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Abstract.
The Generalized Cross Correlation (GCC) framework is one of the most widely

used methods for Time Di�erence Of Arrival (TDOA) estimation and Sound Source
Localization (SSL). TDOA estimation using cross correlation without any pre-�ltering of
the received signals has a large number of errors in real environments. Thus, several �lters
(weighting functions) have been proposed in the literature to improve the performance of
TDOA estimation. These functions aim to mitigate TDOA estimation error in noisy and
reverberant environments. Most of these methods consider the noise or reverberation, and
as one of them increases, TDOA estimation error increases. In this paper, we propose a
new weighting function. This function is a combined and modi�ed version of Maximum
Likelihood (ML) and PHAT-� functions. We named our proposed function as Modi�ed
Maximum Likelihood with Coherence (MMLC). This function has merits of both ML and
PHAT-� functions and can work properly in both noisy and reverberant environments. We
evaluate our proposed weighting function using real and synthesized datasets. Simulation
results show that our proposed �lter has better performance in terms of TDOA estimation
error and anomalous estimations.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Sound Source Localization (SSL) has many applica-
tions in military and civilian areas such as mixed audio
signals separation, robotics, video conferencing, speech
enhancement, tracking of acoustic sources, underwater
acoustics, and advanced hearing aids [1-7]. Algorithms
for localization of an acoustic source are divided into
three main categories:
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1. Beamforming;

2. High-resolution spectral estimation;

3. Time Di�erence Of Arrival (TDOA) [8].

In beamforming approaches, a beam pattern is
steered; then, the power of this steered response is
calculated for candidate space points. The angle at
which the power reaches its maximum value is the
Direction Of Arrival (DOA) of the sound source. These
algorithms have good stability in direction estimation,
but their computational costs are very high. Delay-
and-Sum-Beamformer (DSB) is the simplest algorithm
in this framework. A good review of beamforming
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approaches for localization of sound sources is discussed
in [9].

High-resolution spectral estimation methods,
which are famous in subspace approaches, use modern
spatial-�ltering methods and are used in narrowband
and far-�eld signal processing. In speaker localization,
these methods deal with constraints that limit their
e�ectiveness. These algorithms are signi�cantly less
stable than the beamforming approaches due to source
and microphones modeling errors. These errors are
due to non-ideality in signal propagation, nonlinear
properties of microphones, and variations of source
position. Like beamforming algorithms, these ap-
proaches are based on spatial search and also have high
computational cost [10].

TDOA-based approaches rely on relative time
di�erence between pairs of microphones. These al-
gorithms are divided into two main groups; the �rst
group is based on a pair of microphones, such as
Cross Correlation (CC) and Adaptive Eigenvalue De-
composition (AED), and the second group is based
on an array of microphones such as Multichannel
Cross Correlation Coe�cient (MCCC), adaptive blind
multichannel identi�cation, and multichannel spatial
prediction and interpolation [11]. Thanks to the
advances in electronics and the development of new
algorithms, utilizing the large microphone arrays for
SSL is more simple than before, but two microphone-
based approaches are still used in advanced hearing
aids, humanoid robots, and human hearing system
simulation.

Although beamforming and subspace methods
can estimate the location of sound sources with higher
accuracy and resolution due to low computational
complexity and simplicity in implementation, TDOA-
based approaches attract more attention than the other
algorithms do. Among them, algorithms based on
cross correlation are the most popular frameworks [12].
Usually, to improve the performance of the CC ap-
proach, each signal is pre-�ltered and cross correlation
operation is applied to them. This framework is called
Generalized Cross Correlation (GCC). There are many
di�erent �lters proposed in the literature, and each
method has its own features. Figure 1 shows the simple
block diagram of the GCC algorithm [13].

In this paper, we propose a new weighting func-
tion for the GCC framework. This function is a
modi�ed and combined version of Modi�ed Maximum
Likelihood (MML) [14] and PHAT-� [15] functions.
Our proposed function has the merits of these two
functions and can properly work in both noisy and
reverberant environments. This paper is organized as
follows. In Section 2, we briey introduce the GCC
method and di�erent weighting functions. In Section 3,
we propose a new weighting function based on two
recently proposed functions. In Section 4, we evaluate

Figure 1. Simple block diagram of GCC framework.

our proposed function using synthetic and real-world
data. Finally, in Section 5, we conclude the paper.

2. TDOA estimation using GCC

The main idea of the cross correlation method is
based on single-path propagation of the acoustic plane
wave model. Figure 2 shows a simple illustration of
this model. In this model, received signals are the
delayed and attenuated version of the original acoustic
signal, which is emanated from a point source and
corrupted by additive white Gaussian noise. This
noise is assumed to be uncorrelated with the source
signal. Based on this model, the received signals in the
microphones are as follows:

xi(t) = �is(t� T � �i) + ni(t); i = 1; 2; (1)

where s(t) is the reference acoustic signal, xi(t) is
the received signal in the ith microphone, �i is the
attenuation factor due to signal propagation (0 < �i <
1), T is the propagation delay between source and the
�rst microphone that captures the signal, � = �2��1 is
the relative time delay between two microphones, and
ni(t) is the additive noise of the ith microphone.

Using this model, the optimal time delay estima-
tion can be done using the GCC method as follows
(Figure 1) [16]:

Figure 2. Illustration of DOA of far-�eld sound source in
2D space.
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Rgx1x2
(�) = Ef(x1(t)�h1(t)):(x2(t)�h2(t� �))g;

� 0 = arg max
�

�
Rgx1x2

(�)
	
; (2)

where Ef:g is the statistical average (expected value)
over time, � 0 is an estimation of � , h1(t) and h2(t)
are the �lters used to improve the estimation accuracy
of � 0, and * denotes convolution operation. In the
frequency domain, GCC, cross Power Spectral Density
(PSD), 'x1x2(f) are related to each other by Eq. (3):

Rgx1x2
(�) =

+1Z
�1

H1(f)H�2 (f)'x1x2(f)ej2�f�df: (3)

In the GCC framework, the product of h1(t) and h2(t)
�lters in the frequency domain, H1(f)H�2 (f), is named
generalized frequency weighting function ( g(f)). In
the next section, we provide a brief review about the
most famous weighting functions.

2.1. Weighting functions
Before explaining our proposed method, we are going
to summarize the most important weighting function
for GCC framework.

2.1.1. Classical cross correlation
The simplest and fastest weighting function is the
Classic Cross Correlation (CCC). In this function,
 g(f) is equal to 1. But, in noisy and reverberant
environments, TDOA estimation error is too high
using this function. Thus, researchers develop di�erent
weighting functions to mitigate TDOA estimation error
in real environments.

2.1.2. Hannan and Tahomson
In 1973, Hannan and Thomson introduced HT (Max-
imum Likelihood) weighting function [17]. This func-
tion has greater weight where the coherence between
the two received signals is high. Coherence function
is a real valued function which measures correlation
between two signals (0 < 2

x1x2
< 1). As correlation be-

tween two signals increases, this function tends towards
1; as the correlation between two signals decreases,
this function tends to zero. Coherence between signals
x1(t) and x2(t) in the frequency domain is de�ned as
in Eq. (4):

2
x1x2

(f) =
j'x1x2(f)j2

'x1x1(f)'x2x2(f)
; (4)

where 'xixj (f) is de�ned as Eq. (5):

'xixj (f) = EfXi(f)X�j (f)g: (5)

Under low SNR conditions, the HT weighting function
is equal to CCC, but under usual conditions (high SNR
and low reverberation), it is shown that this weighting
function is the maximum likelihood estimator for time
delay estimation in the CC framework:

 ML
g (f) =

1
j'x1x2(f)j

2
x1x2

(f)
1� 2

x1x2
(f)

: (6)

2.1.3. PHAT
In 1973, Carter et al. proposed PHAT or the Cross-
power Spectrum Phase (CSP) function [18]. It was an
intuitive solution for time delay estimation which ex-
tracts time delay information from the cross spectrum
phase. This weighting function has good results in high
SNR and moderate (or high) reverberant conditions,
but if SNR or energy of the received signals is low,
j'x1x2(f)j tends to zero and TDOA estimation error
increases:

 PHAT
g (f) =

1
j'x1x2(f)j2 : (7)

2.1.4. PHAT-�
In 2010, PHAT-� function was developed [15,19]. As
mentioned in [20], most of the acoustical noises in
untreated enclosure are at frequencies below 200 Hz.
So, Rabinkin proposed the �-CSP function which uses
� tuning parameter in the power of CSP function to
discard the non-speech portion of CSP (frequencies
below 200 Hz). The value of � is determined by
room acoustical characteristics, but as mentioned by
Rabinkin, the optimal value for � in di�erent enclosures
is about 0.75. In addition to �-CSP, in PHAT-�
function, the minimum of coherence is added to the
weighting function for further error reduction due to
low-energy signals:

 PHAT��
g (f) =

1
j'x1x2(f)j� + min(2

x1x2
(f))

: (8)

3. The proposed weighting function

Most of the proposed weighting functions in the liter-
ature have been designed under usual conditions (high
SNR and low reverberation) or just by considering one
of the di�culties in real environments. Thus, their
performance is degraded in adverse environments. In
this paper, we propose the new Modi�ed Maximum
Likelihood with Coherence (MMLC) weighting func-
tion. It aims to achieve accurate results in noisy and
reverberant environments.

As mentioned in [16], the ML weighting function
can be written as a function of phase variance:

 ML
g (f) � 1

jX1(f)X�2 (f)jvar[�(f)]
; (9)

where X1(f) and X�2 (f) are discrete Fourier transforms
of x1(t) and x2(t), respectively. var[�(f)] is the variance
of the cross spectrum phase, and �(f) is de�ned as:

X1(f)X�2 (f) = A(f)ej�(f): (10)
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For the ML weighting function, approximation of
var[�(f)] is as:

var[�(f)]ML =
1� j2

x1x2
(f)j

j2
x1x2

(f)j = �x1x2(f): (11)

Then, Maximum Likelihood (ML) weighting function
is as:

 ML
g (f) � 1

jX1(f)X�2 (f)j
j2
x1x2

(f)j
1� j2

x1x2
(f)j : (12)

3.1. Phase variance estimation
By using the joint complex Gaussian model in the
frequency domain for the received signals, we can write
Eq. (13) [14] (argument f is omitted for simplicity):

p(Xj�) =
1
�2�

e(�XH��1X); (13)

where matrix � is the cross covariance of x1(t) and
x2(t) signals, X = [X1; X2]T , and XH is the Hermitian
Transpose of X:

� =
�
'11 '12
'�12 '22

�
;

and 'ij is computed as Eq. (5).
If we assume that s(t), n1(t), and n2(t) are

correlated with each other and the signals of Eq. (12)
in polar form are written, we reach Eq. (14):

p(X1; X2; �) =
jX1X2j
�2j�j exp�

2jX1X2jRef'�12g�'22jX1j2�'11jX2j2
j�j

�
; (14)

where [X1; X2] = [jX1jej�1 ; jX2jej�2 ] and � = �1 � �2.
Using marginalization and changing of the variables,
we can write:

p(�) =
1� 2

x1x2

2�[1� 2
x1x2

cos2 �]"
1 +

arccos(x1x2)x1x2 cos �p
1� 2

x1x2
cos2 �

#
: (15)

Then, we use Eq. (16) to obtain var[�]:

var[�] =
+�Z
��

�2p(�)d�: (16)

We use MATLAB® [21] based simulation for �nding
var[�(f)]. Figure 3 shows this simulation result. As we
can see, the approximation proposed by [14] is better
than the ML approximation. This approximation is as
in Eq. (17):

Figure 3. True value of var[�(f)] and its approximations
in ML and MML weighting functions.

var[�]MML =

s j1� 2
x1x2
j

j2
x1x2
j = p�x1x2 : (17)

Then, Modi�ed Maximum Likelihood (MML) weight-
ing is as follows:

 MML
g � 1

jX1X�2 j
s j2

x1x2
j

j1� 2
x1x2
j : (18)

But, as mentioned before, as the energy of the signal
decreases, j'x1x2(f)j tends to zero. To solve this
problem, we used the solution proposed by Liu and
Shen [15]. Liu proposed using the minimum value of
coherence in the denominator of weighting function.
This causes better results, because in the situations
in which the microphones capture low energy signals,
the dominator of the weighting function tends to
min(j2

x1x2
(f)j) instead of zero.

Also, for suppressing the non-speech portion of
CSP, tuning parameter � is used as a power of
j'x1x2(f)j. Then, the frequencies below 200 Hz of the
CSP are discarded. By using these two modi�cations
on the MML function, we proposed the Modi�ed Max-
imum Likelihood with Coherence (MMLC) function:

 MMLC
g � 1

j'x1x2 j� + min(j2
x1x2
j)
s j2

x1x2
j

j1�2
x1x2
j ; (19)

where we set � tuning parameter to 0.75.

4. Simulation

To evaluate the proposed weighting function, we used
two di�erent simulations using MATLAB®. The �rst
simulation is based on synthetic data and Monte-
Carlo simulation, and the second one is based on real-
world data. For both simulations, we used the block
diagram proposed in [22]. As seen in Figure 4, at
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Figure 4. Block diagram of simulation method [22].

�rst, each received signal is �ltered by a low-pass �lter
with cuto� frequency of 4 kHz (speech signals in the
dataset have been sampled with 16 kHz), then 32 ms
of signals are separated using the Hann window with
25% overlap. The power spectrum and cross power
spectrum are computed using 512-point Fast Fourier
Transform (FFT). The generalized cross correlation
between received signals is computed by Inverse Fast
Fourier Transform (IFFT) of function  g(f)'x1x2(f).
Finally, using an interpolation stage, time delay be-
tween the received signals is estimated. In this paper,
we choose Cubic Spline interpolation.

4.1. Simulation using synthetic data
In the �rst step, we evaluate our proposed weighting
function using synthetic data and Monte-Carlo sim-
ulation. We simulate four di�erent rooms using the
image method [23]. Dimensions of these rooms are
8 m�5 m�3:5 m (x; y; z) and reection coe�cients vary
from 0 to 1, so that reverberation times are 0.2 s, 0.4 s,
0.6 s, and 0.8 s. In these rooms, the source is located
at 45� and distance between microphone pairs and the
source is 1.5 m. The distance between microphones is
10 cm. A clean speech �le was selected from the SiSEC
2010 dataset [24]. For each �le, we add white Gaussian
noise with SNR {20 dB to 60 dB by 5dB increasing
step, and we conduct a simulation process with 500
iterations for each step. The performance of weighting
functions is measured with two metrics: RMSE and
Anomaly. Anomaly measures the ratio of the outlier
TDOAs to all of the estimated TDOAs [25]:

�(� 0) =

(
1; if j� � � 0j > "
0; otherwise

Anomaly(� 0) = Ef�(� 0)g: (20)

We assume that " equals 1, which means that if
the di�erence between the estimated TDOA and true
TDOA is greater than 1 sample, this estimation is
assumed to be anomaly.

Figure 5 shows the simulation results for synthetic
data. This �gure contains two rows and four columns.
The �rst row of this �gure shows the RMSE versus SNR

and the second row shows the Anomaly versus SNR.
Each column of this �gure shows RMSE and Anomaly
estimations of di�erent reverberation times. As it can
be seen from the �rst row of this �gure in �20 dB
SNR, CCC and PHAT weighting functions have the
highest error rate among the other functions. As SNR
increases, RMSE of all methods decreases, but this
reduction is greater than the others for MMLC. For
example, in 0.2 s reverberation time and SNRs higher
than 50 dB, RMSE of the proposed method is 0.34
samples less than MML and PHAT methods. In 0.4 s,
0.6 s, and 0.8 s reverberation times and SNRs higher
than 50 dB, RMSE of MMLC is 0.272, 0.175, and 0.277
samples less than the MML function, respectively.

As was mentioned, the second row of Figure 5
shows the percentage of anomaly for TDOA estimation.
In {20 dB SNR, the anomaly of MMLC and PHAT-
� is less than the others. As SNR increases, our
proposed function shows better performance in terms of
anomaly; for example, in 0.2 s reverberation time and
in SNRs higher than 40 dB, our proposed function has
4.35% less anomalous TDOA estimation than PHAT.
In 0.4 s, 0.6 s, and 0.8 s reverberation times and in
SNRs higher than 50 dB, our proposed method has
5.27%, 5.17%, and 1.91% less anomalous estimations
in comparison to the MML function, respectively.

Simulations based on synthetic data indicate that
MMLC and PHAT-� functions have better perfor-
mance than the other functions in terms of RMSE
and anomalous estimations in low SNR conditions,
because these two functions have parameter � and
the minimum value of coherence in their denomina-
tors. As mentioned earlier, using parameter � in the
weighting function discards the non-speech portion of
CSP. On the other hand, using the minimum value
of the coherence weighting function prevents the de-
nominator from tending to zero in low energy signal
conditions. In higher SNRs, the MMLC and MML
functions outperform the other functions, since the
weighting factor in Eq. (16) has greater weight where
the coherence between the two received signals is high.
However, since the approximation of var[�] in Eq. (17)
is a better approximation than Eq. (11), these two
functions outperform the ML function.
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Figure 5. Simulation results of synthetic data using Monte-Carlo method. The RMSE and anomaly of estimated TDOAs
for 0.2 s, 0.4 s, 0.6 s, and 0.8 s reverberation times, respectively (a, b), (c, d), (e, f) and (g, h) sub-�gures.

4.2. Simulation based on real-world data

In this section, we used the SiSEC 2010 dataset. This
dataset contains 30 stereo WAV �les. Each �le is
a mixture of a speech signal with real background
noise with a 16 KHz sampling frequency. Noises are
recorded at three di�erent environments: Cafeteria,
Subway, and Square. Speech signals and recorded
noises in the cafeteria and subway are played again in
an o�ce room (reverberant room), and then a mixture
of them is collected using omnidirectional microphones.
In square environment, speech signals and noises are
mixed together anechoicly using computer simulation.
The distance between the microphones is 8.6 cm (Given
the microphones distance of 8.6 cm and sampling
frequency of 16 kHz, it can be concluded that maximum
resolution of TDOA estimation is 4 samples and �nal
maximum resolution of DOA estimation is 22:5�.).
DOA of the main source is di�erent for each �le, and
the SNR level is randomly chosen between {17dB and
+12dB [24].

In this section, we use the simulation method
proposed in [22]. For each �le in this dataset, we
plot the TDOA histogram that shows the probability
distribution of estimated TDOAs. In addition, we com-
pute four statistical parameters for better comparison.
These parameters are:

1. Mode (most probable TDOA): index of maximum
in histogram;

2. Mean: mean value of estimated TDOAs;

3. Mode frequency: relative frequency of mode occur-
rence. Comparison of Mode and Mean is useful to
detect if the distribution is multi-modal;

4. RMSE: RMSE shows the overall accuracy of
method.

In this section, we briey explain some results of the
simulations (�rst sub-�gure of each �gure). Figure 6(a)
and Table 1(a) show a case where the main source is at
143� and cafeteria noise is located at 90�. Figure 6(a)
indicates that TDOA estimation using the MMLC
function has the highest concentration around TDOA
of the main source. This can be seen from the Mode
frequency value in Table 1(a). The Mode frequency of
MMLC is 18% better than the best weighting function
(PHAT). As seen in Table 1(a), the proposed weighting
function has the lowest RMSE between the other
weighting functions, and this error is 28.5% lower than
the best weighting function (PHAT-�). After MMLC,
PHAT has the best results in terms of Mode frequency,
but this function and MML have the highest RMSE.
This shows that most of the estimated TDOAs using
PHAT are concentrated around the TDOA of the main
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Table 1. The statistical values (mean, mode, frequency of mode and RMSE) for �rst 12 �les of SiSEC 2010 dataset.

Approach
(a) Source at 143� and

noise at 90�

Noise: Cafeteria

(b) Source at 80� and
noise at 90�

Noise: Cafeteria

(c) Source at 33� and
noise at 90�

Noise: Square

Mode Freq. Mean RMSE Mode Freq. Mean RMSE Mode Freq. Mean RMSE

CC {2.56 0.22 {2.19 1.34 0.35 0.36 0.11 1.02 2.81 0.26 1.59 3.99

PHAT {3.05 0.41 {2.35 1.59 0.03 0.63 {0.19 1.62 3.20 0.18 {0.42 4.95

MML {3.01 0.29 {2.23 1.59 0.01 0.77 {0.13 1.37 {3.04 0.14 0.02 4.59

PAHT-� {2.86 0.31 {2.40 1.19 0.35 0.39 {0.05 1.20 2.99 0.24 0.91 4.35

MMLC {3.04 0.59 {2.76 0.85 0.12 0.62 {0.20 1.47 3.27 0.33 0.29 4.45

Approach
(d) Source at 143� and

noise at 90�

Noise: Square

(e) Source at 143� and
noise at 60�

Noise: Square

(f) Source at 143� and
noise at 60�

Noise: Square

Mode Freq. Mean RMSE Mode Freq. Mean RMSE Mode Freq. Mean RMSE

CC {3.23 0.29 {2.42 4.76 {3.22 0.21 {1.06 2.88 {2.96 0.31 {1.72 2.41

PHAT {3.10 0.36 {2.86 1.28 {3.25 0.29 {2.10 2.78 {3.58 0.18 {2.17 2.57

MML {3.13 0.43 {2.96 0.88 {3.19 0.32 {1.21 3.03 {3.36 0.14 {1.65 2.63

PAHT-� {3.23 0.37 {2.51 2.62 {3.21 0.35 {1.36 2.87 {3.14 0.37 {2.08 2.15

MMLC {3.14 0.49 {3.10 0.65 {3.23 0.38 -2.01 2.69 {3.19 0.51 {2.66 1.97

Approach
(g) Source at 80� and

noise at 90�

Noise: Subway

(h) Source at 80� and
noise at 90�

Noise: Subway

(i) Source at 120� and
noise at 90�

Noise: Cafeteria

Mode Freq. Mean RMSE Mode Freq. Mean RMSE Mode Freq. Mean RMSE

CC 0.84 0.18 0.71 1.75 0.39 0.14 0.53 2.71 {1.78 0.13 {0.94 1.65

PHAT 0.02 0.45 0.01 1.52 0.03 0.55 {0.07 1.43 {2.09 0.23 {1.48 1.75

MML 0.01 0.84 0.06 1.03 {0.01 0.84 0.04 0.91 {2.23 0.35 {1.36 1.71

PAHT-� 0.32 0.10 0.15 2.46 0.17 0.13 0.25 2.60 {2.09 0.17 {1.19 1.56

MMLC 0.00 0.39 0.08 1.46 {0.02 0.59 0.12 1.19 {2.28 0.51 {1.59 1.58

Approach
(j) Source at 120� and

noise at 90�

Noise: Cafeteria

(k) Source at 115� and
noise at 60�

Noise: Cafeteria

(l) Source at 120� and
noise at 60�

Noise: Cafeteria

Mode Freq. Mean RMSE Mode Freq. Mean RMSE Mode Freq. Mean RMSE

CC {1.82 0.16 {1.13 1.43 {0.92 0.26 {1.00 1.00 {2.12 0.25 {1.71 0.81

PHAT {2.09 0.29 {1.57 1.67 {2.07 0.58 {1.56 1.23 {2.15 0.44 {2.10 1.03

MML {2.22 0.45 {1.64 1.37 {2.06 0.68 {1.61 0.96 {2.27 0.67 {2.20 0.63

PAHT-� {2.01 0.19 {1.25 1.56 {1.68 0.30 {1.22 0.87 {2.27 0.35 {1.85 0.77

MMLC {2.33 0.60 {1.75 1.27 {1.92 0.83 {1.79 0.68 {2.33 0.77 {2.20 0.70

source, but anomalous estimations are far from the true
TDOA.

By comparing the mode values of di�erent weight-
ing functions in this table, we found that three
weighting functions PHAT, MML and MMLC have
the nearest values to the TDOA of the main source
(TDOA of the main source is {3.20), but by comparing
the mean and mode values of these three functions,
we can conclude that the MMLC function has the

lowest di�erence between mean and mode values. This
indicates that the anomalous estimations using MMLC
have shorter distance to the TDOA of the main source.

Figure 7(a) and Table 2(a) show a case in which
the main source is at 120� and square noise is located
at 90�. As seen from Table 2(a), PHAT-� and MMLC
functions have the lowest RMSE, but MMLC has
higher Mode frequency than PHAT-� function. This
indicates that anomalous estimations using MMLC
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Figure 6. (a) to (l) show the histogram of the estimated TDOA for Table 1. Black dashed vertical line shows the TDOA
of the main sound source and cyan line shows the TDOA of the noise source.

Figure 7. (a) to (l) show the histogram of the estimated TDOA for Table 2. Black dashed vertical line shows the TDOA
of the main sound source and cyan vertical line shows the TDOA of the noise source.
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have a greater distance from the TDOA of the main
source.

By comparing the mean and mode values in
PHAT-� and MMLC functions, we found that the
di�erence between mean and mode values of PHAT-�
is less than the MMLC function. This con�rms that
anomalous estimations using PHAT-� function have
a shorter distance to TDOA of the main source.

Figure 8(a) and Table 3(a) show a case in which
the main source is located at 20� and the square noise
source is at 120�. In this case, the MMLC function

has the lowest RMSE. By comparing Mode frequency
values of di�erent functions, it can be seen that in
MMLC, 72% of TDOA estimations are concentrated
around TDOA of the main source and this value is
5% better than the PHAT-� function. In this case,
TDOA of the main source is 4.38 and as we can see
in Table 3(a), the mode value of the PHAT function
is the nearest value to the TDOA of the main source.
But, mode and mean values in this function have the
maximum distance to each other (in comparison to the
other functions). In this case, the MMLC function has

Table 2. The statistical values (mean, mode, frequency of mode and RMSE for second 12 �les of SiSEC 2010 dataset.

Approach
(a) Source at 120� and

noise at 90�

Noise: Square

(b) Source at 85� and
noise at 90�

Noise: Square

(c) Source at 20� and
noise at 120�

Noise: Square
Mode Freq. Mean RMSE Mode Freq. Mean RMSE Mode Freq. Mean RMSE

CC {1.38 0.13 {0.69 1.70 0.02 0.52 0.16 0.98 3.55 0.27 3.16 2.94
PHAT {2.24 0.34 {2.30 1.12 0.02 0.65 {0.76 1.81 3.70 0.14 3.19 1.26
MML {2.25 0.38 {1.58 1.22 {0.02 0.92 {0.16 0.84 3.76 0.40 3.33 1.11
PAHT-� {2.29 0.30 {2.30 0.81 {0.11 0.41 {0.93 1.77 3.77 0.18 3.21 2.87
MMLC {2.33 0.70 {2.45 0.81 {0.02 0.62 {0.96 1.93 3.73 0.82 3.62 0.25

Approach
(d) Source at 115� and

noise at 60�

Noise: Square

(e) Source at 115� and
noise at 90�

Noise: Subway

(f) Source at 85� and
noise at 90�

Noise: Subway
Mode Freq. Mean RMSE Mode Freq. Mean RMSE Mode Freq. Mean RMSE

CC {1.94 0.33 {1.34 2.52 1.21 0.17 0.71 2.63 0.82 0.26 1.04 1.00
PHAT {2.04 0.43 {1.72 1.05 0.00 0.43 {0.69 1.70 0.03 0.80 {0.16 0.98
MML {1.96 0.69 {1.83 0.84 0.00 0.85 {0.31 1.58 0.00 0.90 0.00 0.35
PAHT-� {1.99 0.40 {1.43 2.44 {0.42 0.13 {0.34 1.80 {0.02 0.27 0.09 0.98
MMLC {1.96 0.76 {1.87 0.80 {2.05 0.46 {0.81 1.53 0.00 0.91 {0.13 0.68

Approach
(g) Source at 120� and

noise at 90�

Noise: Cafeteria

(h) Source at 115� and
noise at 90�

Noise: Cafeteria

(i) Source at 120� and
noise at 60�

Noise: Cafeteria
Mode Freq. Mean RMSE Mode Freq. Mean RMSE Mode Freq. Mean RMSE

CC {1.88 0.23 {1.43 1.06 {1.03 0.23 {0.88 1.04 {1.81 0.25 {1.32 1.24
PHAT {2.17 0.27 {1.87 1.36 0.19 0.36 {0.58 1.88 {2.30 0.32 {1.61 1.98
MML {2.29 0.47 {1.99 1.08 {0.05 0.48 {0.86 1.47 {2.32 0.47 {1.77 1.52
PAHT-� {2.15 0.31 {1.63 1.04 {1.42 0.27 {1.08 0.95 {2.16 0.28 {1.49 1.32
MMLC {2.29 0.66 {2.01 1.04 {1.93 0.51 {1.40 1.11 {2.38 0.61 {1.84 1.50

Approach
(j) Source at 45� and

noise at 120�

Noise: Cafeteria

(k) Source at 120� and
noise at 90�

Noise: Square

(l) Source at 120� and
noise at 90�

Noise: Square
Mode Freq. Mean RMSE Mode Freq. Mean RMSE Mode Freq. Mean RMSE

CC 2.14 0.35 2.03 0.96 {2.11 0.56 {2.21 4.89 {2.18 0.56 {1.38 5.06
PHAT 2.60 0.32 1.86 1.96 {2.22 0.41 {2.24 0.82 {2.20 0.37 -2.27 0.78
MML 2.34 0.54 1.89 1.49 {2.28 0.82 {2.13 0.77 {2.31 0.74 {2.04 1.76
PAHT-� 2.30 0.45 2.00 1.09 {2.08 0.68 {2.17 4.60 {2.33 0.65 {1.80 3.51
MMLC 2.33 0.68 2.16 1.15 {2.27 0.85 {2.21 0.58 {2.26 0.88 {2.23 0.63
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Figure 8. (a) to (f) show the histogram of the estimated TDOA for Table 3. Black dashed vertical line shows the TDOA
of the main sound source and cyan vertical line shows the TDOA of the noise source.

Table 3. The statistical values (mean, mode, frequency of mode and RMSE) for the last 4 �les of SiSEC 2010 dataset.

Approach
(a) Source at 20� and

noise at 120�

Noise: Square

(b) Source at 120� and
noise at 60�

Noise: Square

(c) Source at 80� and
noise at 90�

Noise: Cafeteria
Mode Freq. Mean RMSE Mode Freq. Mean RMSE Mode Freq. Mean RMSE

CC 3.66 0.65 2.90 1.48 {2.23 0.45 {1.82 0.92 0.32 0.43 0.27 0.87
PHAT 3.81 0.30 2.40 2.54 {2.15 0.41 {2.18 0.70 {0.01 0.67 {0.32 1.64
MML 3.78 0.47 2.64 2.24 {2.25 0.74 {2.11 0.58 0.04 0.83 {0.18 1.33
PAHT-� 3.71 0.67 2.86 1.78 {2.23 0.56 {2.02 0.70 0.30 0.34 0.04 1.16
MMLC 3.73 0.72 3.00 1.42 {2.27 0.88 {2.23 0.39 0.39 0.36 {0.15 1.68

Approach
(d) Source at 120� and

noise at 90�

Noise: Subway

(e) Source at 45� and
noise at 90�

Noise: Subway

(f) Source at 80� and
noise at 90�

Noise: Cafeteria
Mode Freq. Mean RMSE Mode Freq. Mean RMSE Mode Freq. Mean RMSE

CC {2.00 0.20 {0.96 1.67 2.19 0.32 1.77 1.21 0.20 0.31 {0.12 2.52
PHAT {2.20 0.37 {1.71 1.82 2.20 0.36 2.05 1.33 0.04 0.57 {0.21 1.88
MML {2.24 0.46 {1.66 1.17 2.40 0.62 1.84 1.43 0.01 0.66 {0.14 1.64
PAHT-� {2.14 0.28 {1.28 1.47 2.26 0.37 1.75 1.34 0.34 0.27 {0.21 2.06
MMLC {2.32 0.52 {1.51 1.48 2.36 0.70 1.95 1.33 0.45 0.29 {0.31 2.01

the minimum di�erence between mode and mean val-
ues; after PHAT and MML functions, MMLC has the
nearest value to TDOA of the main source. As a result,
estimated TDOAs using the MMLC function have the
maximum concentration on true TDOA on the one
hand and anomalous estimations have minimum dis-
tance to TDOA of the main source on the other hand.

5. Conclusion

In this paper, we proposed a new weighting function for
the GCC framework using a combination of modi�ed
ML and PHAT-� functions. This function has the
merits of both of them. This function uses parameter
� and minimum value of coherence in its denominator



3278 M.S. Hosseini et al./Scientia Iranica, Transactions D: Computer Science & ... 24 (2017) 3268{3279

to improve the TDOA estimation in low SNRs and
high reverberations. On the other hand, this function
uses new approximation of phase variance that is
used in the MML function to improve the TDOA
estimation in high SNRs and low reverberation time.
We evaluate our proposed function using real and
synthesized datasets. In the �rst step, we evaluate our
proposed weighting function using synthetic data and
Monte-Carlo simulation against SNR and reverberation
time variations. Simulation results show that in terms
of RMSE and in low SNRs, PHAT-� and MMLC
have the best results due to using parameter � and the
minimum value of coherence in the denominator of the
functions. As SNR increases, our proposed function
shows better results due to better approximation of
phase variance. For example, in 0.8 s reverberation
time and in SNRs higher than 50 dB, RMSE of MMLC
is 0.277 samples less than the MML function. In
the second step, we evaluate our proposed function
using a real-world dataset, and we compare our pro-
posed weighting function with CCC, PHAT, MML,
and PHAT-� functions. We used the SiSEC 2010
dataset as a real-world dataset for comparing weighting
functions. For each �le in this dataset, we plot a
histogram of the estimated TDOAs, and also for a
better comparison of weighting functions, we calculate
four statistical parameters: mean, mode, frequency of
mode, and RMSE.
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