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Abstract. This paper is concerned with the stability of nonlinear Lipschitz systems
subject to bounded process and measurement noises when transmission from sensor to
controller is subject to distortion due to quantization. A stabilizing technique and a
su�cient condition relating transmission rate to Lipschitz coe�cients are presented for
almost sure asymptotic bounded stability of nonlinear uncertain Lipschitz systems. In
the absence of process and measurement noises, it is shown that the proposed stabilizing
technique results in almost sure asymptotic stability. Computer simulations illustrate the
satisfactory performance of the proposed technique for almost sure asymptotic bounded
stability and asymptotic stability.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

1.1. Motivation and background
Recently, stabilizing a dynamic system over a commu-
nication channel subject to imperfections (e.g., quan-
tization distortion) has become an important problem.
Some examples of systems that require to be stabilized
over communication channels subject to imperfections
are smart drilling system using borehole telemetry via
drilling string [1,2] and distributed monitoring system
of oil �elds. In these systems, transmission between
sub-components (e.g., sensor, controller, actuator) is
subject to imperfections, such as quantization distor-
tion. Some results addressing basic problems in state
estimation and/or stability of dynamic systems over
communication channels subject to imperfections can
be found in [3-17]. In [15], the authors addressed the
problem of state estimation of an uncontrolled noiseless
nonlinear Lipschitz system over the digital noiseless
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channel with asymptotically zero mean square esti-
mation error. Farhadi and Ahmed [16] addressed the
problem of state estimation of distributed uncontrolled
Lipschitz systems subject to bounded process and
measurement noises over the packet erasure network
with bounded mean absolute estimation error and
Nair et al. [12] addressed the stability problem of
nonlinear noiseless systems over the digital noiseless
channel.

This paper is concerned with a basic problem
in the stability of nonlinear dynamic systems subject
to uncertain transmission as described in Figure 1.
The block diagram of Figure 1 has been considered
in several research papers addressing basic problems
in networked control systems, such as [5,12]. In this
paper, the system shown in Figure 1 is described
by a nonlinear controlled Lipschitz system subject to
bounded process and measurement noises over the
digital noiseless channel. Lipschitz is a large class of
nonlinear systems, such as systems with dead zone and
saturation nonlinearities. Furthermore, an important
class of linear systems is a special class of Lipschitz
systems. The digital noiseless channel is also a basic
digital communication channel.
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Figure 1. A control system over the digital noiseless channel.

1.2. Paper contributions
In this paper, we address the problem of almost sure
bounded stability of controlled nonlinear Lipschitz
systems subject to bounded process and measure-
ment noises when measurements from dynamic system
sampled by sensor are transmitted via the digital
noiseless channel to controller (see Figure 1). As the
sampled measurements are real-valued, to transmit
them over digital links, they must be quantized and
represented as a packet of binary data with a speci�c
length (e.g., R bits). This results in distortion in
sampled measurements when they are reconstructed
at controller. That is, another source of uncertainty
considered in this paper is distortion in measurements
due to quantization. Despite these uncertainties, a
stabilizing technique (which consists of an encoder,
decoder, and a controller) and a su�cient condition
relating transmission rate, R, to Lipschitz coe�cients
are presented that result in almost sure asymptotic
bounded stability. In the absence of process and
measurement noises, it is shown that the proposed
stabilizing technique results in almost sure asymptotic
stability despite distortion in measurements due to
quantization. The satisfactory performance of the
proposed stabilizing technique for almost sure asymp-
totic bounded stability and asymptotic stability is also
illustrated via computer simulations.

To the best of our knowledge, only the problem
of the state estimation of nonlinear uncontrolled Lip-
schitz dynamic systems over communication channels
subject to imperfections (known as tracking) has been
addressed in the literature; hence, the main novelty of
this paper is the stability of nonlinear noisy controlled
Lipschitz systems, in addition to tracking, over the
digital noiseless channel. The problem of the state
estimation of uncontrolled nonlinear Lipschitz systems
over digital links was �rst considered in [15]. In [15], the
authors addressed the problem of the state estimation
of a noiseless uncontrolled Lipschitz system over the
digital noiseless channel subject to quantization e�ect.
In [16], this result was extended to distributed uncon-

trolled noisy Lipschitz systems over the packet erasure
network.

1.3. Paper organization
The paper is organized as follows: In Section 2, the
problem formulation is given. Section 3 is devoted to
the stability result. In this section, encoder, decoder,
controller, and su�cient condition for almost sure
asymptotic bounded stability are presented. Simula-
tion results are given in Section 4. Finally, the paper
is concluded in Section 5 by summarizing the main
contributions of the paper.

2. Problem formulation

Throughout, certain conventions are used: j � j denotes
the absolute value, log2(�) denotes the logarithm of base
2, and ` :=' means `by de�nition is equivalent to'. [X]i
means the ith element of the vector X and R denotes
the set of real numbers. Cartesian product is denoted
by � and A0 denotes the transpose of the matrix A.
A�1 denotes the inverse of the square matrix A.

This paper is concerned with almost sure asymp-
totic bounded stability of nonlinear Lipschitz dynamic
systems over the digital noiseless communication chan-
nel, as shown in the block diagram of Figure 1. The
building blocks of Figure 1 are described below.

Dynamic System: The dynamic system is described
by the following discrete time nonlinear Lipschitz
system:(

Xt+1 = F (Xt) +BUt +Wt; X0 = �;
Yt = Xt + Vt;

;

t 2 N+
:= f0; 1; 2; � � � g; (1)

where Xt 2 Rn is the state of the system, n is
the number of state variables and it is given, Yt is
the observation signal, the random variable � is the
unknown initial state value, Ut 2 Rm is the control
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vector, F (�) 2 Rn is a nonlinear continuous function
with components fi(�), and B 2 Rn�m is such that the
matrix BB0 is invertible. Throughout, it is assumed
that the probability measure associated with the initial
state X0 with components X(i)

0 , i = f1; 2; � � � ; ng, has
bounded support. That is, for each i = f1; 2; � � � ; ng,
there exists a compact set [�L(i)

0 ; L(i)
0 ] 2 R such that

Pr(X(i)
0 2 [�L(i)

0 ; L(i)
0 ]) = 1. Also, for each i, fi(�) is

Lipschitz. That is, for each fi(�), there exists a Ki > 0
(known as Lipschitz coe�cient) such that the following
inequality holds for all:

X =
�
X(1) X(2) � � � X(n)

�0 2 Rn;
Y =

�
Y (1) Y (2) � � � Y (n)

�0 2 Rn;
jfi(X)� fi(Y )j �Ki

����X(1) � Y (1)
���+���X(2) � Y (2)

���
+ � � �+

���X(n) � Y (n)
����:

In the dynamic system (1), Wt 2 Rn with the
components W (i)

t , i = f1; 2; � � � ; ng, is the process
noise vector and Vt 2 Rn with the components V (i)

t ,
i = f1; 2; � � � ; ng, is the measurement noise vector.
Throughout, it is assumed that W (i)

t and V (i)
t are

uniformly distributed random variables with supports
[�!(i); !(i)] and [�(i); (i)], respectively (i.e., W (i)

t 2
[�!(i); !(i)] and V (i)

t 2 [�(i); (i)]).

Communication channel: Communication chan-
nel between system and controller is the digital noise-
less channel with the transmission rate of R bits. This
channel transmits a packet of binary data with the rate
of R bits in each channel use.

As the sampled measurements are real-valued,
to transmit them over the digital noiseless channel,
they must be quantized and represented as a packet
of binary data with the length of R bits. This is done
by the encoder in the block diagram of Figure 1. On
the other hand, the decoder reconstructs the quantized
sampled measurements at the receiver. The formal
descriptions of the encoder and decoder are given
below.

Encoder: Encoder is a causal operator denoted by
Zt = E(Yt) that maps the system output Yt to channel
input Zt, which is a string of binaries with the length
of R bits.

Decoder: Decoder is a causal operator denoted by
X̂t = D( ~Zt) that maps the channel output to X̂t (the
estimate of the state variable at the decoder).

Controller: Controller has the following form:

Ut = �B0(BB0)�1F (X̂t):

The objective of this paper is to design an en-
coder, a decoder, and a controller that result in almost
sure asymptotic bounded stability of the system (1), as
de�ned below.

De�nition 2.1 (almost sure asymptotic bounded
stability). Consider the block diagram of Figure 1
described by the nonlinear dynamic system (1) over
the digital noiseless channel, as described above. It is
said that the system is almost sure asymptotic bounded
stabilizable if there exist encoder, decoder, controller,
and a closed bounded set � � Rn such that the
following property holds:

Pr
�

lim
t!1Xt 2 �

�
= 1:

Remark 2.2. For � = f0g, we have almost sure
asymptotic stability.

3. Stability result

In this section, we present a su�cient condition for the
transmission rate R such that by using the controller
Ut = �B0(BB0)�1F (X̂t), the dynamic system (1) in
the block diagram of Figure 1 is almost sure asymptotic
bounded stable. This result is shown in Theorem 3.1.
To obtain this su�cient condition in Theorem 3.1, we
construct an encoder and a decoder so that under
this condition, the controller Ut = �B0(BB0)�1F (X̂t)
results in almost sure asymptotic bounded stability.

For simplicity in understanding these encoder and
decoder functions, suppose that the system (1) is scalar
(i.e., n = 1). At time instant t = 0, both encoder
and decoder divide the interval [�L(1)

0 � (1); L(1)
0 +

(1)](Y (1)
0 2 [�L(1)

0 �(1); L(1)
0 +(1)]) into 2R equal-size

non-overlapping sub-intervals and choose the center of
each sub-interval as its index. Now, upon observing
Y (1)

0 , encoder determines the sub-interval where Y (1)
0

is located and represents the index of this sub-interval
(denoted by j) by R bits; then, it transmits these R bits
to decoder via the digital noiseless channel. Decoder,
after receiving these R bits, determines the index of
the sub-interval, where Y (1)

0 is located (i.e., j) and
outputs Ŷ (1)

0 (= X̂(1)
0 ) = j, where Ŷ (1)

0 is the estimation
of Y (1)

0 and X̂(1)
0 is the estimation of X(1)

0 at the end
of communication link. Hence, the decoding error for
this case is bounded above by jY (1)

0 � Ŷ (1)
0 j � L(1)

0 +(1)

2R .
At time instant t = 1, encoder computes the

error Y (1)
1 � ~Y (1)

1 , where ~Y (1)
1 = f1(X̂(1)

0 ) + BU0(U0 =
� 1
B f1(X̂(1)

0 )). Both encoder and decoder divide the
interval Y (1)

1 � ~Y (1)
1 2 [�L(1)

1 � (1); L(1)
1 + (1)], where
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L(1)
1 = K1(L

(1)
0 +(1)

2R + (1)) + !(1) in 2R sub-intervals;
and they repeat the above procedure until decoder
outputs Ŷ (1)

1 (= X̂(1)
1 )= j + ~Y (1)

1 . As a result, the
decoding error is bounded above by jY (1)

1 � Ŷ (1)
1 j �

L(1)
1 +(1)

2R .
By following the above procedure, X̂(1)

0 ; X̂(1)
1 ;

X̂(1)
2 ; � � � are constructed and decoding error is bounded

above by jY (1)
t � Ŷ (1)

t j � L(1)
t +(1)

2R , where:

L(1)
t =

K1

2R
L(1)
t�1 +

K1(1)

2R
+K1(1) + !(1):

Now, under the assumption of jK1
2R j < 1, the above

dynamic system for L(1)
t is stable; hence, L(1)

t is asymp-
totically bounded. Therefore, under this assumption,
using the above encoding and decoding technique,
tracking of Y (1)

t by Ŷ (1)
t with bounded error at the end

of communication is achieved.
Now, after this instruction and simple explanation

of the designed method and algorithm, we are ready to
present the main theorem of this paper.

Theorem 3.1. Consider the control system of Fig-
ure 1 described by the nonlinear uncertain Lipschitz
system (1) over the digital noiseless channel, as de-
scribed earlier. Suppose that there exist non-negative
integers R1; R2; � � � ; Rn that make the following matrix
stable:

A :=

0BBBBBBBBB@

K1
2R1

K1
2R2 � � � K1

2Rn

K2
2R1

K2
2R2 � � � K2

2Rn

...

Kn
2R1

Kn
2R2 � � � Kn

2Rn

1CCCCCCCCCA
: (2)

Then, using the control policy Ut = �B0(BB0)�1F
(X̂t), there exists a closed bounded set � � Rn such
that Xt ! �, P-a.s.; or equivalently, Pr(limt!1Xt 2
�) = 1, where:

�=[�L(1)1 ; L(1)1 ]� [�L(2)1 ; L(2)1 ]�� � � � [�L(n)1 ; L(n)1 ];

L(i)1
:= [ lim

t!1
t�1X
j=0

At�1�j((A+ B) + !)]i:

Proof. To prove this theorem, we show that the
extended version of the above encoding and decoding
technique applied to the system (1) with n states along
with the controller Ut = �B0(BB0)�1F (X̂t) results in
almost sure asymptotic bounded stability if matrix (2)
is stable.

Encoding and decoding technique: At time in-
stant t = 0 for each i = f1; 2; � � � ; ng, the set
[�L(i)

0 � (i); L(i)
0 + (i)] is partitioned into 2Ri equal-

size, non-overlapping sub-intervals and the center of
each sub-interval is chosen as its index. For each
i = f1; 2; � � � ; ng, upon observing Y0(= X0 + V0), the
index of the sub-interval that includes Y (i)

0 is encoded
into Ri bits. Then, a packet with the length of R =
R1+R2+� � �+Rn bits containing information about the
initial measurement Y0 is transmitted via the channel.
When the decoder receives these R bits, for each i,
it identi�es the index of the sub-interval where Y (i)

0
is located; and the value of this index is chosen as
Ŷ (i)

0 = X̂(i)
0 (the estimation of Y (i)

0 and X(i)
0 at the

receiver). Therefore, the estimation error is bounded
above by jX(i)

0 � X̂(i)
0 j � L(i)

0 +(i)

2Ri + (i).
At time instant t = 1, from the Lipschitz conti-

nuity assumption, for each i = f1; 2; � � � ; ng, an upper
bound on X(i)

1 is calculated as follows:���X(i)
1

��� =
���fi(X0) + [BU0]i +W (i)

0

���
=
���fi(X0)� fi

�
X̂0

�
+W (i)

0

���
�Ki

����X(1)
0 �X̂(1)

0

���+� � �+���X(n)
0 �X̂(n)

0

����+!(i)

= !(i) +Ki

nX
j=1

 
L(j)

0 + (j)

2Rj
+ (j)

!
:= L(i)

1 :

Then, similar to the previous time instant, at this
time instant, for each i = f1; 2; � � � ; ng, the interval
[�L(i)

1 � (i); L(i)
1 + (i)] is partitioned into 2Ri equal-

size, non-overlapping sub-intervals and the center of
each sub-interval is chosen as its index. Having that,
for each i, upon observing Y1(= X1 + V1), the index of
the sub-interval that includes Y (i)

1 is encoded into Ri
bits. Then, R = R1 + R2 + � � � + Rn bits containing
information about Y1 is transmitted via the channel.
When these R bits are received, for each i, the decoder
identi�es the index of the sub-interval that contains
Y (i)

1 ; and the value of this index is chosen as Ŷ (i)
1 =

X̂(i)
1 . Therefore, the estimation error is bounded above

by jX(i)
1 � X̂(i)

1 j � L(i)
1 +(i)

2Ri + (i).
By following a similar procedure as described

above, the sequence X̂0; X̂1; X̂2; X̂3; � � � is constructed
at the decoder.

Now, we must show that by using the above cod-
ing technique and controller Ut = �B0(BB0)�1F (X̂t)
there exists a closed and bounded set � � Rn such that
Pr(limt!1Xt 2 �) = 1 provided that Eq. (2) is stable.
To achieve this goal, choose any rates R1; R2; � � � ; Rn
that make matrix A stable. Now, using the above
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encoding and decoding technique and the controller
Ut = �B0(BB0)�1F (X̂t), we have:���X(i)

0

��� � L(i)
0 ;���X(i)

1

��� � !(i) +Ki

nX
j=1

 
L(j)

0 + (j)

2Rj
+ (j)

!
:= L(i)

1

���X(i)
2

��� � !(i) +Ki

nX
j=1

 
L(j)

1 + (j)

2Rj
+ (j)

!
:= L(i)

2

...���X(i)
t

��� � !(i) +Ki

nX
j=1

 
L(j)
t�1 + (j)

2Rj
+ (j)

!
:= L(i)

t :

Now, let:

Zt
:=

0BBBB@
L(1)
t

L(2)
t
...

L(n)
t

1CCCCA :

Then, from the recursive equation:

L(i)
t = !(i) +Ki

nX
j=1

(
L(j)
t�1 + (j)

2Rj
+ (j));

which almost surely de�nes an upper bound on X(i)
t ,

we have the following dynamic model for the vector Zt:

Zt+1 = AZt + (A+ B) + !; (3)

where:

Z0 =

0BBBB@
L(1)

0

L(2)
0
...

L(n)
0

1CCCCA ; B :=

0BBB@
K1 K1 � � � K1
K2 K2 � � � K2
...
Kn Kn � � � Kn

1CCCA ;

 :=

0BBB@
(1)

(2)

...
(n)

1CCCA ; ! :=

0BBB@
!(1)

!(2)

...
!(n)

1CCCA :

Now, from the well-known stability results of linear
time-invariant systems, for the linear time-invariant
dynamic system (3), it follows that all components of
the vector Zt are asymptotically bounded if and only
if matrix A is stable. Hence, as we chose the rates
R1; R2; � � � ; Rn such that matrix A is stable and as
Z(i)
t almost surely de�nes an upper bound on X(i)

t , the
dynamic system (1) is almost sure asymptotic bounded
stable as follows:

Xt ! �; P-a.s.;

where:

�=
h�L(1)1 ; L(1)1

i�h�L(2)1 ; L(2)1
i�� � ��h�L(n)1 ; L(n)1

i
;

L(i)1 =

24 lim
t!1

t�1X
j=0

At�1�j ((A+ B) + !)

35
i

:

We have the following 2 propositions as a direct result
of the above theorem.

Proposition 3.2. For the noiseless dynamic system,
i.e., (i) = !(i) = 0, we have almost sure asymptotic
stability as Xt ! 0, P-a.s., provided that the rates
R1; R2; � � � ; Rn make matrix A stable.

Proof. As the rates R1; R2; � � � ; Rn make matrix A
stable, from Theorem 3.1, it follows that Xt ! �, P-
a.s., where:

�=
h�L(1)1 ; L(1)1

i�h�L(2)1 ; L(2)1
i�� � ��h�L(n)1 ; L(n)1

i
;

L(i)1 =

24 lim
t!1

t�1X
j=0

At�1�j ((A+ B)  + !)

35
i

:

Now, as for each i = f1; 2; � � � ; ng, it is assumed that
(i) = !(i) = 0. We have:

t�1X
j=0

At�1�j((A+ B) + !) = 0;

hence, Xt ! 0, P-a.s.

Proposition 3.3. Consider the control system of
Figure 1 described by the scalar version of the nonlinear
uncertain Lipschitz system (1) over the digital noiseless
channel with rate R > log2K1, where K1 > 0 is the
Lipschitz coe�cient (i.e., jf1(X)�f1(Y )j � K1jX�Y j,8X;Y 2 R). Then, using the proposed encoding and
decoding technique and Ut = � 1

B f1(X̂(1)
t ), there exists

the set:

� =[�((
K1

2R
+K1)(1) + !(1))

1
1� K1

2R
; ((

K1

2R

+K1)(1) + !(1))
1

1� K1
2R

];

such that X(1)
t ! � P-a.s.; or equivalently,

Pr(limt!1X(1)
t 2 �) = 1.
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Proof. For the scalar system, matrix A is reduced to
A =

�K1
2R
�
, which is stable for any rate R > log2K1.

Hence, as we assumed that R > log2K1, it follows from
Theorem 3.1 that Xt ! �, P-a.s., where:

� =
h�L(1)1 ; L(1)1

i
;

L(1)1 = lim
t!1

t�1X
j=0

At�1�j �(A+ B) (1) + !(1)
�

=
��

K1

2R
+K1

�
(1) + !(1)

�
1

1� K1
2R
:

This completes the proof.

Remark 3.4. We have the following remarks regard-
ing the above results:

i) From the speci�c structure of matrix A, it fol-
lows that the eigenvalues of this matrix are:
0; 0; � � � ; 0; K1

2R1 + K2
2R2 +� � �+ Kn

2Rn . Hence, a su�cient
condition on the rates Ris for the stability using
the proposed stabilizing technique is the following:

Ri > maxf0; log2Kig;
8i 2 f1; 2; � � � ; ng: (4)

ii) In general, the weaker condition:

R � X
i;Ki>1

log2Ki; (5)

does not imply the stronger condition (4). How-
ever, for those cases that the weaker condition
(5) implies the stronger condition (4) (e.g., the
case for K1 = 5 and K2 = 7), we can conclude
that condition (5) is also a su�cient condition for
stability.

iii) For linear time-invariant noiseless systems with
eigenvalues �i(A)s (A is the system matrix) over
the packet erasure channel with the rate of R bits
(which includes the digital noiseless channel as a
special case), it is shown in [17] that condition (6)
on the rates of R1; R2; � � � ; Rn (R = R1 + R2 +
� � � + Rn) is a su�cient condition for almost sure
asymptotic stability:

Ri>maxf0; log2 j�i(A)jg;
8i2f1; 2; � � � ; ng: (6)

Furthermore, independent of the choice of encoder,
decoder, and controller, the following condition,

known as the eigenvalues rate condition, is neces-
sary for almost sure asymptotic stability:

R � X
i;j�i(A)j>1

log2 j�i(A)j: (7)

In general, the eigenvalues rate condition does
not imply the stronger condition (6). But, for
those cases that the eigenvalues rate condition
implies the stronger condition (6) (e.g., the case

for the system matrix A =
�

11 8
�3 1

�
), in [17] it is

concluded that the eigenvalues rate condition (7) is
a necessary and su�cient condition (a tight bound
on transmission rate R) for almost sure asymptotic
stability of linear time-invariant noiseless systems
over the packet erasure channel.

iv) From the above remarks, it follows that for linear
time-invariant noiseless systems over the digital
noiseless channel, condition (5) is a necessary and
su�cient condition (a tight bound on transmission
rate) for almost sure asymptotic stability if Ki =
j�i(A)j and the eigenvalues rate condition implies
the stronger condition (6).

To the best of our knowledge, similar works to this
work were previously reported in [15,16] where they
only addressed the problem of tracking states of un-
controlled Lipschitz systems over the digital noiseless
and the packet erasure channels, respectively. Note
that the digital noiseless channel is a special case of
packet erasure channel when erasure probability is zero.
In [15], the authors considered noiseless uncontrolled
Lipschitz systems and presented a su�cient condi-
tion for mean square asymptotic tracking in which,
for the scalar system, this condition was reduced to
the condition found in this paper for tracking (i.e.,
jK1
2R j < 1). In [16], the authors addressed the problem

of tracking of a distributed system of uncontrolled
Lipschitz distributed noisy sub-systems over the packet
erasure network. For mean absolute tracking, which
is a weaker notion for tracking than the almost sure
notion used in this paper, they found a su�cient
condition, which, for the special case of single sub-
system, was reduced to the condition found in this
paper.

4. Simulation results

In this section, we illustrate the satisfactory perfor-
mance of the proposed encoder, decoder, and controller
for almost sure asymptotic bounded stability and
asymptotic stability using computer simulations.

De�ne the nonlinear Lipschitz functions sat(�)
and deadz(�) as follows:
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sat(x) :=

8><>:30; x � 10
3x; �10 < x < 10
�30; x � �10

deadz(x) :=

8><>:2(x� 1); x � 1
0; �1 < x < 1
2(x+ 1); x � �1

Now, suppose the control system of Figure 1 is de-
scribed by the following coupled nonlinear system.8>>>>>>>>>>>><>>>>>>>>>>>>:

X(1)
t+1 = deadz

�
X(1)
t + 3X(2)

t

�
+ U (1)

t +W (1)
t

Y (1)
t = X(1)

t + V (1)
t

X(2)
t+1 = sat

�
2X(1)

t +X(2)
t

�
+ U (2)

t +W (2)
t

Y (2)
t = X(2)

t + V (2)
t

(8)

Here, X(1)
0 and X(2)

0 2 [�20; 20] are unknown initial
states and W (i)

t and V (i)
t are uniformly distributed

random variables with the support [�0:1; 0:1] (i.e.,
W (i)
t ; V (i)

t 2 [�0:1; 0:1]).
Figure 2 illustrates the state trajectories of sys-

tem (8) when U (1)
t = U (2)

t = 0. As is clear from Fig-
ure 2, without control inputs, the system is unstable.
To stabilize this system, the control vector is set to:

Ut =

 
U (1)
t

U (2)
t

!
;

U (1)
t = �deadz(X̂(1)

t + 3X̂(2)
t );

U (2)
t = �sat(2X̂(1)

t + X̂(2)
t ):

For this system, the Lipschitz coe�cients K1, and K2
are determined as follows:���deadz �X(1) + 3X(2)

�� deadz �Y (1) + 3Y (2)
����

� 2
���X(1) + 3X(2) � Y (1) � 3Y (2)

���
= 2

����X(1) � Y (1)
�

+ 3
�
X(2) � Y (2)

����
� 2

���X(1) � Y (1)
���+ 6

���X(2) � Y (2)
���

� 6
����X(1) � Y (1)

���+
���X(2) � Y (2)

���� :
Hence, K1 = 6. Note that the �rst inequality above
follows from the de�nition of deadz(:). Similarly, for
K2, we have:

Figure 2. The state trajectories without control inputs.���sat�2X(1) +X(2)
�� sat�2Y (1) + Y (2)

����
� 3

���2X(1) +X(2) � 2Y (1) � Y (2)
���

= 3
���2�X(1) � Y (1)

�
+
�
X(2) � Y (2)

����
� 6

���X(1) � Y (1)
���+ 3

���X(2) � Y (2)
���

� 6
����X(1) � Y (1)

���+
���X(2) � Y (2)

���� : (9)

Hence, K2 = 6.
Consequently, from Theorem 3.1, it follows that

A =
� 6

2R1
6

2R2
6

2R1
6

2R2

�
; and as the eigenvalues of the

matrix A are 0 and 6( 1
2R1 + 1

2R2 ), the rates (R1; R2)
that make matrix A stable while the transmission rate
R = R1 + R2 is minimum are (R1; R2) = (3; 5), (5; 3),
(4; 4) in which, for this system, we choose (R1; R2) =
(4; 4). For these rates, L(i)1 , i = 1; 2, are calculated as
follows:

t�1X
j=0

At�1�j ((A+ B)  + !)

= (A+ B)  + ! +
t�2X
j=0

At�1�j ((A+ B)  + !)

=

0@ 11
8

11
8

1A+
t�2X
j=0

�
3
8

�t�1�j�2t�1�j�1 2t�1�j�1

2t�1�j�1 2t�1�j�1

�0@ 11
8

11
8

1A
=
�
Et
Et

�
;
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Figure 3. The state trajectories for (R1; R2) = (4; 4).
Dashed lines identify the boundaries of the interval
[�44

8 ; 44
8 ].

Figure 4. The control trajectories for (R1; R2) = (4; 4).

Et
:=

11
8

+
t�2X
j=0

�
3
8

�t�1�j 11
4

2t�1�j�1

=
11
8

+
11
8

3

 
1�

�
3
4

�t�1
!
;

and hence, L(i)1 = limt!1Et = 44
8 .

Figure 3 illustrates the state trajectories of system
(8) and Figure 4 illustrates the control trajectories
when the proposed encoder, decoder, and controller
are used with rates (R1; R2) = (4; 4) (R = 8 bits).
As is clear from Figure 3, by increasing time, the state
trajectories of the system enter the interval [� 44

8 ;
44
8 ]

and stay there despite uncertainties in dynamic model
and distortion due to quantization.

We can shrink the close bounded set � � R2

by choosing larger rates. For example, for (R1; R2) =
(6; 6), L(i)1 = 1:6231, i = 1; 2. Figure 5 illustrates the
state trajectories for this case.

Figure 6 illustrates the state trajectories of the

Figure 5. The state trajectories for (R1; R2) = (6; 6).
Dashed lines identify the boundaries of the interval
[�1:6231; 1:6231].

Figure 6. The state trajectories for (R1; R2) = (4; 3).

system when the proposed encoder, decoder, and
controller with rates (R1; R2) = (4; 3) (R = 7 bits)
are used. As is clear from Figure 6, for these rates, the
proposed stabilizing technique is not able to stabilize
the system. This result is expected as the rates
(R1; R2) = (4; 3) do not make matrix A stable.

Figure 7 illustrates the state trajectories of the
system when W (i)

t = V (i)
t = 0, i = f1; 2g and

(R1; R2) = (4; 4). As is clear from Figure 7, by
increasing time, the state trajectories, as expected from
Proposition 3.2, converge to zero.

5. Conclusion

This paper was concerned with the stability of nonlin-
ear Lipschitz systems subject to bounded process and
measurement noises when transmission from sensor to
controller was subject to quantization distortion. A
stabilizing technique and a su�cient condition relating
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Figure 7. The state trajectories for (R1; R2) = (4; 4) and
W (i)
t = V (i)

t = 0.

transmission rate R to Lipschitz coe�cients Kis were
presented for almost sure asymptotic bounded stability
of nonlinear uncertain Lipschitz systems. It was shown
that in the absence of process and measurement noises,
the proposed stabilizing technique resulted in almost
sure asymptotic stability.

Furthermore, it was illustrated via computer sim-
ulations that the proposed stabilizing technique had
satisfactory performance for almost sure asymptotic
bounded stability and asymptotic stability.

For future, it is also interesting to consider the
e�ects of random packet dropout in transmission from
sensor to controller on almost sure asymptotic bounded
stability of nonlinear uncertain Lipschitz systems. It
is also interesting to relax the assumption made on
matrix B.
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