherwise, replacement operation is performed,
Xj kept, and Parasite Vector deleted.

Step 6. Determine ecosystem size: It is the number
of organisms in ecosystem. Each organism is a
potential solution to the problem at hand. The
population size in genetic algorithm and the number
of bees in a colony in arti�cial bee colony algorithm
are also known.
Step 7. Stop: Termination criteria are determined
to stop the optimization process. If one of the
termination criteria is reached, then theXbest is saved
as optimum solution; otherwise, we return to Step 2
and start the next iteration.

The pseudocode developed for SOS algorithm is
given in Figure 3.

3.1. Implementation of SOS algorithm for
ELD problem

This section introduces the step-wise procedure for
implementing SOS algorithm to solve non-convex ELD
problem with valve-point e�ects while satisfying both
equality and inequality constraints. The process and
computational producer of the SOS algorithm are laid
out as follows:

� Representation of the ecosystem: The aim in ELD
problems is to determine the most suitable generator
output power. Because generator output values
form this in optimization variables, they are used
to represent molecules in an organism. Thus, an

organism is represented in the form of the following
matrix:

X = [M1;M2;M3; :::;Mn] ; (15)

where M is the molecule and n is the total number
of generators. Each organism is a possible solution
to the non-convex ELD problem with valve-point
e�ects. Finally, the ecosystem is created by the
combination of all organisms. An ecosystem is
represented as follows:

E =

2666664
X1
X2
X3
...

Xm

3777775 : (16)

m is the number of organisms.

� Problem parameters identi�cation: The number of
generator units, maximum and minimum capacities
of each generator, power demand, B-coe�cients
matrix for calculation of transmission losses, and
fuel cost function coe�cients are speci�ed. Also,
the SOS parameters, like number of organisms and
maximum iteration number, are determined.

� Ecosystem initialization: For initialization, the
initial molecule is de�ned by generating a uniform
random number between lower and upper limits for
the related generator power output as follows:

Mi = Pmin
i + rand(0; 1) � (Pmax

i � Pmin
i ): (17)

The ecosystem is obtained by applying this
operation to all molecules making up each organism.

� Calculation and evaluation of �tness function for
each organism of ecosystem: FC represents the
fuel cost of all generators in the test system for
the power demand. Calculated fuel costs for an
ecosystem are represented as follows:
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FCeco =

2666664
FC1
FC2
FC3

...
FCm

3777775 : (18)

Here, FC1 shows the �tness value of the �rst
organism of ecosystem. The organism with the
minimum fuel cost value in the ecosystem is chosen
as the best organism (X is signi�ed with best).

� Mutualism, commensalism, and parasitism phases:
New organisms are obtained through operations
as indicated in SOS algorithm. The organisms
obtained here represent a better solution to the
non-convex ELD problem with valve-point e�ects.

� If the termination criteria are not reached, the next
iteration is started.

� The end.

4. Experimental results

The SOS algorithm has been used for solving the ELD
problem with valve-point e�ect. Five di�erent test
systems are used to show e�ectiveness of the proposed
method. They are IEEE 3-machine 6-bus, IEEE 5-
machine 14-bus, IEEE 6-machine 30-bus, and 13- and
40-unit test systems both with transmission loss and
without transmission loss. The setting parameters of
the proposed heuristic technique are given in Appendix
Table A.1 in the Appendix. The program is written in
MATLAB and run on a 2.63 GHz Pentium IV personal
computer with 512MB RAM. Descriptions of the test
systems are given as follows:

� Test Case 1: IEEE 3-machine 6-bus test system
is considered in this case. The generators data
are obtained from [29] and presented Tables A.2
and A.3 in the Appendix. The load demand of
all units with 210 MW should be satis�ed. The
proposed method is run 40 times and the obtained
results are illustrated in Table 1 by comparison with
other methods reported before. Minimum, average,
and maximum results of the proposed method and
comparison with the results obtained from the other
methods in the literature are shown in Table 2.

The convergence curve of the total fuel cost
obtained from SOS algorithm for Test Case 1 is
shown in Figure 4. According to Figure 4, the SOS
algorithm reaches the optimal solution in about 25
iterations. This result shows that the SOS algorithm

Figure 4. Convergence of total fuel cost obtained from
SOS for Test Case 1.

Table 1. Comparison of the results obtained from SOS for Test Case 1.

Methods
Units GA [29] GA-APO [29] NSOA [29] SOS

P1 53.2604 61.6467 50 50
P2 88.9645 95.1632 86.0356 76.0015
P3 74.7693 60.5402 79.7438 90.8627

Total power output (MW) 216.9942 217.3501 215.7794 216.8642
Total fuel cost ($/hr) 3252.4576 3341.771 3206.0022 3199.0113

Ploss (MW) 6.9939 7.346085 5.7794 6.8641
Simulations times of the SOS algorithm (s) 8.2587

Table 2. The results obtained from the SOS for Test Case 1.

Method Min. Average Max.
GA [29] 3252.46 { 3463.37

GA-APO [29] 3341.77 { 3294.81
NSOA [29] 3205.99 { 3206.00

SOS 3199.0113 3199.0113 3199.0113
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Figure 5. The total fuel cost values obtained from the
SOS algorithm for 40 trials (Test Case 1).

converges on the solution quickly. As can be seen
in Table 1, optimal solution of SOS for this test
case is less than the best solution reported in [29]
by 6.99 $/hr. Besides, minimum, average, and
maximum results of SOS algorithm have the same
value for 40 runs. This result shows that SOS
algorithm produces very accurate and fast results
in all trials for small power systems. The total fuel
cost values obtained from the proposed approach for
the solutions performed 40 times for Test Case 1 are
shown in Figure 5.

Test Case 2: IEEE 5-machine 14-bus test system
is considered in this case. The total load demand is
259 MW. The generators data are obtained from [29]
and presented in Tables A.2 and A.3. The proposed
algorithm is run 40 times and the results obtained
from it are presented in Table 3 by comparison
with other methods reported before in the literature.
According to the results in Table 3, the proposed
algorithm produces the minimum fuel cost with
834.1302 $/hr and it is obviously seen that this
result is the best among all in the literature. The
convergence curve of total fuel cost obtained from
SOS for this case is illustrated in Figure 6. The
SOS algorithm reaches the optimal solution in about
55 iterations as seen in Figure 6. The minimum,
average, and maximum results of the SOS method
and results obtained from the other heuristic tech-
niques previously reported in the literature for this
test system are given in Table 4. The total fuel cost
values obtained from the proposed SOS algorithm

Figure 6. Convergence of total fuel cost obtained from
SOS for Test Case 2.

Table 4. The results obtained from the proposed
approach for Test Case 2.

Method Min. Average Max.

GA [29] 926.5530 { 1012.44
GA-APO [29] 926.5530 { 960.55

NSOA [29] 905.5437 { 906.63
PSO [30] 836.4568 834.969 837.716

MSG-HS [30] 834.363 834.673 836.119
FPSOGSA [35] 834.1308 834.1312 834.1337

SOS 834.1302 834.1310 834.1331

in the solutions done 40 times for Test Case 2 are
shown in Figure 7. From Figure 7, it is obvious
that the total fuel cost values have been changed by
0.0029 unit.

� Test Case 3: IEEE 6-machine 30-bus test system
is considered in this case. The total load demand
is 283.4 MW for this case. The generators data are
obtained from [29,35] and presented in Tables A.2
and A.3. Results are obtained from the proposed

Table 3. Comparison of the results obtained from SOS for Test Case 2.

Methods

Units GA
[29]

GA-APO
[29]

NSOA
[29]

PSO
[30]

MSG-HS
[30]

FPSOGSA
[35]

SOS

P1 172.7647 172.7647 181.1287 197.4696 199.6923 199.5997 199.5997
P2 26.6212 26.6212 46.7567 20.0000 20.0000 20.0000 20.0000
P3 24.8322 24.8322 19.1526 21.3421 20.8157 20.9133 20.9913
P4 23.4152 23.4152 10.1879 11.6762 15.5504 15.4893 15.4673
P5 19.1885 19.1885 10.7719 17.7744 12.5069 12.5527 12.4960

Total power output (MW) 266.8217 266.8217 267.9977 268.2623 268.5653 268.555 268.5543
Total fuel cost ($/hr) 926.5530 926.5530 905.5437 836.4568 834.363 834.1308 834.1302

Ploss (MW) 7.8250 7.8250 8.9977 9.2623 9.5654 9.555 9.5543
Simulations times of the SOS algorithm (s) 14.7816
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Figure 7. The total fuel cost values obtained from the
SOS algorithm for 40 trials (Test Case 2).

Figure 8. Convergence of total fuel cost obtained from
SOS for Test Case 3.

algorithm for 40 runs and given in Table 5 by com-
parison with other techniques reported before in the
literature. The SOS algorithm has the same value
for total fuel cost of 925.4137 $/hr and it is less than
others reported before. Moreover, the proposed
algorithm meets the total load demand exactly, but
FPSOGSA misses with a little di�erence. Thus,
SOS is a good alternative method to solve such a
power system. The convergence curve of total fuel
cost for this case is presented in Figure 8. The
proposed algorithm converges on the global optima
after about 70 iterations as seen in Figure 8. The

Table 6. The results obtained from the proposed
approach for Test Case 3.

Method Min Average Max

GA[29] 996.0369 { 1117.13
GA-APO [29] 1101.491 { 996.04

NSOA [29] 984.9365 { 992.48
PSO [30] 925.7581 926.388 928.427

MSG-HS [30] 925.6406 926.851 928.599
FPSOGSA [35] 925.4137 925.4175 925.4213

SOS 925.4137 925.4143 925.4197

Figure 9. The total fuel cost values obtained from the
SOS method for 40 trials (Test Case 3).

minimum, average, and maximum results of the
SOS method and results obtained from the other
stochastic methods in the literature for this test
system are given in Table 6. The total fuel cost
values obtained from the proposed SOS algorithm
for the solutions done 40 times for Test Case 3 are
shown in Figure 9. From Figure 9, it is clear that
the total fuel cost values are changed by 0.0060 unit.

� Test Case 4: IEEE 13-machine test system is
considered in this case. Three di�erent load de-
mands, namely, 1800 MW and 2520 MW with
transmission loss and 2520 MW constrained, are
considered. In the constrained case, power outputs
of the 11th and 12th generators are �xed at 75 MW
and 60 MW. Generators data and B-coe�cient are

Table 5. Comparison of the results obtained from SOS for Test Case 3.

Methods

Units GA
[29]

GA-APO
[29]

NSOA
[29]

PSO
[30]

MSG-HP
[30]

FPSOGSA
[35]

SOS

P1 150.724 133.9816 182.478 197.8648 199.6331 199.5997 199.5997
P2 60.8707 37.2158 48.3525 50.3374 20.0000 20.0000 20.0000
P3 30.8965 37.7677 19.8553 15.0000 23.7624 23.9896 23.9768
P4 14.2138 28.3492 17.1370 10.0000 18.3934 18.8493 18.8679
P5 19.4888 18.7929 13.6677 10.0000 17.1018 18.2153 18.2212
P6 15.9154 38.0525 12.3487 12.0000 15.6922 13.8506 13.8402

Total power output (MW) 292.1096 294.1600 293.8395 295.2022 294.5829 294.5045 294.5058
Total fuel cost ($/hr) 996.0369 1101.491 984.9365 925.7581 925.6406 925.4137 925.4137

Ploss (MW) 8.7060 10.7563 10.4395 11.8022 11.1830 11.1044 11.1058
Simulations times of the SOS algorithm (s) 21.5872
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obtained from [35] and presented in Tables A.4 and
A.5 in the Appendix. Results obtained from SOS
algorithm for these cases are given in Table 7 by
comparing other methods reported before. The SOS
has the lowest total fuel costs by 18134.2805 $/hr
and 24515.2275 $/hr for 1800 MW and 2520 MW
load demands, respectively. The convergence curves
for these cases are shown in Figures 10 and 11. It is
seen from these �gures that for both load demands,
the SOS algorithm converges on the global optima
after about 20 iterations. The total fuel cost values
obtained from the proposed SOS algorithm in the
solutions done 40 times for Test Case 4 are shown
in Figures 12 and 13. From Figures 12 and 13, it is
apparent that the total fuel cost values are changed
by 0.1924 and 0.1857 unit, respectively.

Results obtained from SOS algorithm for
2520 MW constrained case are presented in Table
8. According to this table, SOS produces the best
result together with FPSOGSA among all methods
and has the lowest fuel cost with 24252.9363 $/hr.
The convergence curve of fuel cost for this case is
also shown in Figure 14.

� Test Case 5: IEEE 40-machine test system without

Figure 10. Convergence of total fuel cost obtained from
SOS for 1800 MW load demand.

loss is considered in this case. Total load demand
is 10500 MW. Generators data are taken from [35,
39] and can be observed in the mentioned studies.
Results obtained from the proposed algorithm are
given in Table 9 and compared with other results ob-

Table 7. Comparison of the results obtained from SOS for 1800 MW and 2520 MW load demands.

Output power (MW)

PD = 1800 MW PD = 2520 MW
Unit SDE [31] FPSOGSA [35] SOS SDE [31] ICA-PSO [33] FPSOGSA [35] SOS

P1 448.80 448.7990 448.7990 628.32 628.32 628.3185 628.3184
P2 297.93 297.9312 296.8851 299.20 299.19 299.1993 299.199
P3 223.30 223.3374 224.3995 299.20 294.51 299.1993 299.1992
P4 109.85 109.8666 109.8666 159.73 159.73 159.7331 159.7331
P5 109.85 109.8666 109.8665 159.73 159.73 159.7331 159.7329
P6 159.71 159.7331 159.7331 159.73 159.73 159.7331 159.7331
P7 109.86 109.8666 109.8665 159.73 159.73 159.7331 159.7331
P8 60.00 60.0000 60.0000 159.73 159.73 159.7331 159.733
P9 109.82 109.8666 109.8665 159.73 159.73 159.7331 159.7331
P10 40.00 40.0000 40.0000 77.40 114.80 76.9368 77.3988
P11 40.00 40.0000 40.0000 113.12 116.45 114.2795 113.4981
P12 55.00 55.0000 55.0000 92.40 55.00 92.2438 92.3998
P13 55.00 55.0000 55.0000 92.40 92.40 92.2007 92.3997

Total power
output (MW)

1819.13 1819.2671 1819.2828 2560.43 2559.05 2560.7765 2560.8113

Ploss (MW) 19.13 19.2669 19.2829 40.43 39.05 40.7765 40.8112
Total fuel

cost ($/hr)
18134.49 18134.39457 18134.2805 24514.88 24540.06 24515.35543 24515.2275

Average fuel
cost ($/hr)

18138.56 18136.96721 18134.2977 24516.31 24561.46 24516.68231 24515.2626

Simulation times of the SOS algorithm (s) 45.7831 Simulation times of the SOS algorithm (s) 45.6429
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Table 8. Comparison of the results obtained from SOS for 2520 MW constrained load demand.

Unit EP-SQP
[34]

PSO-SQP
[34]

ICA-PSO
[33]

RQEA
[36]

SDE
[32]

FPSOGSA
[35]

SOS

P1 628.3136 628.3205 628.32 628.3170 628.31853071796 628.3185 628.3185

P2 299.1715 299.0524 299.20 299.1991 299.1990034188 299.1993 299.1993

P3 299.0474 298.9681 291.90 299.1990 299.19930034189 299.1993 299.1993

P4 159.6399 159.4680 159.73 159.7334 159.73310011396 159.7331 159.7331

P5 159.6560 159.1429 159.73 159.7331 159.73310011396 159.7331 159.7331

P6 158.4831 159.2724 159.73 159.7330 159.73310011396 159.7331 159.7331

P7 159.6749 159.5371 159.73 159.7324 159.73310011396 159.7331 159.7331

P8 159.7265 158.8522 159.73 159.7329 159.73310011396 159.7331 159.7331

P9 159.6653 159.7845 159.73 159.7331 159.73310011396 159.7331 159.7331

P10 114.0334 110.9618 114.80 107.4875 107.48435537177 107.4843 107.4844

P11 75.0000 75.0000 75.00 75.0000 75.00000000000 75.0000 75.0000

P12 60.0000 60.0000 60.00 60.0000 60.00000000000 60.0000 60.0000

P13 87.5884 91.6401 92.40 92.3994 92.39991254274 92.3999 92.3999

Total power output (MW) 2520.0000 2520.0000 2520.00 2519.9999 2520.000000000 2520.0000 2520.0000

Total fuel cost ($/hr) 24266.440 24261.050 24261.69 24252.950 24252.936305152 24252.9362294 24252.9363

Simulation times of the SOS algorithm (s) 62.6591

Table 9. Results obtained from SOS for Test Case 5.

Unit SOS Unit SOS Unit SOS Unit SOS

P1 110.7998 P11 94.0000 P21 523.2794 P31 190.0000

P2 110.7998 P12 94.0000 P22 523.2794 P32 190.0000

P3 97.3999 P13 214.7598 P23 523.2794 P33 190.0000

P4 179.7331 P14 394.2794 P24 523.2794 P34 164.7998

P5 87.7999 P15 394.2794 P25 523.2794 P35 194.3978

P6 140.0000 P16 394.2794 P26 523.2794 P36 200.0000

P7 259.5997 P17 489.2794 P27 10.0000 P37 110.0000

P8 284.5997 P18 489.2794 P28 10.0000 P38 110.0000

P9 284.5997 P19 511.2794 P29 10.0000 P39 110.0000

P10 130.0000 P20 511.2794 P30 87.7999 P40 511.2794

Total power output (MW) 10500.000

Total fuel cost ($/hr) 121412.5355

Simulation times of the SOS algorithm (s) 105.8743
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Figure 11. Convergence of total fuel cost obtained from
SOS for 2520 MW load demand.

Figure 12. The total fuel cost values obtained from the
SOS method for 40 trials (for 1800 MW).

Figure 13. The total fuel cost values obtained from the
SOS method for 40 trials (for 2520 MW).

Figure 14. Convergence of total fuel cost obtained from
SOS for 2520 MW constrained load demand.

Figure 15. Convergence of total fuel cost obtained from
SOS for Test Case 5.

tained from di�erent methods in the literature, pro-
vided in Table 10. It can be seen in Table 10 that the
proposed algorithm has the lowest fuel cost function
with 121412.5355 $/hr among all methods, which is
the best value produced up to now. The convergence
curve of the total fuel cost obtained from SOS is
shown in Figure 15. The optimal solution is found
after about 50 iterations as seen in Figure 15.

5. Conclusion

This paper has employed SOS algorithm for the ELD
problem with valve-point e�ect, which is one of the
important optimization problems in power systems.
The proposed algorithm was examined on 3-machine
6-bus, IEEE 5-machine 14-bus, IEEE 6-machine 30-
bus, and 13- and 40-unit test systems both with trans-
mission loss and without transmission loss. Obtained
results showed that SOS algorithm solved the ELD
problem successfully and e�ectively. From this com-
parative study, it could be concluded that the proposed
algorithm could be e�ectively used to solve di�erent
types of ELD problems. In order to prove feasibility of
the proposed method, results obtained from SOS were
compared with other methods existing in the literature.
According to the comparisons, the proposed algorithm
reduced the total fuel cost values for 5-machine 14-bus
system with 210 MW load demand by 6.99 $/hr, for
5-machine 14-bus system with 259 MW load demand
by 0.99 $/hr (the results of SOS for 6-machine 30-
bus system are same as the result of FPSOGSA), for
13-machine system with 1800 MW load demand by
2.669 $/hr, for 13-machine system with 2520 MW load
demand by 1.419 $/hr, and for 40-machine system with
10500 MW load demand by 0.00661 $/hr. It could be
clearly seen from the results that SOS produced better
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Table 10. Comparison of results for Test Case 5.

Method Minimum cost
($/hr)

Average cost
($/hr)

Maximum Cost
($/hr)

HGPSO [40] 124797.13 126855.70 NA

SPSO [40] 124350.40 126074.40 NA

PSO [34] 123930.45 124154.49 NA

CEP [39] 123488.29 124793.48 126902.89

HGAPSO [40] 122780.00 124575.70 NA

FEP [39] 122679.71 124119.37 127245.59

MFEP [39] 122647.57 123489.74 124356.47

IFEP [39] 122624.35 123382.00 125740.63

TM [21] 122477.78 123078.21 124693.81

EP-SQP [34] 122323.97 122379.63 NA

MPSO [10] 122252.26 NA NA

ESO [41] 122122.16 122524.07 123143.07

HPSOM [40] 122112.40 124350.87 NA

PSO-SQP [34] 122094.67 122245.25 NA

GA MU [42] 122000.2837 NA NA

Improved GA [43] 121915.93 122811.41 123334.00

HPSOWM [40] 121915.30 122844.40 NA

IGAMU [42] 121819.25 NA NA

HDE [44] 121813.26 122705.66 NA

PSO [45] 121735.4736 122513.9175 123467.4086

APSO(1) [45] 121704.7391 122221.3697 122995.0976

ST-HDE [44] 121698.51 122304.30 NA

NPSO-LRS [46] 121664.43 122209.31 122981.59

APSO(2) [45] 121663.5222 122153.6730 122912.3958

MTS [47] 121532.10 121798.51 122022.15

SOH PSO [48] 121501.14 121853.57 122446.30

CPSO-SQP [49] 121458.54 122028.16 NA

GA PS SQP [50] 121458.14 122039.00 NA

BBO [17] 121426.9530 121508.0325 121688.6634

PSO MSAF [51] 121423.23 NA NA

DE/BBO [52] 121420.8948 121420.8952 121420.8963

FAPSO-NM [26] 121418.30 121418.8030 121419.80

HGA [53] 121418.27 121784.04 NA

FA [23] 121415.05 121416.57 121424.56

MDE [54] 121414.79 121418.44 121466.04

IPSO-TVAC [55] 121412.5450 121419.30 121423.80

FPSOGSA [35] 121412.542110 121413.561938 121414.983790

SOS 121412.5355 121413.2597 121413.9281
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results than other well-known meta-heuristic methods
for both small and big test systems. Moreover, the
proposed approach has some merits such as simple
concept, easy implementation, and better e�ectiveness
than previous methods.
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Appendix

Tables A.1.to A.5 are described as data of the test
cases.

Table A.1. Setting parameters of the SOS algorithm for the ELD problem.

Test system Number of organisms
(eco size)

max iter

6-bus 3-machine system 50 100

IEEE 14-bus 5-machine system 50 100

IEEE 30-bus 6-machine system 50 200

13-unit test system (for 1800 MW and 2520 MW) 80 300

13-unit test system (for 2520 MW constrained ) 100 500

40-unit test system 100 500

Table A.2. Cost coe�cients of the generating units [29,34].

Test system Bus a b c d e Pmin Pmax

1 6-bus 3-machine system

1 213.1 11.669 0.00533 130 0.0635 50 200

2 200.0 10.333 0.00889 90 0.0598 37.5 150

3 240.0 10.833 0.00741 100 0.0685 45 180

2 IEEE 14-bus 5-machine system

1 150.0 2.00 0.0016 50.0 0.0630 50 200

2 25.0 2.50 0.0100 40.0 0.0980 20 80

3 0.0 1.00 0.0625 0.0 0.0 15 50

6 0.0 3.25 0.00834 0.0 0.0 10 35

8 0.0 3.00 0.025 0.0 0.0 10 30

3 IEEE 30-bus 6-machine system

1 150.0 2.00 0.0016 50.0 0.0630 50 200

2 25.0 2.50 0.0100 40.0 0.0980 20 80

5 0.0 1.00 0.0625 0.0 0.0 15 50

8 0.0 3.25 0.00834 0.0 0.0 10 35

11 0.0 3.00 0.025 0.0 0.0 10 30

13 0.0 3.00 0.025 0.0 0.0 12 40
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Table A.3. B-coe�cients for test systems [29,34].

Test system B-Coe�cients

1 6-bus 3-machine system

[B] =

2664 0:0552 0:0062 �0:0046
0:0062 0:0253 0:0064
�0:0046 0:0064 0:0286

3775
[B0] =

h
0:0046 0:0035 0:0019

i
B00 = 0:00055711

2 IEEE 14-bus 5-machine system

[B] =

266666664
0:0212 0:0085 �0:0009 0:0021 0:0007
0:0085 0:0206 �0:0041 0:0037 0:0001
�0:0009 �0:0041 0:0395 �0:0207 �0:0251
0:0021 0:0037 �0:0207 0:0613 �0:0071
0:0007 0:0001 �0:0251 �0:0071 0:0406

377777775
[B0] =

h
�0:0002 0:0030 �0:0017 0:0101 �0:0038

i
B00 = 0:00085357

3 IEEE 30-bus 6-machine system

[B] =

26666666664

0:0224 0:0103 0:0016 �0:0053 0:0009 �0:0013
0:0103 0:0158 0:0010 �0:0074 0:0007 0:0024
0:0016 0:0010 0:0474 �0:0687 �0:0060 �0:0350
�0:0053 �0:0074 �0:0687 0:3464 0:0105 0:0534
0:0009 0:0007 �0:0060 0:0105 0:0119 0:0007
�0:0013 0:0024 �0:0350 0:0534 0:0007 0:2353

37777777775
[B0] =

h
�0:0005 0:0016 �0:0029 0:0060 0:0014 0:0015

i
B00 = 0:0011

Table A.4. Generators data of Test Case 4 [35].

Test
system

Units a b c d e Pmin Pmax

4

1 550 8.10 0.00028 300 0.035 0 680
2 309 8.10 0.00056 200 0.042 0 360
3 307 8.10 0.00056 200 0.042 0 360
4 240 7.74 0.00324 150 0.063 60 180
5 240 7.74 0.00324 150 0.063 60 180
6 240 7.74 0.00324 150 0.063 60 180
7 240 7.74 0.00324 150 0.063 60 180
8 240 7.74 0.00324 150 0.063 60 180
9 240 7.74 0.00324 150 0.063 60 180
10 126 8.60 0.00284 100 0.084 40 120
11 126 8.60 0.00284 100 0.084 40 120
12 126 8.60 0.00284 100 0.084 55 120
13 126 8.60 0.00284 100 0.084 55 120
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Table A.5. B-coe�cients for 13-unit test system [31,35].
B-Coe�cients

[B] =

26666666666666666666666666664

0:0014 0:0012 0:0007 �0:0001 �0:0003 �0:0001 �0:0001 �0:0001 �0:0003 �0:0005 �0:0003 �0:0002 0:0004
0:0012 0:0015 0:0013 0 �0:0005 �0:0002 0 0:0001 �0:0002 �0:0004 �0:0004 0 0:0004
0:0007 0:0013 0:0076 �0:0001 �0:0013 �0:0009 �0:0001 0 �0:0008 �0:0012 �0:0017 0 �0:0026
�0:0001 0 �0:0001 0:0034 �0:0007 �0:0004 0:0011 0:005 0:0029 0:0032 �0:0011 0 0:0001
�0:0003 �0:0005 �0:0013 �0:0007 0:009 0:0014 �0:0003 �0:0012 �0:001 �0:0013 0:0007 �0:0002 �0:0002
�0:0001 �0:0002 �0:0009 �0:0004 0:0014 0:0016 0 �0:0006 �0:0005 �0:0008 0:0011 �0:0001 �0:0002
�0:0001 0 �0:0001 0:0011 �0:0003 0 0:0015 0:0017 0:0015 0:0009 �0:0005 0:0007 0
�0:0001 0:0001 0 0:005 �0:0012 �0:0006 0:0017 0:0168 0:0082 0:0079 �0:0023 �0:0036 0:0001
�0:0003 �0:0002 �0:0008 0:0029 �0:001 �0:0005 0:0015 0:0082 0:0129 0:0116 �0:0021 �0:0025 0:0007
�0:0005 �0:0004 �0:0012 0:0032 �0:0013 �0:0008 0:0009 0:0079 0:0116 0:02 �0:0027 �0:0034 0:0009
�0:0003 �0:0004 �0:0017 �0:0011 0:0007 0:0011 �0:0005 �0:0023 �0:0021 �0:0027 0:014 0:0001 0:0004
�0:0002 0 0 0 �0:0002 �0:0001 0:0007 �0:0036 �0:0025 �0:0034 0:0001 0:0054 �0:0001
0:0004 0:0004 �0:0026 0:0001 �0:0002 �0:0002 0 0:0001 0:0007 0:0009 0:0004 �0:0001 0:0103

37777777777777777777777777775
[B0] =

"�0:0001 �0:0002 0:0028 �0:0001 0:0001 �0:0003
�0:0002 �0:0002 0:0006 0:0039 0:0017 0 �0:0032

#
B00 = 0:0055
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