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Abstract. This paper proposes a low-computational Bayesian algorithm for noisy sparse
recovery in the context of one-bit compressed sensing with sensing matrix perturbation.
The proposed algorithm which is called BHT-MLE comprises a sparse support detector
and an amplitude estimator. The support detector utilizes Bayesian hypothesis test, while
the amplitude estimator uses an ML estimator obtained by solving a convex optimization
problem. Simulation results show that Bayesian hypothesis testing in combination with
the ML estimator has more reconstruction accuracy than that of only an ML estimator
and also has less computational complexity.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The one-bit Compressed Sensing (CS) which is the ex-
treme case of quantized compressed sensing [1] has been
extensively investigated recently [2-11]. According to
CS theory, a sparse signal can be reconstructed from a
number of linear measurements which could be much
smaller than the signal dimension [12-13]. Classical CS
neglects the quantization process, and assumes that the
measurements are real continuous valued. However,
in practice, the measurements should be quantized
to some discrete levels. This is known as quantized
compressed sensing [1]. In the extreme case, there
are only two discrete levels. This is called one-bit
compressed sensing and has gained much attention in
the research community these years [2-11]. In the one-
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bit compressed sensing framework, it is proved that
accurate and stable recovery can be achieved using only
the sign of linear measurements [5].

Many algorithms have been developed for one-
bit compressed sensing. A Renormalized Fixed-Point
Iteration (RFPI) algorithm, which is based on l1-
norm minimization, has been presented in [2]. Also,
a Matching Sign Pursuit (MSP) algorithm has been
proposed in [3]. A Binary Iterative Hard Thresholding
(BIHT) algorithm has been introduced in [5], shown
to have better performance than MSP. Moreover, a
Restricted-Step Shrinkage (RSS) algorithm which has
been devised in [4] has provable convergence guaran-
tees.

In addition to noise-free settings, there may be
noisy sign measurements. In this case, we may be
encountered with sign ips which will worsen the
performance. In [6], an Adaptive Outlier Pursuit
(AOP) algorithm is developed to detect the sign ips
and reconstruct the signals with very high accuracy
even when there are a large number of sign ips [6].
Moreover, Noise-Adaptive RFPI (NARFPI) algorithm
combines the idea of RFPI and AOP [7]. In addition
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Plan and Vershynin, [8] propose a convex approach
to solve the problem. Recently, a one-bit Bayesian
compressed sensing [14] and a MAP approach [15] have
been developed for solving the problem. Also, Zhu
et al. [16] focus on the ML estimation of a vector
parameter from sign measurements with sensing matrix
perturbation.

In this paper, similar to some sparse recovery
algorithms (see e.g., [17-18]), we propose a two-step
approach to one-bit compressed sensing with sensing
matrix perturbation. The �rst step is the support
detection, and the second step is the amplitude es-
timation. In the �rst step, inspired from [18], a
Bayesian hypothesis test is used to detect the active
samples of sparse vector. On the other hand, for
amplitude recovery of active samples of the sparse
vector, similar to [16], we utilize an ML estimator.
Compared to [16] which ignores the sparsity, the main
advantage of our proposed algorithm is to exploit the
sparsity of the sparse vector. Moreover, detecting the
active samples in the �rst step reduces the complexity
of the optimization problem of ML estimator. Our
simulation results verify that exploiting the sparsity
enhances the reconstruction performance of the sparse
vector.

The rest of this paper is organized as follows.
Section 2 states the problem formulation. Section 3
introduces our proposed algorithm, including the two
steps of support and amplitude recovery. Simulation
results are presented in Section 4. Finally, conclusions
are drawn in Section 5.

2. Problem formulation

Consider a sparse vector sss which is observed via a
corrupted sensing matrix as follows:

x = (A+ E)T s+ nx = (A+ E)T s+ nx = (A+ E)T s+ n; (1)

where A 2 Rm�N is a known sensing matrix, EEE is
an error random matrix whose elements are i.i.d. with
eij � N (0; �2

e), where �2
e is viewed as the perturbation

strength, and nnn is the additive noise vector (indepen-
dent ofEEE) with nnn � N (0; �2

nIII). In the usual CS setting,
one requires N << m, whereas in the 1-bit CS setting,
N � m is allowed.

In one-bit compressed sensing with sensing matrix
perturbation, we aim to estimate sparse vector sss based
on the sign of linear measurements, yyy = sign (xxx), which
is:

yyy = sign(AAATsss) + zzz; (2)

where zzz = EEETsss + nnn is called equivalent noise which
is the sum of a multiplicative noise and an additive
noise [16]. It can be simply shown that the variance of

noise zzz � N (0; �2
nIII) is equal to [16]:

�2
z = jjsssjj22�2

e + �2
n: (3)

Sparse vector sss is assumed to have a Bernoulli-Gaussian
(BG) distribution, i.e., sj = qjrj where qj is the
activity of the j'th element of sparse vector and rj is the
amplitude of the element. Similar to some sparse recov-
ery algorithms [17-18], the sparse recovery is equivalent
to estimating both activity vector, qqq = [q1; q2; :::; qm]T ,
and amplitude vector, rrr = [r1; r2; :::; rm]T .

3. The proposed algorithm

The proposed algorithm is divided into two steps. In
the �rst step, activity vector qqq is estimated, which
is called support detection. The second step of our
proposed algorithm is called amplitude recovery. In
this step, amplitude vector rrr is estimated.

3.1. Support detection using Bayesian
hypothesis testing

For determining the activity of the j'th element of
sparse vector sss, two hypotheses are considered. The
�rst hypothesis, H1j , assumes that sj is inactive, and
the second hypothesis, H2j , considers that sj is active.
Thus, we have:

H1j :

8>>>><>>>>:
y1 = sign(aaaT1 sss(�j) + z1);
y2 = sign(aaaT2 sss(�j) + z2);

...
yN = sign(aaaTNsss(�j) + zN );

(4)

and

H2j :

8>>>><>>>>:
y1 = sign(aaaT1 sss + z1);
y2 = sign(aaaT2 sss + z2);

...
yN = sign(aaaTNsss + zN );

(5)

where sss�j is sparse vector sss with sj = 0, aaaTi is
the i'th measurement vector, and yi is the i'th sign
measurement element. The Bayesian hypothesis test
is:

qj =

(
0 p(H1j jyyy) � p(H2j jyyy);
1 p(H1j jyyy) < p(H2j jyyy);

(6)

where yyy = [y1; y2; :::; yN ]T is the sign measurement
vector. Using the MAP rule, the activity rule based
on the hypothesis test is:

pr(H1j)p(yyyjH1j) < pr(H2j)p(yyyjH2j): (7)

Assume that the prior probabilities are pr(H1j) =
1 � pr and pr(H2j) = pr, where pr is the activity



3630 H. Zayyani et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3628{3633

probability. Also, assuming the independency of mea-
surements yi, we have:

p (yjH1j) =
NY
i=1

p(yijH1j);

and:

p (yyyjH2j) =
NY
i=1

p(yijH2j):

The logarithm of both sides of Relation (5) with some
manipulations leads to the following activity rule:

NX
i=1

ln p(yijH2j)�
NX
i=1

ln p (yijH1j)

> Th = In
�

1� Pr
Pr

�
: (8)

In addition, we have:

p(yijH1j) =

(
p(aaaTi sss�j + zi > 0); yi = 1;
p(aaaTi sss�j + zi � 0); yi = �1; (9)

which is equal to:

p (yijH1j) = �
�
yiaaaTi sss�j
�z

�
; (10)

where � (u) = 1p
2�

us
�1

e� x
2
2 dx is the cumulative distri-

bution function of the standard Gaussian distribution.
Similarly, we have:

p (yijH2j) = �
�
yiaaaTi sss
�z

�
:

Hence, the overall hypothesis test for determining the
activity of the j'th element is as follows:

NX
i=1

ln

 
�(yiaaa

T
i sss

�z )

�(yiaaa
T
i sss�j
�z )

!
> Th; (11)

where Th = In
�

1�pr
pr

�
. Therefore, the overall support

detection consists of (multiple) binary hypothesis test-
ing instead of a single composite hypothesis testing.
Replacing m binary hypothesis testing for determining
the activity of each element renders a substantially
lower computational complexity than using a compos-
ite hypothesis testing to search activity vector qqq over
2m possible activity vectors.

3.2. Amplitude recovery: An ML estimation
Having detected the support vector, the amplitude of
sparse vector is estimated. If we remove the inactive
locations of sparse vector sss, we have an amplitude
vector www = [w1; w2; :::; wK ]T , where K is the number
of active locations. If Ia represents a set of indexes
corresponding to active locations, we have the following
relations:

8>>>><>>>>:
y1 = sign(hhhT1www + z1);
y2 = sign(hhhT2www + z2);

...
yN = sign(hhhTNwww + zN );

(12)

where hhhi = aaai(Ia) is the reduced measurement vector,
and Ia = [0 � � � 1 � � � 01 � � � 0 � � � ]T is the index of active
elements of sss. Now, we have the problem of estimating
non-sparse vector www based on the sign measurements in
Relation (12). This problem has been investigated in
[16] and an ML estimator has been introduced. The
likelihood of measurement data can be obtained as
follows [16]:

p(y;wy;wy;w) =
NY
i=1

�

 
yihhhTi www
�z

!
; (13)

and the log-likelihood is:

l(y;wy;wy;w) =
NX
i=1

ln �

 
yihhhTi www
�z

!
: (14)

Maximizing the log-likelihood is equivalent to
minimizing the negative log-likelihood. Consequently,
the ML estimator is the solution to the following
optimization problem:

P1 : Minimizewww2RK �
NX
i=1

ln �

 
yihhhTi wwwpjjwwwjj22�2

e + �2
n

!
;
(15)

where the above optimization problem is non-convex
and cannot be solved by steepest-descent or Newton's
method [16]. In [16], it is shown that the above non-
convex optimization problem P1 is equivalent to the
following convex optimization problem:

P2 : Minimiz ev2RK �
NX
i=1

ln
�
yihhhTi vvv

�
Subject to jjvvvjj22 < 1

�2
e
; (16)

where the optimal solution is obtained by:

www =
�nq

1� �2
e jjvvvjj22

���: (17)

Moreover, in [13], it is proved that if the unconstrained
optimization problem be considered as follows:

P3 : Minimizevvv2RK �
NX
i=1

ln �(yihhhTi vvv); (18)

then the optimal point of problem P1 in Relation (15)
exists if and only if optimal point vvv� of problem
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P3 satis�es constraint jjvvv�jj22 < 1
�2
e

[16]. There-
fore, �rst, the unconstrained optimization problem P3
should be solved, and then whether it satis�es the
above-mentioned constraint must be checked to ensure
whether the original ML estimation problem P1 in
Relation (15) has an optimal point [16] (for further
details see [16]).

4. Simulation results

This section presents the simulation results. In the
simulations, unknown sparse vector sss is drawn from
a BG distribution with activity probabilities pr = 0:1
and pr = 0:2, and with variance of active, samples
�2
r = 1. To ensure that the norm is �nite, the

sparse vector is normalized to have unit norm. The
size of the sparse vector is assumed to be m = 200.
The sensing matrix elements are obtained from a
standard Gaussian distribution with aij � N (0; 1).
The error matrix or perturbation matrix elements are
considered to be eij � N (0; �2

e) with �e = 0:1.
Additive noise nnn is regarded as Gaussian random
variable with distribution ni � N (0; �2

n), where �n =
0:1.

The proposed BHT-MLE method is compared
with the ML estimation method [16], which is denoted
as MLE. For the initialization of BHT-MLE and MLE,
ŝ0 = Ayy is used, where Ay is the pseudo-inverse of
matrix A. To calculate the threshold Th = ln

�
1�pr
pr

�
in Relation (11), pr needs to be estimated. Similar to
parameter estimation methods in [19],

bpr =
Card

n
i jjsiji�pvar (s)

o
m

;

is used, where Cardf.g is the cardinality operator,
showing the number of elements of a set and � is a
parameter that controls the false alarm. For initial
iterations, we overestimate pr by choosing small value
for � = 0:5. At �nal iterations, we choose � � 3.
Extensive experimental studies demonstrate that �
converges to its optimal value within 10 iterations.
Hence, we use a linear increase of � as �(k) = 1:2�(k�1),
where k is the index of iteration. Similar to [16], we
assume that variances �2

e and �2
n are known in advance.

For solving unconstrained optimization problem, P3,
similar to [16], the MATLAB fminunc function is
used.

The Normalized Mean Square Error (NMSE) is
utilized as a performance metric, which is de�ned as
follows:

NMSE , 20log10

� jjsss� ŝssjj2
jjsssjj2

�
; (19)

where ŝss is the estimate of true sparse vector sss.

All the NMSEs are averaged over 100 Monte Carlo
(MC) simulations. The number of binary measure-
ments varies between 400 and 800. Figure 1 shows
the NMSE performance versus the number of sign
measurements for both BHT-MLE and MLE methods
with pr = 0:1 and pr = 0:2. It is seen that the proposed
BHT-MLE method, which utilizes Bayesian hypothesis
testing, outperforms the conventional ML estimator
(MLE) method by at least 5 dB gain because it exploits
the activity information of the sparse vector provided
by the �rst step of algorithm. Figure 2 depicts the
average simulation time with respect to the number of
sign measurements when pr = 0:1. It shows that the
proposed method has lower computational complexity
than MLE at least by a factor of two because it reduces
the dimension of the optimization problem from m =
200 to K = round(pr:m) = 20.

Figure 1. Normalized mean square error of reconstructed
sparse vector versus number of sign measurements.

Figure 2. Average simulation time versus number of sign
measurements.
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5. Conclusion

A new BHT-MLE algorithm was proposed for the
noisy sparse signal recovery in one-bit compressed
sensing with the sensing matrix perturbation frame-
work. BHT-MLE algorithm consists of a Bayesian
Hypothesis Testing (BHT) for support detection and
an ML Estimator (MLE) for the amplitude estimation.
In the support detection step, the proposed BHT-MLE
algorithm uses a sequence of binary hypothesis tests.
Simulation results in a special case verify that this
BHT-based support detection approach improves the
sparse reconstruction accuracy by at least 5 dB gain
and reduces the computational complexity by a factor
of two.
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