
Scientia Iranica D (2017) 24(6), 3247{3256

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

A generalized entropy-based two-phase threshold
algorithm for noisy medical image edge detection

A. Elarabya,b and D. Moratalb;�

a. Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt.
b. Center for Biomaterials and Tissue Engineering, Universitat Polit�ecnica de Val�encia, Valencia, Spain.

Received 22 January 2016; received in revised form 5 July 2016; accepted 22 August 2016

KEYWORDS
Image edge detection;
Hill entropy;
Thresholding;
Canny edge detection;
Medical imaging;
Image analysis.

Abstract. Edge detection in medical imaging is a signi�cant task for object recognition
of human organs and is considered a pre-processing step in medical image segmentation
and reconstruction. This article proposes an e�cient approach based on generalized Hill
entropy to �nd a good solution for detecting edges under noisy conditions in medical
images. The proposed algorithm uses a two-phase thresholding: �rstly, a global threshold
calculated by means of generalized Hill entropy is used to separate the image into object
and background. Afterwards, a local threshold value is determined for each part of the
image. The �nal edge map image is a combination of these two separate images based on
the three calculated thresholds. The performance of the proposed algorithm is compared
to Canny and Tsallis entropy using sets of medical images corrupted by various types of
noise. We used Pratt's Figure Of Merit (PFOM) as a quantitative measure for an objective
comparison. Experimental results indicated that the proposed algorithm displayed superior
noise resilience and better edge detection than Canny and Tsallis entropy methods for the
four di�erent types of noise analyzed, and thus it can be considered as a very interesting
edge detection algorithm on noisy medical images.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

In image analysis and computer vision systems, the
edges of objects in an image contain important in-
formation that can be used as low-level features [1].
When noise exists in the image, an accurate detection
of these contours becomes a very hard and time-
consuming task [2]. Producing the continuous contours
of the object boundaries is a fundamental step in image
processing and computer vision, especially in the �eld
of feature detection and feature extraction [3], and it
is the main goal of edge detection algorithms. The
detection of these edges is a critical pre-processing step
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for a variety of tasks, including object recognition [4,5]
and segmentation [6-9].

An edge can be de�ned as a boundary that divides
an area of an image into two regions [1] or a single pixel
with a local discontinuity in intensity [2]. So, di�erent
algorithms of edge detection can select the edges in
various ways of representation, and the goodness or
appropriateness of them will depend on the de�nition
of those edges.

Edge detection is widely used in medical diagno-
sis [10] and all di�erent medical imaging modalities
(X-rays [11], ultrasonography [12], computed tomog-
raphy [13], magnetic resonance imaging [14], nuclear
medicine [15] or microscopy [16]).

The type of noise that can be encountered in
all these di�erent medical imaging modalities can be
very di�erent (salt & pepper noise [17], additive white
Gaussian noise [18], Poisson noise [19] or speckle
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noise [20]), and since none of the existing methods
produces the optimum results for all images with
di�erent types of noise, �nding an optimal method
for edge detection is still an active �eld of research.
Therefore, a robust algorithm is required to overcome
the noise and consider the global structure of the edges
to reduce broken ones.

Entropy is a concept in information theory which
is used to measure the amount of information in
a message [21-25]. Entropy is de�ned in terms of
the probabilistic behavior of a source of information.
Compared with other methods, the most important
advantages of entropy-based approaches for edge de-
tection are the ease of its implementation and the few
number of operations [26]. Entropy-based approaches
are very stable and e�cient in noisy environments [26].
Their comparison with other edge-detection algorithms
has shown that they have high capability and have been
successfully applied to problems of edge detection in
noisy image [26].

This article presents a new edge detection al-
gorithm based on generalized Hill entropy for noisy
images with the goal of extracting continuous edges
and reducing the number of broken ones by means of a
two-phase thresholding (see Figure 1 for an schematic
overview of the presented algorithm).

The structure of this paper is as follows:
Section 2 introduces the related work to edge detection
algorithms; Section 3 presents the proposed edge
detection approach based on generalized Hill entropy;

Section 4 contains experiments and Section 5 contains
results and discussion.

2. Related work

Many edge detection algorithms have been proposed.
The results are usually examined either by visual
inspection as a qualitative measure [1,26] or quanti-
tatively by di�erent indexes [27-35]. Some of these
algorithms utilize a linking technique collecting pixels
that belong to a set of edges [36-38]. In this context, the
linking technique cannot be perfect except for simple
shapes like lines or circles [36]; the use of image �lters
presents drawback which may a�ected image features,
and thus the localization ability of an edge detector
becomes poor [39].

Recently, many papers have been published in the
area of image edge detection [27-35] that tests its im-
portance as follows: Lopez-Molina et al. [27] presented
a study that focuses on the improvements of edge de-
tection by using Anisotropic Di�usion (AD) instead of
Gaussian Linear Filtering (GLF); in [28], the modi�ed
scheme is presented to improve the performance of
traditional Canny edge detection through an adaptive
�lter based on bi-dimensional general auto-regression
model; in [29], Lopez-Molina et al. presented a novel
edge detection framework based on the measurement of
grey level changes using a new class of functions called
relief functions; in [30], a new edge detection method
that combines smoothing spline algorithm and gray-

Figure 1. Schematic overview of the proposed algorithm where di�erent steps can be observed. Original image (a) is
divided into two parts (object (b) and background (c)) following the threshold value, t1, calculated by means of Hill
entropy (1st step of the algorithm). Afterwards, the threshold values t2 and t3 are calculated from object (b) and
background (c), respectively, by Hill entropy (the 2nd step of the algorithm). The �nal edge map (d) is obtained by
applying the threshold values t1, t2, and t3 to the original image.



A. Elaraby and D. Moratal/Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3247{3256 3249

moments operator is introduced; in [31], Ray presented
a scheme for unsupervised edge detection that uses
the highly e�cient Absolute Di�erence Mask (ADM)
algorithm to generate the initial edge image and uses a
subsequent modi�ed non-maximal suppression scheme
to optimize the edge output resulting in the �nal edge
map; in [32], Lopez-Molina et al. presented a multi-
scale method for edge detection based on increasing
Gaussian smoothing, the Sobel operators, and coarse-
to-�ne edge tracking; in [33], a study focusing on the
edge detection process by the generation of a fuzzy
representation of the edges is shown; in [34], a new
approach is presented for edge detection using a com-
bination of Bacterial Foraging Algorithm (BFA) and
a probabilistic derivative technique derived from Ant
Colony Systems; in [35], a new PSO-based approach is
presented to detect edges in noisy images and reduce
the broken and jagged ones by means of a developed
penalized �tness function based on the possibility score
of a curve �tted on an edge and its curvature cost.

Every edge detection algorithm has its advantages
and disadvantages and does not appear to be an
optimal edge detector that could be able to detect
the edges of any image type and show high resistance
to noise. Therefore, e�cient algorithms are required
to explore edge detection under challenging conditions
with high resistance to noise, reducing the shortcom-
ings of traditional edge detectors at the same time.

Some of the most popular edge detectors are
Sobel [40] and Prewitt [41] based on the �rst-order
derivative of the pixel intensities or the Laplacian-of-
Gaussian (LoG) [42,43] edge detector that uses instead
the second-order di�erential operators to detect the
location of edges. However, these algorithms tend to
be sensitive to noise, which is actually a high frequency
phenomenon. In 1986, Canny [44] proposed an edge
detector, which combines a smoothing function with
zero-crossing-based edge detection, resulting into an
algorithm more resilient to noise than the previously
mentioned ones.

Entropy is an uncertainty measure introduced by
Shannon into information theory to describe how much
information is contained in a source governed by a
probability law [23], and it has played an important role
in recent work on edge detection algorithms: in [45],
Xiao et al. proposed a Gray-Level & Gradient Mag-
nitude (GLGM) histogram for thresholding. GLGM
histogram employs Fibonacci quantized gradient mag-
nitude to e�ectively characterize spatial information
by applying entropic image thresholding; Singh and
Singh [26] proposed an algorithm based on Shannon
entropy for edge detection in gray level images obtain-
ing acceptable results; in [46], El-Khamy et al. used the
relationship of the probability partition and the fuzzy
2-partition of the image gradient to select the optimal
gradient-threshold, then it selects the algorithm that

assures that the entropy reaches a minimum value;
in [47], El-Sayed, presented a new algorithm for edge
detection using both Shannon entropy and Tsallis
entropy and in [48], Elaraby et al. proposed a new
algorithm for edge detection of images based on hybrid
types of entropy.

3. The proposed approach based on
generalized hill entropy

In this section, we discuss the generalized Hill entropy
by which our proposed edge-detection algorithm is
based. Let p1; p2; :::; pk be the probability distribution
of a discrete source. Therefore, 0 � pi � 1, i =
1; 2; :::; k, and

Pk
i=1 pi = 1, where k is the total number

of states. The entropy of a discrete source is often
obtained from the probability distribution.

The Shannon entropy [23] is de�ned as follows:

H(p) = �
kX
i=1

pi ln(pi): (1)

This formalism has been shown to be restricted to the
domain of validity of the Boltzmann-Gibbs-Shannon
(BGS) statistics. These statistics seem to describe
nature when e�ective microscopic interactions and mi-
croscopic memory are short-ranged. Generally, systems
that comply with BGS statistics are called extensive
systems. If the physical system can be decomposed
into two statistically independent subsystems A and B,
the probability of the joined system is pA+B = pA:pB .
It has been veri�ed that the Shannon entropy has the
extensive property (additive) [23]:

H(A+B) = H(A) +H(B): (2)

The generalized entropy of Hill [49-51] is de�ned as:

N� = (
WX
i=1

p�i )
1

1�� ; for � � 0 and � 6= 1: (3)

Hill entropy is non-extensive in such a way that for
a statistical independent system, the entropy of the
system is de�ned by the following pseudo additive
entropic rule:

N�(A+B)=N�(A)+N�(B)+(1��):N�(A):B�(B):
(4)

The concept of entropy becomes increasingly important
in image processing, when an image can be interpreted
as an information source with the probability law given
by its image histogram [52-56].

For an image with k gray-levels, let p1; p2; :::;
pt; pt+1; :::; pk be its probability distribution, where pt
is the normalized histogram (i.e., pt = ht=((M �N)))
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and ht is the gray level histogram. Using this distri-
bution, we can derive two probability distributions,
one for the object (class A) and the other for the
background (class B) as follows:

pA :
p1

PA
;
p2

PA
; :::;

pt
PA

;

pB :
pt+1

PB
;
pt+2

PB
; :::;

pk
PB

; (5)

PA =
tX
i=1

pi; PB =
kX

i=t+1

pi; (6)

where t is the threshold value.
In terms of the de�nition of Hill entropy, the

entropy of object pixels (NA
� ) and background pixels

(NB
� ) can be de�ned as follows:

NA
� =

WX
i=1

�
p�i
PA

� 1
1��

;

NB
� =

WX
i=1

�
p�i
PB

� 1
1��

: (7)

Hill entropy, N�(t), is parametrically dependent upon
threshold value t for the object and the background. It
is formulated as the sum of each entropy, allowing the
pseudo-additive property for statistically independent
systems, as in Eq. (4). We try to maximize infor-
mation measure between the two classes (object and
background). When N�(t) is maximized, luminance
level (t) that maximizes the function is considered to
be the optimum threshold value. This can be done with
low-computational e�ort:

topt =Argmax
�
NA
� (t) +NB

� (t) + (1� �)

:NA
� (t):NB

� (t)
�
; (8)

when � ! 1, the threshold value in Eq. (8) equals
the same value found by Shannon entropy. Thus,
this proposed method includes Shannon's method as
a special case. The following expression can be used
as a criterion function to obtain the optimal threshold
when �! 1:

topt
Sh = Argmax

�
NA
� (t) +NB

� (t)
�
; (9)

where topt
Sh is the Shannon entropy.

By using a spatial �ltering mask of size 3� 3 (the
smallest possible meaningful size), the probability of
each central pixel of the window can be determined

by entropy as H(Cpix) = �pc ln(pc), where pc is the
probability of central pixel Cpix of the binary image
under the window.

When the probability of central pixel pc = 1, then
the entropy of that pixel equals zero. Thus, if the gray
level of all pixels under the window is homogeneous,
pc = 1 and H = 0. In this situation, the central pixel
is not an edge pixel. At pc = 7=9 or pc = 8=9, the
variety for gray level of pixels under the window is low.
For these cases, the central pixel is not considered an
edge pixel. In the remaining cases, where pc � 6=9, the
variety of gray level of pixels under the window is high,
and thus we can assume that we are on an edge pixel.

The proposed algorithm based on generalized hill
entropycan be summarized as follows:

1. Input: A digital gray-scale image I of size M �N .
2. Let f(a; b) be the original gray value of the pixel at

point (a; b):
a = 1; 2; :::;M , b = 1; 2; :::; N .

3. Calculate the probability distribution pi, 0 � i �
255 for every image pixel.

4. For all t 2 f0; 1; :::; 255g:
4.1. Calculate PA, PB , pA, and pB as:

pA :
p1

PA
;
p2

PA
; :::;

pt
PA

;

pB :
pt+1

PB
;
pt+2

PB
; :::;

pz
PB

;

PA =
tX
i=1

pi; and PB =
zX

i=t+1

pi:

4.2. Calculate the optimum threshold value t� as:

t�=Argmax
�
NA
� (t)+NB

� (t)+(1��):NA
� (t):NB

� (t)
�
:

5. Create a binary image: For all a, b:

If I(a; b) � t� then f(a; b) = 0 else f(a; b) = 1:

6. Create a mask, S, with 3 � 3, � = (m � 1)=2 and

 = (n� 1)=2.

7. Create an M � N output image, g for all a and b,
set g(a; b) = f(a; b).

8. Checking for edge pixels:

For all b 2 f
 + 1; :::; N � 
g; and

a 2 f� + 1; :::;M � �g; sum = 0:

For all k 2 f�
; :::; 
g, and j 2 f��; :::; �g,
If f(a; b) = f(a+ j; b+ k), then sum = sum+ 1.
If (sum > 6), then g(a; b) = 0; else, g(a; b) = 1.

9. Output: The edge detection image g of I.
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3.1. Time complexity
Time complexity of the proposed approach is O(M �
N �m�n), where M �N is the number of pixels in I,
and m � n is the number of pixels in w's window. As
can be observed, time complexity for computing each
threshold values t1; t2; and t3 is linear with the number
of pixels. The reason is that computing the gray-level
histogram of I takes O(M �N), and �nding topt takes
O(k2), where k is the number of gray-level in I. Since
k2 � M � N , O(M � N + k2) leads to O(M � N).
The algorithm shows that building the binary image
is also linear in the number of pixels, i.e. O(M � N).
Finally, it is well-known that the time complexity of the
application of a spatial discrete �lter of order m�n in
an M�N image can be done in O(M�N�m�n). As
a result, this last step dominates the time complexity
of the process, i.e. O(4 �M � N + M � N �m � n)
leads to O(M �N �m� n).

The overall time complexity of Canny edge detec-
tor is O(M �N log[M �N ]). Thus, the computational
complexity of the proposed solution is asymptotically
equivalent to the simplest techniques.

4. Experimental design

All the analyses were performed using MATLAB
R2012b (The Mathworks, Inc., Natick, MA, USA)

running on an Intel CoreTM 2 Duo 2.20 GHz personal
computer with 3 GB of RAM.

To investigate the new algorithm e�ectiveness, we
have compared it to Canny algorithm, as it is con-
sidered the optimal edge detector [57], and to Tsallis
entropy, as it has, theoretically, similar properties. The
three algorithms have been applied to di�erent medical
images with various types of noise. This section also
describes image sets and performance measurements
that have been used in the experiments.

4.1. Image sets
Image set includes one sagittal and one axial T1
weighted Magnetic Resonance (MR) images of a hu-
man brain, one axial T1 weighted MR image of an
intervertebral disc, and one sagittal MR image of a
whole human spine (see Figure 2). To explore the
performance of the new algorithm in noisy environ-
ments, these images are corrupted by four types of
noise: salt & pepper (noise density = 0.05), Gaussian
(zero mean noise with variance = 0.01), Poisson, and
speckle (uniformly distributed random noise with mean
= 0 and variance = 0.04) noise.

4.2. Quantitative performance measurement
The performance of the edge detection on noisy images
is evaluated by comparing the result provided by

Figure 2. Medical images used in this work to test the performance of the proposed algorithm compared with that of
Canny and Tsallis entropy edge detection algorithms. These original images (the �rst left column) were corrupted by
various types of noise (salt & pepper, Gaussian, Poisson and speckle): (a) Sagittal T1 weighted MR image of a human
brain, (b) axial T1 weighted MR image of a human brain, (c) axial T1 weighted MR image of an intervertebral disc, and
(d) sagittal MR image of a whole human spine.
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Canny and Tsallis entropy with that of our proposed
method on the same images without noise, considered
as reference for the optimal edge detection.

For an objective comparison of the localization
accuracy of the edge detection algorithms, Pratt's
Figure Of Merit (PFOM) is used as a quantitative
measure [58]. PFOM is de�ned as:

R =
1

max(II ; IA)

IAX
i=1

1
1 + �d(i)2 ; (10)

where II and IA indicate the number of ideal and actual
edge points in ideal edge map and the generated edge
map images, d(i) is the distance between pixel i in the
generated edge map and the nearest ideal edge point
in the ideal edge map, and � is a constant scale factor
which is typically set to 1/9. This measure is an index
to compute the localization accuracy of edge detection
algorithms. A larger value of R indicates stronger
performance.

5. Results and discussion

This section presents the results and discussion of the
comparison (qualitatively and quantitatively) of the
proposed algorithm with Canny and Tsallis entropy
algorithms.

The results obtained from these three methods are
included in Subsection 5.1 for a visual analysis and in
Subsection 5.2 for a quantitative analysis. The results
of each edge map depend on the thresholding values
selected by means of the generalized Hill entropy for
that image under di�erent noise types. Table 1 displays
the values of three thresholds for all four images (for the
original image and for the four di�erent added types of
noise).

5.1. Subjective comparison
For a qualitatively comparison of our proposed algo-
rithm and Canny and Tsallis entropy, we applied the
three algorithms to the images previously described as
corrupted by di�erent types of noise. The resulting
edge maps are shown in Figure 3.

The resulting images show that the proposed
algorithm performed better than Canny and Tsallis
entropy on the studied set of images. The boundary
of the objects is more clearly de�ned after applying
our algorithm than using Canny or Tsallis entropy
algorithms for edge detection, and this shows that
the proposed algorithm is resistant to noise. Canny
algorithm, even with post-processing, did not work well
for these noisy images and many noise spots in the
resulting images were observed.

Table 1. Threshold values selected by generalized Hill entropy for the di�erent analyzed images (for the original image
and for the four di�erent added types of noise). Image 1: sagittal T1 weighted MR image of a human brain; Image 2: axial
T1 weighted MR image of a human brain; Image 3: axial T1 weighted MR image of an intervertebral disc; and Image 4:
sagittal MR image of whole human spine.

Original Salt & pepper Gaussian Poisson Speckle

Image 1
t1 138 131 137 141 142
t2 83 78 68 87 88
t3 191 185 189 95 188

Image 2
t1 125 119 122 126 142
t2 68 64 63 60 75
t3 209 162 191 93 197

Image 3
t1 89 88 116 95 117
t2 46 46 61 50 60
t3 160 151 189 175 197

Image 4
t1 88 75 106 62 98
t2 45 40 57 46 49
t3 162 143 181 172 173
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Figure 3. Resulting edge map images obtained by
applying the proposed algorithm and Canny and Tsallis
entropy edge detection algorithms: (a,b,c,d) Results of the
edge detection algorithms applied to the four images
studied in this work. For each image, the top row (.1)
shows the results after applying the proposed algorithm
for edge detection, the central row (.2) shows the results
after applying Tsallis entropy algorithm, while the bottom
row (.3) shows the results after applying Canny algorithm
edge detection. Results are shown for the original images
and for the same images after having been corrupted by
salt & pepper, Gaussian, Poisson, and speckle noise.

5.2. Objective comparison
To quantitatively compare the new algorithm with the
Canny and Tsallis entropy algorithms, the localization
accuracy was calculated using Pratt's Figure Of Merit

Table 2. Objective results (PFOM: Pratt's Figure Of
Merit) for the proposed algorithm versus Tsallis entropy
and Canny for all four images for the di�erent added types
of noise. Image 1: sagittal T1 weighted MR image of a
human brain; Image 2: axial T1 weighted MR image of a
human brain; Image 3: axial T1 weighted MR image of an
intervertebral disc; Image 4: sagittal MR image of a whole
human spine.

PFOM
Proposed
algorithm

Tsallis
entropy

Canny

Image 1
Salt & pepper 68.3631 64.2356 37.0105

Gaussian 75.0607 70.5479 56.0638
Poisson 92.1007 90.1235 88.2085
Speckle 77.3533 71.5478 73.0216

Image 2
Salt & pepper 57.7091 52.8796 40.0925

Gaussian 72.7233 70.5487 34.6264
Poisson 96.6391 92.4593 89.0899
Speckle 84.4332 81.4568 79.6043

Image 3
Salt & pepper 63.7627 60.1236 51.5896

Gaussian 69.7806 63.8745 52.7855
Poisson 94.7062 92.9658 85.7877
Speckle 90.6569 86.7845 77.4794

Image 4
Salt & pepper 51.1280 48.5892 40.2650

Gaussian 64.8006 60.8754 48.5146
Poisson 96.6102 91.4583 89.8145
Speckle 94.9092 92.4569 88.9649

(PFOM) to the resulting images after applying di�erent
types of noise.

For the test images, we see the value of PFOM
in Table 2. A high value of PFOM means that
most of the edges are detected (better performance).
The best performance is achieved when the images
su�er from Poisson noise, followed by speckle noise
and Gaussian noise. The worst performance of the
proposed algorithm is achieved when the test images
su�er from salt & pepper noise. The same occurs for
the Canny and Tsallis entropy algorithms, and these
results repeat for all the images analyzed in this work.

From the visual and quantitative results, we can
conclude that the proposed algorithm is competitive
compared to the Canny and Tsallis entropy methods
in terms of average performance. Furthermore, the
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proposed algorithm produces a better solution than
Canny and Tsallis entropy for edge detection for every
type of image under all types of noise, which indicates
its potential and reliability. We infer that the proposed
algorithm can be a very interesting option for problem-
speci�c edge detection of medical images under noisy
conditions.

6. Conclusion

In this article, a novel algorithm for detecting edges in
medical images was presented. A 2-phase thresholding
technique based on generalized Hill entropy was used
to estimate threshold values required for the proposed
algorithm. The �rst phase permitted us to determine a
global threshold value that divides the image into two
parts, called object and background. In the second
step, a local threshold value was determined for each
part of the image, merging the results in the �nal stage
to get the edge map for the image. The proposed
algorithm was examined and compared with Canny
and Tsallis entropy algorithms on di�erent medical
images with four di�erent types of noise. Subjective
and objective measures to determine accuracy were
used for a comparison of this algorithm. Experimental
results showed that the proposed edge detector is more
robust under noisy conditions than Canny and Tsallis
entropy for all presented images under every type of
noise.
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