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Abstract. The unsteady problem of impulsive stagnation-point ow on a vertical circular
cylinder along with mixed convection heat transfer was solved numerically for the �rst
time. The mentioned problem su�ered from shortcomings of similarity solution techniques
when encountering various physical conditions such as time-dependent states. Initially,
the uid was considered to be at rest, with a uniform temperature T1. At t = 0, this
uid starts owing toward a vertical cylinder at the strength rate of �k, and the cylinder
surface's temperature rises to Tw, simultaneously. The Navier-Stokes and energy equations
in a cylindrical coordinate system were discretized and solved in a 2D domain using a
SIMPLE-based algorithm. The solution was obtained in three cases: �rstly, when cylinder's
wall temperature, Tw, is constant; secondly, when Tw varies linearly along cylinder's axis;
thirdly, when it has parabolic variations. Considering a sample case of incompressible
ow with Re = 1 and Pr = 0:7, the results of Nusselt number, wall shear-stress, and
dimensionless velocity and temperature were obtained under di�erent states of cylinder's
wall temperatures for some selected values of Grashof numbers. An entropy generation
analysis for the case of constant wall temperature is performed, which is the �rst of its
kind as conducted in this paper.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The problem of stagnation-point ow and heat transfer
on a plate or cylinder has always been a highly
intriguing issue to study due to its various industrial
applications. For example, in metal, plastic, or food
products manufacturing by extrusion process, the out-
put product is usually cooled by blowing a peripheral
uid ow. Since the cooling process a�ects the resis-
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tance and quality of the product, analytical modeling
and evaluation of this physical event are carried out
under the topic of stagnation-ow problem. By using
analytical methods, particularly similarity solutions,
accurate results can be obtained demonstrating ow
behavior in a viscous boundary layer. However, �nding
the appropriate similarity variables and solving the
governing di�erential equations of the problem are
the main challenges of this approach. Besides, the
solvable self-similar or semi-similar equations can be
produced for only few speci�c boundary conditions.
The history of the analytical methods studies using
similarity solution techniques goes back to Hiemenz [1].
He investigated the steady two-dimensional laminar
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incompressible ow perpendicularly impinging on a at
plate and succeeded to transform governing equations
into ordinary di�erential equations. These equations
were then solved using numerical methods. Wang [2]
was the �rst to present the solution of stagnation-point
ow on a circular cylinder. This problem was for the
simple case of a stationary cylinder without suction and
blowing in a steady-state condition. The importance of
this problem was due to the introduction of di�erent
similarity variables to cylindrical coordinate system.
Based on Wang's accomplishment, Gorla [3] could
obtain both velocity and temperature distributions for
a cylinder with constant wall temperature and constant
heat ux. He considered energy equation, used a
transformation for temperature quantity, and then
solved the extracted di�erential equations by numerical
methods. Gorla [4] continued his work and solved the
problem of transient state when the free stream ow
has time-dependent velocity. He used the series form
solution in his analysis and presented the results for
some speci�c time-dependent functions. In his next
paper, Gorla [5] assumed the cylinder with harmonic
motion and obtained the results of this unsteady
problem for two cases of low and high frequencies.
Ramachandran et al. [6] dealt with solving the problem
of normal stagnation-point ow against a vertical at
plate in the presence of buoyancy forces, causing mixed
convection. Gorla [7] studied mixed convection of a ver-
tical circular cylinder impinged by a normal stagnation-
point ow. He presented a numerical solution to the
equations in the case of constant or linearly variable
wall temperature. Takhar et al. [8] investigated the
unsteady case of this problem for any arbitrary time-
dependent free-stream or cylinder velocities. They
obtained numerical methods for solving their �nal
di�erential equations in the cases of semi-similar and
self-similar forms. Rahimi [9] used the perturbation
technique to solve the problem of stagnation ow and
heat transfer on a cylinder for high Reynolds numbers.
In their two papers, Saleh and Rahimi [10,11] presented
the similarity solution of axisymmetric stagnation-
point ow and heat transfer on a moving cylinder
when it has time-dependent axial velocity and uniform
transpiration. Saleh and Rahimi [12,13] dealt with
the same problem by considering rotational movement
for the cylinder with time-dependent angular velocity.
In addition, they [14] solved unaxisymmetric ow and
heat transfer in the axisymmetric stagnation-point
ow on a cylinder, which has simultaneous axial and
rotational movements along with transpiration. The
unaxisymmetry of the problem is caused by non-
symmetrical transpiration around the cylinder axis.
Revnic et al. [15] dealt with mixed convection heat
transfer problem of a circular cylinder impinged by
a normal stagnation-point ow, already mentioned by
Gorla [7], and presented its numerical solution for

a wider range of dimensionless numbers. Moham-
madiun and Rahimi [16] were the �rst to introduce
the similarity variables for solving stagnation-point
ow and heat transfer of a compressible uid on a
stationary cylinder. Therefore, they could include the
e�ect of the variable density in the resulting similar
forms of velocity and temperature equations, which
were solved simultaneously. Lok et al. [17] added
the stretching or shrinking e�ects to the problem of
mixed convection heat transfer of the axisymmetric
stagnation-point ow on a cylinder, already solved by
Gorla [7]. Mohammadiun et al. [18] solved the above-
mentioned problem in their paper [16] for the condition
of cylinder with a constant heat ux. The list goes on
until the very recent years, e.g., a study by Bayat and
Rahimi [19].

In all the above works, the similarity solution
techniques were used. Although this method of so-
lution has high importance from mathematical point
of view, it has certain shortcomings too, especially
when encountering various physical conditions such as
time-dependent states. For this reason, in the present
analysis and for the �rst time, the unsteady problem
of mixed convection heat transfer from a vertical cir-
cular cylinder impinged by an impulsive axisymmetric
stagnation-point ow is solved by employing numerical
methods. An implicit numerical solution to Navier-
Stokes and energy equations in a two-dimensional
zone with appropriate boundary conditions is applied.
Herein, the velocity and temperature parameters are
obtained directly. It is considered that a constant-
strength axisymmetric outer ow impinges on a vertical
circular cylinder along with gravitational e�ects. The
ow is considered inviscid far from the cylinder. In the
region near the surface (solution domain), equations
of viscous ow and energy are discretized according
to the �nite-di�erence scheme, and the resulting sys-
tem of equations is solved by the well-known TDMA
algorithm. The obtained results are veri�ed through
a comparison with Gorla's [3] for the speci�c case of
Tw = const. and Gr = 0. More data are obtained for
variable Tw and non-zero Grashof numbers, too.

2. Problem formulation

Axisymmetric incompressible stagnation-point ow im-
pinges impulsively on a vertical circular cylinder. The
radius of this cylinder is a with the length of in�nity
and with wall temperature, Tw, in the space inuenced
by gravity acceleration, g. A schematic of this problem
is presented in Figure 1. It is obvious that, for the
upper half of the geometry (i.e., z > 0), the buoyancy
forces are in the same direction with the ow; therefore,
herein, there exists an assisting ow condition. In
contrast, for z < 0, there is the opposing state of ow
because the uid ows downward. The ow far from
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Figure 1. Schematic of axisymmetric stagnation ow on
a vertical circular cylinder.

the cylinder's surface is assumed as an inviscid ow
with the rate of strength, �k. Then, according to the
axisymmetric coordinate system (r; z) in Figure 1, by
referring to Wang [2], velocity components, U and W ,
of this free stream ow are expressed as follows:(

U = � �r � 1
r

�
W = 2z

(1)

where coordinates r and z are non-dimensionalized
with radius a and velocities U and W with a�k.

2.1. Governing equations
Supposing the presence of an incompressible viscous
ow in the axisymmetric cylindrical coordinate system,
the basic time-dependent equations in terms of velocity
components u(r; z; t) in r-direction, w(r; z; t) in z-
direction, and temperature �eld, T (r; z; t), have the
following dimensionless forms:
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Velocity components u and w are non-dimensionalized

with a�k and pressure p with �a2�k2. For example,
the non-dimensionalization process of Eq. (3) is shown
below:
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In addition, dimensionless time, � , and temperature, �,
have the following expressions:

� = 2�kt; � =
T � T1
Tw � T1 : (5)

The last term in Eq. (4) is due to the presence of
buoyancy forces in z-direction, which is according to
the Boussinesq's approximation.

Energy equation:
In the general case of Tw = Tw(z):
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where the Reynolds, Prandtl, and Grashof numbers
have the following de�nitions:

Re =
�ka2

2�
; Pr =

�
�
; Gr =

g�(Tw � T1)a3

�2 :
(7)

The boundary conditions of the problem with respect
to the no-slip condition and T = Tw on the cylinder's
surface on the one side, and inlet inviscid ow with T1
on the other side of the domain of solution are:

r = 1 : u = w = 0; and � = 1;

r = Rmax : u = U; w = W; and � = 0: (8)

For outlet boundaries, by considering velocity �eld of
the inviscid ow in Eq. (1), it is supposed that u = u(r)
and w = z, then we will have following conditions:

z = Zmin; Zmax :
@u
@z

= 0;
@w
@z

=
w
z
: (9)

In addition, � is extrapolated by the two previous
points as the boundary condition of the temperature
at outlets.
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Since unsteadiness of the problem is a conse-
quence of impulsive motion of the free stream ow
at t = 0, the uid at rest (no motion) with uniform
temperature, T1, in both uid and cylinder's wall for
t < 0 as initial conditions is considered. For t � 0, a
sudden free stream ow, according to Eq. (1), appears,
whereas the cylinder's wall temperature rises to Tw,
simultaneously.

2.2. Flow characteristics
When numerical results of the velocity and tem-
perature �eld are determined, Nusselt number and
wall shear-stress, non-dimensionalized by ��k, can be
obtained from the following relations by a forward
di�erence approximation:

Nu =
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2k

= �1
2
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�
@w
@r

�
r=1

: (10)

2.3. Entropy generation
The volumetric rate of local entropy generation, which
arises due to the heat transfer and uid friction losses,
is given by:

_S000gen =
k
T 2 (rT )2 +

�
T
; (11)

where rT represents the temperature gradient and �
is the dissipation function. De�ning entropy generation
number as Ns = a2 _S000gen=k (normalized form of _S000gen),
entropy generation number due to heat transfer irre-
versibility, NH , and entropy generation number due to
uid friction irreversibility, NF , the above equation can
be rewritten as follows:

NS = NH +NF : (12)

Supposing axisymmetry in the cylindrical coordinates
system and Tw = Const., we have [20]:
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where  = Tw=T1 and Br = �a2�k2

k(Tw�T1) is Brinkman
number.

Also, it is useful to determine the portion of the
entropy generation due to heat transfer in the overall
entropy generation by calculating Bejan number with
the following de�nition:

Be =
NH
NS

: (15)

3. Method of solution

Eqs. (3), (4), and (6) under boundary conditions (8) are
solved numerically using an implicit �nite-di�erence
scheme based on SIMPLE algorithm. For this purpose,
a computer code in Fortran software is provided. Due
to the problem's axisymmetry, a rectangular zone
is chosen as a 2D domain of solution in r-z-plane
which is located between r = 1 to r = Rmax and
z = Zmin to z = Zmax (Figure 2). This domain,
typically meshed by a staggered square grid system,
is shown in Figure 3. All �rst-order and second-order
derivatives with respect to r and z are discretized
using a central di�erence formulation. The �rst-order
derivatives in � are replaced by a backward di�erence
approximation. Besides, the coe�cient in the nonlinear
convective terms is approximated by the known value
from previous time level. As an example, discretization
of u-component of velocity is presented below. Indices
i and j are related to r and z, respectively:
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Figure 2. Illustration of the domain of the solution.
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Figure 3. Sample of the meshed domain.
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Superscript n is the value of equation parameters at
a speci�c time. Superscript � represents equation
solutions for initial guess of pressure �eld, p�. Writing
u based on constant j (sweeping in z-direction) gives:�
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Writing u based on constant I (sweeping in r-direction)
gives:

Table 1. Inlet and outlet ow rates related to the solution
domain with dimensions Rmax = 4 and Zmax;min = �3.

Step size Qin Qout Error (%)

�r = �z=0.02 565.4867 563.7842 0.301068
�r = �z=0.03 565.4867 567.4353 0.344588
�r = �z=0.04 565.4867 563.7758 0.302554
�r = �z=0.05 565.4867 566.2092 0.127766
�r = �z=0.06 565.4867 563.8697 0.285948
�r = �z=0.075 565.4867 564.1638 0.23394
�r = �z=0.1 565.4867 564.3403 0.202728�
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At each time level, the procedure iterates until the
results of the velocity converge to the stable values with
the accuracy up to the sixth decimal place. The same
procedure is repeated for the next time step and the
problem solution continues to a value of � , where the
results show a steady-state behavior. To investigate the
independency of the grid size, several various step sizes
are employed. The results are tabulated in Table 1 for
Re = 1, Pr = 1, Gr = 0, Rmax = 4, and Zmin;max = �3.
The values of the velocity and temperature �eld are
very close for all the step sizes listed in Table 1.
Therefore, a comparison is made between inlet and
outlet ow rates of the solution domain. The best
choice of grid size would be �r = �z = 0:05; no
convergence with our expected accuracy would occur
for the values less than 0.02 due to truncation errors
accumulation.

When the numerical solution is completed, the
velocity and temperature �eld are known, and the val-
ues of Nusselt number, wall shear-stress, and entropy
generation number can be determined numerically by
Eqs. (10) and (12) to (14).

4. Results and discussions

The presented results by Gorla [3] are used to validate
our computational code in the case of steady-state
ow on a constant-wall-temperature cylinder. The
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comparison of dimensionless function f with the same
parameters of Re = 1, Pr = 1 and no buoyancy e�ects
(Gr = 0) is shown in Figure 4. Note that dimensionless
function f is equal to [�r u], employed by Gorla in
his similarity solution. In addition, the comparison
of dimensionless temperature � with di�erent Rmax is
shown in Figure 5. in these two �gures with respect
to di�erent values of Rmax are obtained, whereas the
values of Zmin and Zmax are �xed and equal to �3 and
+3, respectively. It is observed that the results of the
numerical solution and the similarity one are very close,
which holds especially for small r, but does not match
exactly because the similarity solution is actually a

Figure 4. Distribution of the steady-state radial velocity
function f at z = 3=4 for Re = 1, Pr = 1, Gr = 0 and
Zmin;max = �3 with di�erent values of Rmax.

Figure 5. Distribution of the steady-state thermal
function �(r; z = 3=4) for Re = 1, Pr = 1, Gr = 0 and
Zmin;max = �3 with di�erent values of Rmax.

consequence of asymptotic situation Rmax ! 1. In
addition, by choosing greater values of Rmax, we would
not �nd the results necessarily closer to the similar
solution. So, the minimum di�erence between our
results and Gorla's can be seen for Rmax = 6 and
Rmax = 7 for two functions f and �, respectively.

Now, consider the case of the steady-state
stagnation-ow equation on a cylinder with constant
wall temperature, Pr = 0:7, and no gravity (Gr = 0).
We conducted our computations in a solution domain
with dimensions Rmax = 3 and Zmax;min = �3 for three
di�erent Reynolds numbers. Distribution of the axial
velocity (w=W ) and thermal function, �, against r at
the speci�c value of z = 3=4 are shown in Figures 6
and 7. Moreover, the results of the Nusselt number
and the dimensionless shear-stress on the cylinder's
wall, �w, are plotted in Figures 8 and 9. According to
Figure 6, at higher Reynolds numbers, the boundary

Figure 6. Distribution of axial velocity w(r; z) against r
for Re = 1; 5; 10.

Figure 7. Distribution of thermal function �(r; z) against
r for Re = 1; 5; 10.
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Figure 8. Variation of the Nusselt number against z for
Re = 1; 5; 10.

Figure 9. Variation of wall shear stress, �w, against z for
Re = 1; 5; 10.

layer contracts toward the cylinder's wall. As can be
seen, for Re=10, there is an intensive gradient of axial
velocity (w=W ) until about r = 1:4, which denotes the
boundary layer region and, for Re = 5, it exists until
r = 1:6. After that, we see a smooth variation in the
velocity diagram, which is related to the outside region
of the boundary layer. However, for Re = 1, these two
regions are not clearly distinguishable, and it is better
to use a calculation domain with larger dimension,
Rmax, for this low Reynolds number. According to
Figure 7, the thermal boundary layer for Re = 1, 5,
and 10 expands to r = 2:7, 1.8, and 1.6, approximately.
Our calculation shows that the value of Rmax does not
have considerable e�ects on these diagrams. This is
because the variation of the ow temperature against

Figure 10. Distribution of axial velocity w(r; z = 1)
against r for Gr = 0, 10, 20, 50 when the cylinder's wall
temperature is constant (Tw = Const.).

r is highly a�ected by velocity u, and this velocity
component does not change much with the dimension
of the solution domain. According to Figure 8, the
value of the Nusselt number is constant along the
cylinder's axis, as expected. Only near the boundaries,
we witness a slight variation in Nu which is due to our
approximation of the boundary conditions (Eq. (9)).
Through ignoring this insigni�cant error, for Re = 1,
5, and 10, the average values of the Nusselt number are
0.77, 1.4, and 1.86, respectively. It can clearly be seen
from Figure 9 that the shear-stress on the cylinder's
surface has a linear variation along the axis. Since
Gr = 0, the ow is symmetric against line z = 0 and, so,
�w = 0 (stagnation-point) occurs exactly at z = 0, too.

For other cases of the problem, the ow with
constant parameters, Re=1 and Pr = 0:7, yet with
variable Grashof numbers, is considered. Herein, the
dimensions of the domain of solution as Rmax = 5 and
Zmax;min = �4 are chosen, which are appropriate for
Re = 1. The resulting diagrams in Figures 10 to 14 are
related to the ow characteristics in the steady state
when the temperature of the cylinder's wall is constant
and Grashof number has a constant value, as well.
These diagrams are presented for Gr = 0, 5, 10, 20, and
50. In Figure 10, the assisting e�ect of the buoyancy
forces in the distribution of velocity, w, is observed.
This e�ect causes the velocity to grow; for example, for
Gr = 50, this growth is about 1.5 times the case of no-
buoyancy condition. In contrast, the opposing e�ect
of the buoyancy forces, which is shown in Figure 11
for z = �1, causes velocity, w, to decrease to zero
and even reverse its value (as it occurs for Gr = 50).
According to Figure 12, distribution of temperature has
a very slight variation against the large variation of
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Figure 11. Distribution of axial velocity w(r; z = �1)
against r for Gr = 0, 10, 20, 50 when the cylinder's wall
temperature is constant (Tw = Const.).

Figure 12. Distribution of the thermal function �(r; z)
against r for Gr = 0, 10, 20, 50 when the cylinder's wall
temperature is constant (Tw = Const.).

Grashof numbers. Similarly, this situation exists for
Nusselt number (Figure 13). Thus, there exist 0.732,
0.732, 0.731, and 0.723 for Nusselt number at the center
against Gr = 0, 10, 20, and 50, respectively. By
referring to Figure 14, for this case of wall temperature
(Tw = const.) and for larger Grashof numbers, it is
seen that the shear stress along the surface increases
uniformly. The existence of buoyancy forces moves the
stagnation-point (the position of �w = 0) downward.
For instance, at Gr = 20, the stagnation-point is
located at z = �0:43. The ow streamlines for the
two cases of Gr = 0 and Gr = 50 are illustrated in
Figure 15. From this �gure, the e�ects of the buoyancy
forces and, consequently, the streamlines deformation

Figure 13. Variation of the Nusselt number against z for
Gr = 0, 10, 20, 50 when the cylinder's wall temperature is
constant (Tw = Const.).

Figure 14. Variation of wall shear-stress Tw against z for
Gr = 0, 10, 20, 50 when the cylinder's wall temperature is
constant (Tw = Const.).

near the wall are clearly visible for Gr = 50, as well as
downward movement of the stagnation-point.

When the cylinder's wall temperature varies lin-
early against z and is symmetrical about z = 0, it
can be expressed as Tw � T1 = jb zj in which b is
a constant coe�cient. Therefore, Grashof number,
according to its de�nition by Eq. (7), varies linearly
against z. Obviously, the following are inserted into
Eq. (6):

dTw
dz

Tw � T1 =
1
z
;

d2Tw
dz2 = 0: (16)

The results of the problem under this condition with
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Figure 15. Illustration of the ow streamlines for Re = 1,
Pr = 0:7, and Tw = Const.: (a) Gr = 0, and (b) Gr = 50.

Figure 16. Distribution of axial velocity w(r; z = 1)
against r for Gr = 0, 10z, 20z, 50z when the cylinder's
wall temperature varies linearly (Tw = jb zj).

Gr = 0, j5zj, j10zj, j20zj, and j50zj, which are plotted
for the steady-state case, are depicted in Figures 16
to 20. In Figure 19, the diagrams of Nusselt number
take apart at z = 0 with each part tending towards
in�nity because this point is a singular point (Tw �
T1 = 0). For z > 0, Nusselt number has greater values
compared to the case of Gr = 0 and for z < 0 in which
its values are less. Also, variations of �w for Gr = 0,
5, 10, 20, and 50 are presented in Figure 20. At high
Grashof numbers, the variation seems to be nonlinear
and the diagram takes a convexity, especially near the
outlet boundaries.

For the �nal case, it is supposed that the temper-
ature of the cylinder has a parabolic variation against
z. Herein, the temperature pro�le is as Tw �T1 = bz2

Figure 17. Distribution of axial velocity w(r; z = �1)
against r for Gr = 0, 10z, 20z, 50z when the cylinder's
wall temperature varies linearly (Tw = jb zj).

Figure 18. Distribution of thermal function �(r; z)
against r for Gr = 0, 10z, 20z, 50z when the cylinder's
wall temperature varies linearly (Tw = jb zj).

with b as a constant coe�cient; consequently:

dw
dz

Tw � T1 =
2
z
;

d2Tw
dz2

Tw � T1 =
2
z2 : (17)

Since the Grashof number has the same parabolic
variation, sample states Gr = 0, 5z2, 10z2 were
considered to perform our calculation. The results are
illustrated in Figures 21 to 25 under the steady-state
condition. According to Figure 24, Nusselt number
near z = 0 tends toward the negative in�nity rapidly.
This result is unlike what happened in the previous
case in Figure 19. The variation of shear-stress, �w,
shown in Figure 25, has more nonlinearity than that of
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Figure 19. Variation of the Nusselt number against z for
Gr = 0, 10z, 20z, 50z when the cylinder's wall
temperature varies linearly (Tw = jb zj).

Figure 20. Variation of wall shear stress �w against z for
Gr = 0, 10z, 20z, 50z when the cylinder's wall
temperature varies linearly (Tw = jb zj).

the previous case. Time-dependent variations of two
parameters �w and Nu are illustrated in Figures 26
and 27 in the case of Tw = const. at z = 0:5. As
observed, �w experiences an unstable variation along
time parameter � , until it comes close to the steady-
state condition. In addition, a sudden change in the
diagrams appears at about � = 0:1. Herein, the results
of the numerical computation transfer from the initial
inviscid values to the viscous results are shown. After
that, due to gradual balancing of the pressure �eld
over the computation domain, the results are subject
to instability, disappearing over time. The variations
of the Nusselt number were plotted for three sample

Figure 21. Distribution of axial velocity w(r; z = 1)
against r for Gr = 0, 5z2, 10z2 when the cylinder's wall
temperature varies parabolic (Tw = bz2).

Figure 22. Distribution of axial velocity w(r; z = �1)
against r for Gr = 0, 5z2, 10z2 when the cylinder's wall
temperature varies parabolic (Tw = bz2).

Prandtl numbers. At the �rst instants of time, the
Nusselt numbers are almost the same regardless of
the value of Pr; however, with the passage of time,
it drops rapidly. This sudden drop is more severe
for smaller Prandtl numbers, which �nally leads to
a smaller Nu in the steady-state case. Thus, in the
steady-state case, we will have Nu = 0:7, 1.5, and 3.7
for Pr = 0:7, 7, and 70, respectively. As known, the
smaller the Prandtl number, the higher the thermal
di�usivity, which causes the conduction heat transfer
mechanism to dominate compared to convection heat
transfer; hence, smaller Nusselt number is produced.

Finally, an entropy generation analysis was ap-
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Figure 23. Distribution of thermal function �(r; z)
against r for Gr = 0, 5z2, 10z2 when the cylinder's wall
temperature varies parabolic (Tw = bz2).

Figure 24. Variation of the Nusselt number against z for
Gr = 0, 5z2, 10z2 when the cylinder's wall temperature
varies parabolic (Tw = bz2).

plied to the sample case of Re = 1, Pr = 0:7, Br = 1,
and Tw = Const. The results are shown in Figure 28
for Gr = 0 (no free convection) and Figure 29 for
a constant ratio of Tw=T1 ( = 1:2). According
to Figure 28, when the ratio of Tw to T1 increases,
both Ns and Be increase signi�cantly, even though
their di�erence is a constant, which is due to the
role of absolute temperature in entropy production
mechanism. On the other hand, according to Figure 29,
when the ratio of Tw=T1 is a constant, the existence of
free convection heat transfer can exert an increasing
e�ect on Ns in the region of boundary layer ow.
However, Be number can vary from 0 to 1; however,
in the present problem, its value does not exceed 0.1

Figure 25. Variation of wall shear-stress �w against z for
Gr = 0, 5z2, 10z2 when the cylinder's wall temperature
varies parabolic (Tw = bz2).

Figure 26. Variation of wall shear-stress �w at z = 0:5
against time parameter � for Gr = 0, 10, 20, 50 with
Re = 1 and Pr = 0:7.

even for large . This is because of the outer ow,
which has a signi�cant share in entropy generation
by viscous losses. This means that almost all of the
entropy generations are the result of uid ow and not
the heat transfer.

5. Conclusions

The unsteady problem of mixed convection heat trans-
fer from a vertical cylinder impinged by an impulsive
axisymmetric stagnation-point ow was solved, numer-
ically. A computational code, provided by the authors
based on SIMPLE algorithm, was employed to predict
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Figure 27. Variation of the Nusselt number at z = 0:5
against time parameter � for Pr = 0:7, 7, 70 with Re = 1
and Gr = 0.

Figure 28. E�ect of temperature ratio  on (a) entropy
generation number and (b) Be number at z = 1 for
Re = 1, Pr = 0:7, Gr = 0, Br = 1, and Tw = Const.

Figure 29. E�ect of Gr number on (a) entropy
generation number and (b) Be number at z = 1 for
Re = 1, Pr = 0:7,  = 1:2, Br = 1 and Tw = Const.

the buoyancy e�ects of di�erent distributions of the
cylinder's wall temperature on the ow characteristics.
For outer ow, which is supposed to be inviscid, simple
analytical equations govern; however, in the domain
of solution where ow has a viscous behavior, Navier-
Stokes and energy equations were discretized and the
resulting 3-equation system was solved by an implicit
�nite-di�erence method. The steady-state result was
comparable to that formerly obtained by similarity
solutions. The distribution of velocity components u
and w against r shows that the numerical results of
the problem would be close to the similarity ones by
choosing appropriate size of Rmax for the domain of
solution. The numerical method, presented here, de-
rives its importance from the shortcomings of similarity
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method in solving all types of the problems. Therefore,
in the present paper, after validation of the numerical
method, it solved the time-dependent problem in three
various distributions of the cylinder's wall temperature
(constant, linear, and parabolic distributions) at some
di�erent Grashof numbers. The results of the velocity
and temperature showed almost similar distributions
for the mentioned cases of the problem; however, the
variations of the wall shear-stress and Nusselt number
along the cylinder's axis were completely di�erent in
each case. When the cylinder's wall temperature has
a linear or parabolic form, �w � z diagram does not
have a linear form yet, also Nu� z diagram possessed
a singular point at z = 0 and divided the domain into
two separated parts for z < 0 and z > 0. In this
problem, the entropy generation analysis shows that
viscous irreversibility e�ects play the main role leading
to very low Be numbers.

Nomenclature

a Cylinder radius (m)
b Constant coe�cient (K)
Be Bejan number
Br Brinkman number
Gr Grashof number
f Dimensionless velocity function
g Gravitational acceleration (m/s2)
h Convective heat transfer coe�cient

(W/m2.K)
k Thermal conductivity (W/m.K)
�k Strength of the free stream ow (1/s)
NF Entropy generation number, uid

friction
NH Entropy generation number, heat

transfer
NS Entropy generation number, overall
Nu Nusselt number
p Dynamic pressure (Pa)
Pr Prandtl number
r Dimensionless coordinate in radial

direction of cylinder
Rmax Position of the solution domain's

boundary in r-direction
Re Reynolds number
_S000gen Volumetric entropy generation rate

(W/m3K)
u;w Dimensionless viscous ow's r and

z-component of velocity
U;W Dimensionless invicsid ow's r and

z-component of velocity

z Dimensionless coordinate in axial
direction of cylinder

t Time (s)
T Temperature (K)
Tw Temperature on the cylinder's wall (K)
T1 Free stream temperature (K)
Zmax Upper limit of the solution domain's

boundary in z-direction
Zmin Lower limit of the solution domain's

boundary in z-direction
� Thermal di�usivity (m2/s)
� Volumetric thermal expansion

coe�cient (1/K)
� Dimensionless temperature
� Dynamic viscosity (Pa.s)
� Kinematics viscosity (m2/s)
� Density (m3)
� Dimensionless time
�w Dimensionless shear stress on the

cylinder's wall
 Temperature ratio
� Viscous dissipation function (W/m3)
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