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Abstract. Mathematical modeling of complex electrical systems has led us to linear
mathematical models of higher order. Consequently, it is di�cult to analyze and to design
a control strategy for these systems. Order reduction is an important and e�ective tool to
facilitate the handling and designing of a control strategy. In this paper, we �rstly present a
reduction method, which is based on the Krylov subspace and Lyapunov techniques, called
Lyapunov-Global-Lanczos. This method minimizes the H1 norm error and absolute error,
and preserves the stability of the reduced system. It also provides a better reduced system
of order 1, with closer behavior to the original system. This �rst order system is used to
design PI (Proportional-Integral) controller. Secondly, we implement an adaptive digital
PI controller in a microcontroller. It calculates the PI parameters in real time, referring to
the error between the desired and measured outputs and the initial values of PI controller,
that are determined from the �rst order system. Two simulation examples and a real-time
experimentation are presented to show the e�ectiveness of the proposed algorithms.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Design, realization, and synthesis of a control diagram
of a complex electrical system are most often the �rst
and most delicate tasks in industry. In the last 30 years,
the emergence of modeling and digital simulation has
allowed to greatly reduce the cost and time spent in
design phases. In contrast, system validation phases
remain critical as they arrive late in the design cycle.
The exact numbers di�er depending on the study, but
the cost of correction of an error detected at the stage of
testing is very much higher than the cost of correcting
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an error in the speci�cation phase. The industries seek
to involve the validation phases earlier and earlier in
the design cycle. However, in the early design phases,
systems are modeled on speci�c simulation platforms.
Hardware connection with physical modeling platforms
requires to perform real-time simulations. However,
the real-time constraint requires simulation results to
be delivered as accurate as possible within imposed
deadlines. Thus, the produced model is character-
ized by high complexity and this may require higher
computing time than the available time. In this case,
cost constraints usually lead to the interest in the use
of model reduction methods. When the system is
described by di�erential linear equations, simpli�cation
can be carried out by reducing the order of the model.
Order reduction in models reduces the complexity of
the model while preserving the majority of the input-
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output behavior. In addition, the use of simpli�ed
methods intervenes in the design of a suitable control
strategy with complex real systems. To design an
e�ective controller for high order electrical process, we
need to reduce the mathematical model of the real
process. In the past decade, the controller mostly used
in processing in the industries has been the PI/PID
(Proportional-Integral Derivative) (in more than 90%
of the whole control loop). PI is a valuable tool that has
many advantages over the other controllers, including
simple design, high reliability, robustness, numerical
stability, and digital implementation simplicity in prac-
tice. However, when designing a PI control strategy in
a high order system, it is necessary to choose the most
reliable reduction method, which provides a system of
order 1 having frequency and time responses that are
the nearest to the original system response and having
a transfer function of order 1, whose numerator value
is close to 1.

In this work, we propose a reduction method ap-
plied to large-scale electrical systems. Our method ben-
e�ts from both Krylov [1] and Lyapunov techniques [2-
4]. The proposed method generates models of reduced
order with similar behavior to the original system,
leading to minimized absolute error and H1 norm error
and preserving the stability of the reduced system. We
also present an adaptive control algorithm, which we
call adaptive digital PI controller, implemented in a
microcontroller to monitor, in real time, a large-scale
real system. This algorithm determines the appropriate
parameters of PI controllers in real time based on the
error between the desired output and the measured one,
and the initial controller parameters are determined
from a reduced system (order 1).

The mathematical problem of electrical system
can be stated as follows.

Consider a class of descriptor linear dynamical
electrical system in state space form given by [5-8]:

� =
�
E dx(t)

dt = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1)

where E 2 Rn�n, A 2 Rn�n, B 2 Rn�1, C 2 R1�n,
D 2 R1�1, u(t) 2 R, and y(t) 2 R, such that E is not
an identity matrix.

After applying the Laplace transform to System
(1), the transfer function of the original descriptor
linear system is given by [9-12]:

f(s) = C(sE �A)�1B +D: (2)

The problems consist of:

� Constructing the parameters of the reduced descrip-
tor linear dynamical system : Em 2 Rm�m, Am 2
Rm�m, Bm 2 Rm�1, Cm 2 R1�m, Dm 2 R1�1, and

ym(t) 2 R, where m � n is the order of reduced
system.

The state space representation of reduction
descriptor linear dynamical systems is as follows [9]:

�m =
�
Em dxm(t)

dt = Amxm(t) +Bmu(t)
ym(t) = Cmxm(t) +Dmu(t)

(3)

The Laplace transform is applied to System (3);
hence, the transfer function of the reduced descrip-
tor linear system is as follows:

fm(s) = Cm(sEm �Am)�1Bm +Dm: (4)

� Determining a real-time adaptive digital PI con-
troller based on the controller parameters deter-
mined by the reduced system in such a way that it
guarantees the e�ectiveness by giving the best values
of kp and ki gains according to the real time change
of the input. The transfer functions of the initial
controller and the adaptive one are, respectively,
presented as follows:

Gc(s) = kp +
ki
s
) Ĝc(s) = k̂p +

k̂i
s
; (5)

where, kp and ki are, respectively, the proportional
and integral gains, which were determined by the
reduced system. k̂p and k̂i are, respectively, the
proportional and integral tuning gains obtained in
real-time experimentation.

This paper is organized as follows. In Section 2, we
present some basic mathematical tools. In Sections 3
and 4, we present our reduction approach and apply
it to two theoretical systems of di�erent orders. In
Section 5, our adaptive control algorithm will be pre-
sented and applied to a real electrical system. Section
6 concludes the work.

2. Basic tools

In this section, we will review some basic mathematical
tools, standard Krylov subspace, Lyapunov technique,
and H1 norm error.

2.1. Standard Krylov subspace
Let a square matrix be A and a vector be b; apply
the Krylov subspace technique. The standard Krylov
subspace, KmfA; bg, such that m is its dimension is
obtained by [13-15]:

KmfA; bg = spanfb; Ab; :::; Am�1bg: (6)

2.2. Lyapunov equations
Let an asymptotically stable descriptor linear system
be as in Eq. (1). The Lyapunov solution to this
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system is obtained by solving the following system
(Eq. (7)) [10,16]:�

ARc +RcAT +BBT = 0
ATRo +RoA+ CTC = 0 (7)

The solutions to this system are Rc and Ro [10]. Rc 2
Rn�n and Ro 2 Rn�n are called the reachability and
the observability Gramian matrices, respectively.

2.3. H1 errors of dynamical descriptor linear
systems

The global error bound between the original system
and the reduced one is obtained by computing H1
norm error knowing that [10,11,17]:

kf(jw)�fm(jw)kH1=supw2Rkf(jw)�fm(jw)k2:
(8)

3. Lyapunov-Global-Lanczos method of linear
descriptor system

The Lyapunov-Global-Lanczos (Lyap-GL) method is
an extension of the Global Lanczos (GL) method [18].
It is based on generation of two projection matrices,
V and W 2 Rn�m. The V projection matrix is
generated by the use of the Krylov subspace technique
and the W projection matrix is determined by the use
of the Lyapunov and Krylov subspace techniques. The
Krylov technique is used for its numerical e�ciency and
the Lyapunov one is used because of its robustness in
determining the observability Gramian matrix.

Lyap-GL minimizes the H1 error, absolute error,
and the error between the time responses of original
and reduced systems and preserves the stability of the
reduced system independently of its order. The two
projection matrices satisfy a bi-orthogonality condition
(Eq. (9)):

(W � (((WT � V )�1)T ))TV = I: (9)

The numerical e�ciency is caused by the use of Krylov
subspace technique [18]. The use of the observability
Gramian matrix in generating the second subspace W
has numerous advantages that are:

� Minimization of the error between the original sys-
tem and the reduced one in frequency response;

� Minimization of the error between the original sys-
tem and the reduced one in time response;

� Minimization of the H1 norm error;
� Stability preservation;
� Passivity preservation.

Theorems 1 and 2 summarize the principles of our
approach.

Theorem 3.1. (Generation of V matrix)

Let � = �(s1E � A)�1E be non-singular matrix
and � = (s2E � A)�1Ro1 be a vector (where s1
and s2 are expansion points). The Krylov subspace,
Km(�; �) = f�; ��; :::; �m�1�g, is generated using the
Krylov technique. It satis�es the recurrent relationship
(Eq. (10)):

�Vm = VmTm + �m+1vm+1eTm; (10)

where, em is the mth unit vector of identity matrix
and Tm = Wm�Vm is a tridiagonal matrix, which is
composed of the scalars �i =

q
trace(abs(�RToi)), below

the diagonal, �i = trace(RToi�vi) on the diagonal, and

i = �itrace(abs(RToi�)) above the diagonal (where, i =
1 : m).

Proof 1. The proof can be found in [19,20]

Theorem 3.2. (Generation of W matrix)

Let �T be nonsingular matrix and r = Ro1

1

. The
Krylov subspace, Lm(�T ; r), is generated by applying
the Krylov technique. It is de�ned as in Eq. (11):

Lm(�T ; r) = spanfr; �T r; :::; (�m�1)T rg: (11)

The Krylov subspace satis�es the recurrent Eq. (12):

�TWm = WmTTm + �m+1wm+1eTm: (12)

Proof 2. The proof can be found in [9,10]. �
Table 1 explains the algorithm of Lyapunov-Global-
Lanczos approach. The main steps of our approach
are:

Step 1: Generate the observability Gramian matrix,
Ro;
Step 2: Compute the matrix � and the vector �; we
use the �rst column of observability Gramian matrix
in computing �;
Step 3: Compute the �rst scalars �1, 
1, and �1 by
the use of the observability Gramian matrix;
Step 4: Generate the second vector of V and of
the modi�ed observability Gramian matrix Ro (also
called W second projection matrix) based on the pre-
vious vectors of two projection matrices, the scalars
coe�cient of T matrix, and the original observability
Gramian matrix;
Step 5: Compute the parameters of reduced system
using the congruence transformation:

Em = (W � (((WT � V )�1)T ))T � E � V;
Am = (W � (((WT � V )�1)T ))T �A � V;
Bm = (W � (((WT � V )�1)T ))TB;
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Table 1. Lyapunov-global-Lanczos algorithm.

Inputs: A, B, C, D, E, s1, s2; Outputs: V, W

(1) Generate the observability Gramian matrix Ro by using of the Lyapunov technique:

ATRo +RoA+ CTC = 0

(2) Initialization:

(a) Compute the matrix � and the vector �, that will be used in the generation of Krylov subspace:

Set � = �(s1E �A)�1E and � = (s2E �A)�1Ro1
(b) Compute the initial coe�cients � and 
 of T matrix:

�1 =
p

trace(abs(�RTo1))


1 = �1trace(abs(RTo1�))

(c) De�ne:

v1 = �
�1

w1 = Ro1

1

(d) Compute the initial coe�cient � of T matrix:

�1 = trace(RTo1�v1)

(3) Generate the two projection matrices V and W :

for i = 1 : m

(a) Compute the vi+1 vector of V :

vi+1 = � � vi � �ivi � �vi�1

(b) Compute the wi+1 vector of W :

wi+1 = �T �Roi � �iRoi � 
Roi�1

(c) Update � and 


�i+1 =
q

trace(abs(vi+1wTi+1))


i+1 = �i+1trace(abs(wTi+1vi+1))

(d) Compute the normalized vectors vi+1 and wi+1:

vi+1 = vi+1

i+

Roi+1 = wi+1
�i+1

(e) Compute the other coe�cient � of T matrix:

�i+1 = trace(RToi+1�vi+1)

(f) V = [V vi+1] and W = [W Ri+1]

end for

Cm = C � V; Dm = 0:

3.1. Computational complexity of
Lyapunov-Global-Lanczos algorithm

The computational complexity of the proposed method
is O(nm2) + O(n2) or O(mn2) + O(n3) for sparse
and dense systems, respectively, where m and n are
the orders of reduced and original systems, respec-
tively. In Table 2, we report the computational
complexity of the proposed Lyapunov-Global-Lanczos
(Lyap-GL) algorithm compared to the selected state-
of-the-art algorithms (Global Lanczos (GL) [18,21],

Lanczos [9,15,22], Rational Lanczos (RL) [21,23], Arn-
odli (Ar) [9,24], Rational Arnoldi (RA) [9,14,19], and
Balanced Truncation (BTR) [9,25]).

We note from Table 2 that the complexity of
Lyap-Gl algorithm is lower than the complexity of BTR
algorithm and it is comparable to Ar, GL, Lan, RA,
and RL.

4. Numerical simulations

In this section, the performance of the proposed ap-
proach will be illustrated with simulation examples.
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Table 2. Computational complexity.

Methods Sparse
complexity

Dense
complexity

Sparse
Lyapunov resolution

complexity

Dense
Lyapunov resolution

complexity
Lya-GL O(nr2) O(rn2) O(n2) O(n3)

Ar O(nr2) O(rn2) { {
GL O(rn2) O(rn2) { {

BTR O(n2) O(n3) O(n2) O(n3)
Lan O(nr2) O(rn2) { {
RL O(nr2) O(rn2) { {
RA O(nr2) O(rn2) { {

Figure 1. Chain RC circuit with N resistors and N
capacitors.

We apply the Lyapunov-Global-Lanczos approach to
two linear descriptor systems of di�erent orders (RC-
30 and RC-500 [26]) and compare their performance
with Global-Lanczos and Lanczos methods [19,27] for
RC-30 and with Global-Lanczos, Lanczos, and Rational
Lanczos, Arnoldi, Rational Arnoldi, Balanced Trun-
cation for RC-500. The Interconnect RC network is
composed of a resistance set (30 or 500 resistances)
and a capacitances set (30 or 500 capacitances), which
together form an RC chain. The N-RC model is a
single-input/single-output dynamical system; it is fre-
quently observed in modeling of the electrical systems.
The �rst model is of order 30 (where RN = 1 k
 and
CN = 100 �F for N = 1 : 30) and the second model is
of order 500 (where RN = 10 k
 and CN = 680 �F for
N = 1 : 500). The electronic schematic of our N-RC
network is shown in Figure 1.

We present for each model the largest singular
among the frequency responses of the original system
and the reduced one, the error variation between the
original systems and reduced ones, the poles distribu-
tion of reduced systems, and the time responses of
the original system and the reduced one. Also, we
present a comparative study of the H1 norm errors
as well as reduction and simulation times obtained by
the competitive methods.

4.1. Model 1: RC of order 30
Figure 2 depicts the largest singular values of the
frequency responses of the original system of order 30
and the reduced one of order 5 as well as the �rst-
order obtained by the three selected methods (Lyap-
GL, Lanczos, GL).

Figure 3 shows the error-variation between the

Figure 2. Largest singular values of the frequency
response of the original system (RC-30) and the reduced
ones (ROM (Reduced Order Model) 5 and 1) with the
three selected methods.

Figure 3. Error-variation between the original system
(RC-30) and reduced ones (ROM 5 and 1) with the three
selected methods.

original system and the reduced one with the three
competitive methods. We notice that the best result
is obtained by the Lyapunov-Global-Lanczos method.

Figure 4 presents the poles distributions of 4
reduced systems. We see that all poles are a negative
real part, thus, the reduced systems are stable.

Figure 5 presents the step responses of the original
system (RC of order 30) and the reduced ones (orders
5 and 1) obtained by the three selected methods.
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Figure 4. Result of poles distribution of reduced systems
(ROM 5 and 1) by the three competitive reduction
methods.

Figure 5. Step responses of the original system and the
reduced ones (ROM 5 and 1) in open loop with the three
selected methods.

We notice a good correlation between the original
system and the reduced one of order 5 obtained by the
Lyapunov-Global-Lanczos method. Also thanks to the
Lyapunov technique, it can be seen that the obtained
reduced order model approximates the original system
very well.

4.2. Model 2: RC of order 500
The largest singular values of the frequency responses
from an original system of order 500 and a reduced one
of order 10 obtained by the Lyapunov-Global-Lanczos,
Global-Lanczos, Lanczos, Rational-Lanczos, Arnodli,
Rational Arnoldi, and BTR are shown in Figure 6. We
notice a good correlation between the original system
and the reduced one obtained by the Lyapunov-Global-
Lanczos in the whole frequency range compared with
the other methods.

Figure 7 depicts the error variation between the
original system and the reduced one. We notice that
the obtained result by the Lyapunov-Global-Lanczos
approach is better than the ones obtained by the other
methods.

The distribution poles of the three reduced sys-

Figure 6. Largest singular values of the frequency
response of the original system (RC-500) and the reduced
ones (ROM-10) with the seven selected methods.

Figure 7. Error variation between the original system
(RC-500) and the reduced one (ROM-10) with the seven
selected methods.

Figure 8. Result of the poles distribution of reduced
systems (ROM-10) by the seven competitive reduction
methods.

tems are shown in Figure 8. All the poles obtained by
the Lyapunov-Global-Lanczos method have a negative
real part; thus, the reduced system is stable, which is
not the case for the other methods.

Figure 9 presents step responses of the origi-
nal system and the reduced one with the 7 selected



1622 M. Kouki et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 1616{1628

Figure 9. Step responses of the original system and the
reduced ones (ROM-10) in open loop with the seven
selected methods.

methods. We notice that the obtained result by the
Lyapunov-Global-Lanczos is very close to the step
response of the original system, which is not the case
of the step responses obtained by the other methods.

4.3. Comparative study
A comparative study between the H1 norm errors,
reduction times, and simulation times obtained using
7 methods applied in di�erent models is shown in
Tables 3 and 4. Table 3 shows the H1 norm error
for each method applied in RC models of orders 30 and
500. Table 4 presents the reduction and simulation
times for each method applied in RC model of order
500.

From the results shown in Tables 3 and 4, we
conclude that the proposed approach outperforms the
competitive one in terms of H1 norm errors. Also, it
performs better with regard to reduction and simula-
tion times.

5. Implementation of digital PI controller for
higher order systems

To design an e�ective controller for high order electrical
process, we need to reduce the original mathematical
model [28]. To do so, we develop an adaptive control
strategy whose parameters are taken from reduced
system by applying the proposed reduction method,
i.e. Lyapunov-Global-Lanczos. In fact, we propose
an adaptive digital PI controller applied to large-scale
descriptor linear systems.

5.1. PI controller equation
PI controller could be described using the parallel from
as shown in Eq. (13) [29,30]:

G(s) = kp +
Ki

s
=
u(s)
e(s)

; (13)

where u(s) is a control signal, e(s) is the error between
the desired output and the measured one, and kp and
ki are proportional and integral gains, respectively.

In order to implement the PI controller, we
determine the Z-Transform of the previous equation.

Table 3. H1 norm errors of each method.

Methods MOR (RC-500) H1 norm error MOR (RC-30) H1 norm error

Lyap-GL 10 0.001 5 0.003

Lan 10 0.003 5 0.533

GL 10 0.033 5 0:946

RL 10 0.030 { {

Ar 10 0.003 { {

RA 10 0.051 { {

BTR 10 0.539 { {

Table 4. Reduction and simulation time of each method.

Methods Reduced order Reduction-time Simulation-time

Lyap-GL 10 1.012 20.035
Lan 10 0.526 30.352
GL 10 0.297 29.720
RL 10 5.566 33.650
Ar 10 0:565 26.213
RA 10 0:629 31.233

BTR 10 0:539 29.640
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The result is given in Eq. (19) [28,31]:

U(z) = (kp +
ki

1� z�1 )E(z); (14)

where, E(z) = Yc(z)� Y (z), with Yc and Y presenting
the desired output and the measured one, respec-
tively. As well, we determine the recurrent form of
Eq. (19) [32]:

u(k) = u(k � 1) + kp(e(k)� e(k � 1)) + kie(k): (15)

5.2. PI parameters extracted from the reduced
system

At �rst, we present, in Table 5, the transfer function
obtained by the proposed approach as well as 6 bench-
mark approaches. From these 7 transfer functions, we
conclude that the function obtained by the Lyapunov-
Global-Lanczos has a numerator value close to 1; thus,
this is the best function to use when calculating the
initial parameters of our PI controller.

To calculate the PI parameters, Takahashi
method is used in closed loop [33,34]. It is needed to
increase the gain of proportional corrector associated
with the transfer function obtained by the proposed
method in the closed loop until oscillations. Thus, we
measure the period oscillation, Tc, corresponding to a
Kc gain.

Figure 10 presents the Takahashi illustration
method of setting the PI parameters. The PI param-
eters (kp and ki) are determined from the following
relationships [28,35,36]:8><>: kp = 0:6Kc(1� Te

Tc )
kp
Ti = 1:2Kc

Tc
ki = Te

Ti

(16)

in our case, Tc = 2, the sampling period: Te = 1 s,

and Kc = 20:5; thus, we obtain:�
kp = 6:15
ki = 2:04 (17)

Figure 11 presents the simulation results of the closed
loop step response obtained using the previous param-
eters of PI controller applied to the reduced system
(order 1) and the original one (order 30). We notice a
good correlation between the output trajectories of the
reduced system and the original one.

5.3. Adaptive digital PI controller algorithm
implemented in Arduino Card

The technical details of the adaptive digital controller
PI algorithm implementation in Arduino board are
presented in this section.

The adaptation of PI controller is done by the real
time adaptation of the kp and ki parameters. We focus
on adding or subtracting a correction term to or from
the PI parameters at each iteration based on the real-
time error value between the desired output and the
measured one until we achieve the best gain according

Figure 11. Closed loop response of the original system
and the reduced one obtained with Lyap-GL method.

Figure 10. Takahashi method of setting the PI parameters.

Table 5. Reduced transfer functions.

Methods Lyap-GL GL Lanczos Ar RA RL BTR

Transfer functions 0:093
z�0:89

2:27e�16

z�0:67
7:79e�9

z�0:57
9:99e�3

z�0:998
3:33e�3

z�1
4:751e�30

z�1
9:81e�4

z�1
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to each input. It consists of an error value depending
on correction term between the desired output and the
measured one at each iteration. The adaptation terms
are computed according to the following relationships
Eq. (18):

�
�p(k) = e(k � 1)=kp(k � 1)
�i(k) = e(k � 1)=ki(k � 1) (18)

The new recurrent form of the PI controller is given by:

u(k) =u(k � 1) + (kp(k � 1)��p(k � 1))(e(k)

�e(k�1))+(ki(k�1)��i(k�1))e(k): (19)

As detailed in Table 6, we present the main steps of
adaptive digital PI controller algorithm implementa-
tion.

5.4. Real-time-implementation
To exhibit the e�ectiveness and applicability of the pro-
posed adaptive PI algorithm, a real-time experiment,
composed of real system (order 30), microcontroller

Table 6. Adaptive digital PI controller algorithm.

Input: Yc,kp,ki,tol; Output: Ymeasured

(1) Initialization

(a) Initialize the previous control signal: u(k � 1) = 0

(b) Initialize the previous error e(k � 1) = Yc(k)� Ymeasured(k) = 0

(c) Initialize the maximum value of error tol, �p, and �i

tol = 10�2, �p = 0 and �i = 0

(2) Con�gure of the output pin using PinMode()

(3) Recover and compute the PI gains (kp and ki) in real time

for k=1:1
(a) Con�gure of input pin using analogRead()

(b) Read the measured output Ymeasured

(c) Convert the analog measured value into digital value using the relationship of Analog to Digital Converter (ADC):

Digital measured value YDmeasured= (Ymeasured � 5)=1023

(d) Compute the error between the desired output Yc and YDmeasured: e(k) = Yc(k)� YDmeasured(k)

(e) Adaptation of PI parameters

if (e � tol) then kp(k) = kp(k � 1)��p(k � 1), ki(k) = ki(k � 1)��i(k � 1) else if(e � �tol) then

kp(k) = kp(k � 1) + �p(k � 1), ki(k) = ki(k � 1) + �i(k � 1)

else kp(k) = kp(k � 1), ki(k) = ki(k � 1) end if

(f) Compute the control signal u using the recurrent PI equation:

udigital(k) = u(k � 1) + kp(k) � (e(k)� e(k � 1)) + ki(k) � e(k � 1)

(g) Add a saturation protected condition of the control signal, according to the type of microcontroller

if udigital(k) > delivered voltage by the microcontroller then udigital(k) = delivered voltage by the microcontroller

end if

if udigital(k) < 0 then udigital(k) = 0 end if

(h) Update the previous error and previous control signal: e(k � 1) = e(k) and u(k � 1) = u(k)

(i) Convert the new digital control value into analog control value using the relationships of Digital

to Analog Converter (DAC): u(k)analog = (u(k)digital � 255)=5

(j) Transmit the new analog control value to the real system using the analogWrite()

(k) De�ne a waiting time before moving on to the next iteration

end for
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(Arduino UNO) and a computer, has been performed
on closed loop.

The Arduino UNO is a microcontroller board
based on ATmega328P processor [37]. The board con-
tains 6 analog input pins and 14 digital input/output
pins of which 6 can be used as Pulse Width Modulation
(PWM) outputs (Pin numbers 3, 5, 6, 9, 10, and 11)
and provides the 8 bits resolution. In our application,
we use pin 10 as analog output and pin 2 as digital
input. In order to visualize the output results in real
time, we use the PLX-DAQ Spreadsheet tool.

The experimental setups of real system, Arduino
UNO and a computer are shown in Figure 12.

Figure 12. Experimental setup.

Figure 13(a) and (b) present the output trajecto-
ries of real system and input signal, which vary between
(4 V, 1 V, 3 V) at each 200 iterations (each iteration
is within 0:5 second). We use the �xed PI parameters
(kp = 6:15 and ki = 2:04) determined by the reduced
system and the adaptive PI parameters, respectively.
We notice from Figure 13(a) that the outputs are
unstable and the desired outputs are achieved after
100 iterations for inputs equal to 4 V and 1 V, and
50 iterations for an input equal to 3 V, with an error
rate between the desired output and the measured one
varying between 3% and 15%. However, we see from
Figure 13(b) that the outputs are stable and the desired
outputs are achieved after 40 iterations for 4 V and 1 V,
and 10 iterations for 3 V.

Figure 14(a) and (b) illustrate the control signal
obtained by the use of the �xed and adaptive PI
parameters, respectively. We notice that the control
signal obtained by the �xed PI controller is unstable;
however, it is not the case for the control signal
obtained by the proposed adaptive PI controller.

Figure 15(a) and (b) show the error variation
obtained between the desired output and the measured
one according to the �xed PI controller and adaptive
one, respectively. We see that the error variation
obtained by the adaptive PI parameters is equal to zero,

Figure 13. (a) Closed loop response obtained with �xed PI controller. (b) Closed loop response obtained with adaptive
PI controller.

Figure 14. (a) Control signal obtained by �xed PI controller. (b) Control signal obtained by adaptive PI controller.
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Figure 15. (a) Error variation between desired and measured outputs obtained with �xed PI controller. (b) Error
variation between desired and measured outputs obtained with adaptive PI controller.

Figure 16. Variation of PI controller parameters (Kp and
Ki).

except when changing the input.
Figure 16 shows the variation of the kp and ki

gains according to the error variation between the
desired output and the measured one from which we
obtained the result illustrated in Figure 13(b).

6. Conclusion

In this paper, we �rstly presented the model order
reduction method of higher electrical system called
Lyapunov-Global-Lanczos, which was based on the
Lyapunov and Krylov techniques in generation of
projection matrices. Our approach was characterized
by minimizing the error between the time responses
of the original system and the reduced one as well as
H1 error norm preserving the stability of the reduced
system and giving a reduced system of order 1 With
the numerator values of their transfer functions very
close to 1.

Secondly, we presented an adaptive digital PI
controller algorithm that computed the best gains of

PI controller in real time based on the PI controller
parameters determined by the reduced system of or-
der 1 and the real-time error variation between the
desired output and the measured one. Simulation
and experimentation results showed e�ectiveness and
robustness of both the proposed algorithms.
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