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Abstract. In this study, the problem of a two-dimensional forced convection MHD
ow and heat transfer of ferrouids over a moving at plate is investigated, considering
the e�ects of uniform heat ux and second-order slip. By applying the similarity
transformation, the governing equations are reconstructed into the similarity equations, and
the resulting equations are solved via a shooting technique. Then, we implement a stability
analysis in order to determine which solutions are stable and physically realizable. The
e�ects of the magnetic parameter, moving parameter, mass transfer parameter, �rst-order
surface slip parameter, second-order surface slip parameter and volume fraction of solid
ferroparticles on the dimensionless velocity, temperature, skin friction, and Nusselt numbers
are discussed in the form of tabular and graphical presentations. For the present study,
we consider the results based on three preferred ferroparticles: magnetite, cobalt ferrite,
and Mn-Zn ferrite in water- and kerosene-based uids. The results display the existence of
dual solutions for a plate moving towards the origin in which the �rst solution is stable and
physically realizable, while the second solution is not. Moreover, it is demonstrated that
the combined e�ects of the magnetic, moving, mass transfer, and slip parameters, together
with the volume fraction of ferrouids, delay the boundary layer separation.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

First used by Choi [1], the nanouids constitute heat
transfer uid containing suspensions of nanoparticles
with the size ranging under 100 nm. He studied the
problem of nanouids which helps exhibit the thermal
properties of uids with nanoparticles. The main
purpose was to demonstrate theoretically the feasibility
of the concept of nanouids. Then, it was widely used
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by other researchers such as Xuan and Li [2], Tiwari
and Das [3], Ahmad et al. [4], and others.

On the other hand, we can notice that the number
of researches on ow analysis of nanouids with the
interaction of magnetic �eld has increased enormously.
Magnetic nanouids, known as ferrouids, consist of
magnetic nanoparticles (3-15 nm) and carrier uid.
In order to maintain a constant suspension state,
the ultra�ne particles are covered by an appropriate
surfactant, besides being considered as particles of a
single magnetic domain. Moreover, by considering the
e�ect of external magnetic �elds, the ferrouids can
facilitate some particular achievements, e.g. helping
control the properties of ow and physical properties
of the ferrouids.

http://scientiairanica.sharif.edu/article_4343.html
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Tangthieng et al. [5] carried out a study to
describe the enhancement of heat transfer in ferrouids,
which dealt with the steady magnetic �elds. They
developed the problem based on the ow between
vertical parallel plates and in a box, concluding that the
heat transfer signi�cantly increases with the inuence
of magnetic �eld gradient. Besides, Kuncser et al. [6]
and Li et al. [7] came up with the studies of the use
of ferrouids whose aim is to show the heat transfer
enhancement in the boundary layer. Recently, Khan et
al. [8] investigated the problem of ow and heat transfer
of ferrouids past a at plate with uniform heat ux
and slip velocity. The results revealed that the heat
transfer rate increases, and the friction factor reduces
with the increase in slip parameter.

Recently, many researchers have studied magne-
tohydrodynamics (MHD) due to its interesting ap-
plications in industry including polymer technology,
geophysics, solar physics, and many more. MHD can
be de�ned as the science of motion of electrically
conducting uids based on the inuence of applied
magnetic forces. Sheremet et al. [9] studied numerically
the e�ect of magnetic �eld on the unsteady natural
convection in a wavy-walled channel using the math-
ematical model proposed by Buongiorno. Bondareva
et al. extended the problem to the unsteady natural
convection in a right-angle trapezoidal cavity �lled with
a nanouid [10]. Considering the results, they found
that the key parameters exert signi�cant e�ects on the
ow, heat and mass transfer characteristics.

The present study investigates the problem of
two-dimensional MHD ow and heat transfer of fer-
rouids over a moving at plate with the e�ects of
uniform heat ux and second-order slip. The e�ects of
moving, magnetic, mass transfer, and slip parameters
together with volume fraction of solid ferroparticles on
the dimensionless velocity, temperature, skin friction,
and Nusselt number are developed for the preferred
ferroparticles in water- and kerosene-based ferrouids.

2. Basic equations

Consider the problem of forced convection boundary
layer ow and heat transfer of preferred water- and
kerosene-based ferrouids over a moving horizontal
permeable at plate in a variable magnetic �eld B(x).
In this study, we assume the ow to be steady, lami-
nar, two-dimensional, and incompressible; besides, the
base uids and preferred nanoparticles are in thermal
equilibrium. In addition, the ow takes place in region
y > 0 and is driven by a moving surface with velocity
uw = �U1+uslip, where uslip is the surface slip velocity
and � is a dimensionless constant moving parameter
with � > 0 for a surface moving out of the origin and
� < 0 for a surface moving towards the origin, as shown
in Figure 1. It is assumed that the uniform heat ux

from the surface is qw, while the temperature of the
ambient uid is T1. Under these assumptions, the
basic equations of the problem under consideration are
as follows (see [8]):
@u
@x

+
@v
@y

= 0; (1)

u
@u
@x

+ v
@u
@y

= �nf
@2u
@y2 � �B2(x)

�nf
(u� U1) ; (2)

u
@T
@x

+ v
@T
@y

= �nf
@2T
@y2 ; (3)

where x and y are the Cartesian coordinates measured
perpendicular and normal to the plate, u and v are the
velocity components along x- and y-axes, T is the tem-
perature of the nanouid, �nf is the kinematic viscosity
of the nanouid, �nf is the thermal di�usivity of the
nanouid, and �nf is the density of the nanouid, pre-
sented by Relations (4) in the paper by Khan et al. [8]:

�nf =
�nf
�nf

; �nf =
�f

(1� ')2:5 ;

�nf =
knf

(�Cp)nf
; �nf = (1� ')�f + '�s;

(�Cp)nf = (1� ') (�Cp)f + ' (�Cp)s ;

knf
kf

=
ks + 2kf � 2' (kf � ks)
ks + 2kf + ' (kf � ks) ; (4)

where knf is the thermal conductivity of the nanouid,
(�Cp)nf is the heat capacity of nanouid, and ' is the
volume fraction of solid particle of the nanouid.

Assuming that Eqs. (1)-(3) are subjected to the
boundary conditions:

u = �U1 + 
@u
@y

+ !
@2u
@y2 ; v = v0;

�knf @T@y = qw; at y = 0;

u! U1; T ! T1; as y !1; (5)

Figure 1. Physical model and coordinate system.
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where  is the �rst-order surface velocity slip, ! is the
second-order surface velocity slip, and U1 is the free
stream velocity.

3. Solution for the steady case

It is assumed that B(x) = B0x�1=2, where B0 is the
strength of the applied magnetic �eld for the sake of
Eqs. (1) to (3) having similarity solutions. Then, the
similarity solution to Eqs. (1) to (4) is found through
proposing the following transformation:

 (x; y)=�f
p

Rexf(�); �(�)=
T � T1
qwx=kf

p
Rex;

� =
y
x
p

Rex; (6)

where � is the similarity variable and Rex = U1x=�f
is the local Reynolds number based on the free stream
velocity, and �f is the kinematic viscosity of the
base uid. Furthermore,  (x; y) is the streamline,
represented in the common form of u = @ 

@y and v =
�@ @x . Thus, we have:

u = U1f 0(�); v=��f
p

Rex
2x

[f(�)��f 0(�)] ; (7)

where prime denotes di�erentiation with respect to �.
Then, note that:

vw(x) = ��f
p

Rex
2x

f(0): (8)

We now take:

vw(x) = ��f
p

Rex
2x

S = v0; (9)

where S = �2v0
p
xL=�f

p
Rex = �2v0=

p
U1�f=L

is the constant mass transfer parameter with S > 0
for suction and S < 0 for injection, and L is the
characteristic length of the sheet. Besides, we assume
that  =

p
x�f=U1a and ! = (x�f=U1)b where

a(> 0) and b(< 0) are the constant �rst- and second-
order surface slip parameters (see [11]).

Then, Eq. (6) is substituted into Eqs. (1)-(3);
thus, the following ordinary di�erential equations are
obtained:

1
(1� ')2:5(1� '+ '�s=�f )

f 000 + 1
2
ff 00

+
M

1� '+ '�s=�f
(1� f 0) = 0; (10)

knf=kf
1�'+ '(�Cp)s=(�Cp)f

1
Pr
�00+ 1

2
(f�0�f 0�) = 0;

(11)

subject to the boundary conditions:

f(0) = S; f 0(0) = �+ af 00(0) + bf 000(0);

�0(0) = � kf
knf

f 0(�)! 1; �(�)! 0

as � !1; (12)

where primes denote di�erentiation with respect to �,
Pr = (�Cp)f=kf is the Prandtl number, and M =
�B2

0=�fU1 is the magnetic parameter.
Quantities of physical interest in this problem are

skin friction coe�cient, Cf , and local Nusselt number,
Nux, de�ned as follows:

Cf =
�w

�fU21
; Nux =

xqw
kf (Tw � T1)

; (13)

where �w is the shear stress along the plate, and:

�w = �nf
�
@u
@y

�
y=0

; qw = �knf
�
@T
@y

�
y=0

:
(14)

Using Eqs. (6), (13), and (15), we obtain:

Re1=2
x Cf =

f 00(0)
(1� ')2:5 ; Re�1=2

x Nux =
1
�(0)

: (15)

4. Flow stability

Weidman et al. [12] and Ro�sca and Pop [11] demon-
strated that the lower branch solutions are unstable
(not physically realizable), while the upper branch
solutions are stable (physically realizable). These char-
acteristics are assessed by investigating the unsteady
form of Eqs. (10)-(12). Thus, new dimensionless time
variable, � = U1t=x, is proposed, and it is noted that
the use of � is related to an initial value problem. Thus,
unsteady Eqs. (1) to (3) are as follows:
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+
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= 0; (16)
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where t denotes the time. Now, we will introduce the
following new variables:

u = U1
@f
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Further, Eqs. (16)-(18) can be written as follows:
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subject to the boundary conditions:
f(0; �) = S;

@f
@�

(0; �) = �+ a
@2f
@�2 (0; �) + b

@3f
@�3 (0; �);

@�
@�

(0; �) = � kf
knf

;
@
@�

(�; �)! 1;

�(�; �)! 0 as � !1: (22)

To examine the stability of the steady ow solution
f(�) = f0(�) and �(�) = �0(�) to solve the boundary-
value problem of Eqs. (7)-(9), the following are de�ned
(see [12] or [11]):

f(�; �) = f0(�) + e���F (�; �);

�(�; �) = �0(�) + e���G(�; �); (23)

where � is an unknown eigenvalue parameter, and
F (�; �) and G(�; �) are small relative to f0(�) and
�0(�). We then substitute Eq. (23) into Eqs. (20)
and (21) to obtain the following linearized problem:
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along with the boundary conditions:

F (0; �) = 0;

@F
@�

(0; �) = a
@2F
@�2 (0; �) + b

@3f
@�3 (0; �);

@G
@�

(0; �) = 0;
@F
@�

(�; �)! 0;

G(�; �)! 0; as � !1: (26)

As proposed by Weidman et al. [12], the stability of
the steady ow and the result of heat transfers f0(�)
and �0(�) are investigated by de�ning � = 0; therefore,
F = F0(�) and G = G0(�) in Eqs. (24) and (25) to
distinguish the initial growth or decay of the solution
to Eq. (23). To examine our numerical process, we have
to solve the linear eigenvalue problem:

1
(1� ')2:5 (1� '+ '�s=�f )

F 0000 +
1
2
f0F 000

+
�
� � M

1� '+ '�s=�f

�
F 00 +

1
2
f 000 F0 = 0; (27)

knf=kf
1� '+ '(�Cp)s=(�Cp)f

1
Pr
G000 +

1
2
f0G00

�
�

1
2
f 00 � �

�
G0 +

1
2
�00F0 � 1

2
�0F 00 = 0; (28)

along with the boundary conditions:

F0(0)=0; F 00(0)=aF 000 (0)+bF 0000 ; G00(0)=0;

F 00(�)! 0; G0(�)! 0; as � !1: (29)

It should be mentioned that for speci�c values of Pr, ',
a, b, and M , the stability of steady ow solutions f0(�)
and �0(�) is determined by the smallest eigenvalue �.
Referring to Harris et al. [13], the range of possible
eigenvalues is determined through relaxing a boundary
condition on F0(�) and G0(�). For this study, the
condition of F 00(�) ! 0 as � ! 1 is relaxed, and for
a �xed value of �, the system of Eqs. (27) and (28) is
solved along with new boundary condition F 000 (0) = 1.

5. Results and discussion

Numerical solutions to the governing ordinary di�eren-
tial Eqs. (10) and (11) with the boundary conditions
of Eq. (12) were achieved using a shooting technique,
which is done with the aid of shootlib function in
Maple software. In this method, the governing ordi-
nary di�erential equations must be converted into an
equivalent initial value problem. Then, a suitable �nite
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value of boundary layer thickness � !1, namely �1,
must be chosen; for this study, �1 = 12 is used. By
de�ning the appropriate initial guesses for the missing
values of f 00(0) and �(0), an iterative solver with the
support of shootlib in Maple 16 is used to produce
the solutions which satisfy the boundary conditions.
This process is repeated until the correct results are
obtained, restricted to be less than 10�6 of shooting
error. In this study, the dual solutions and all pro�les
are obtained to satisfy boundary conditions (12), yet
in di�erent patterns.

The e�ects of magnetic parameter, M , moving
parameter, �, mass transfer parameter, S, �rst-order
surface slip parameter, a, second-order surface slip
parameter, b, and volume fraction of solid ferroparti-
cles, ' on dimensionless velocity, f 0(�), temperature,
�(�), skin friction, Re1=2

x Cf , and Nusselt numbers,
Re�1=2

x Nux, are examined for the three preferred fer-
roparticles, namely magnetite, cobalt ferrite, and Mn-
Zn ferrite in water- and kerosene-based ferrouids. In
the present study, two di�erent Prandtl numbers are
used, such that Pr = 6:2 for water-based ferrouid and
Pr = 21 for kerosene-based ferrouid. In addition, the
volume fraction of solid ferroparticles ' is considered
in the range of 0 � ' � 0:1, where ' = 0 represents
the pure water or kerosene uid.

Data related to the thermophysical properties of
the base uids (water and kerosene) and the ferropar-
ticles (magnetite Fe3O4, cobalt ferrite CoFe2O4, and
Mn-Zn ferrite Mn-ZnFe2O4) are used following Khan
et al. [8], as listed in Table 1. In order to prove the
accuracy of the present results, the values of the skin
friction coe�cient are compared with those reported
by Cortell [14], Yazdi et al. [15], and Khan et al. [8],
as shown in Table 2. The present results are found in
good agreement with the published data, thus giving
us some con�dence in the present numerical results.

The variations of skin friction, Re1=2
x Cf , and

Nusselt number, Re�1=2
x Nux, with moving parameter,

�, and mass transfer parameter, S, are illustrated in
Figures 2 to 13 for various values of M , S, a, b, and
'. From these �gures, we notice that dual solutions
exist for certain selected parameters. Note that the
solid lines represent the �rst solution, while the dash
lines represent the second solution. Both solutions are
combined at critical point �c or Sc, and it seems that

Figure 2. Variation of Re1=2
x Cf with � for Fe3O4,

water-based ferrouids, Pr = 6:2, S = 2, a = 1, b = �1,
' = 0:1, and with varying M .

Figure 3. Variation of Re�1=2
x Nux with � for Fe3O4,

water-based ferrouids, Pr = 6:2, S = 2, a = 1, b = �1,
' = 0:1, and with varying M .

Table 1. Thermophysical properties of base uids and magnetic nanoparticles [8].

Physical
properties

Base uids Magnetic nanoparticles
Water Kerosene Fe3O4 CoFe2O4 Mn-ZnFe2O4

� (Kg/m3) 997 783 5180 4907 4900
Cp (J/Kg.k) 4179 2090 670 700 800
k (W/m.k) 0.613 0.15 9.7 3.7 5

Table 2. Comparison of f 00(0) for a = 0; 0:5, b = 0, and M = 0; 1 when � = 0, S = 0, and ' = 0.

a b M Cortell [14] Yazdi et al. [15] Khan et al. [8] Present study

0 0 0 0.33206 | 0.33206 0.33206
1 | 1.0440 1.04400 1.04400

0.5 0 0 | 0.6987 0.69872 0.69872
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Figure 4. Variation of Re1=2
x Cf with S for Fe3O4,

water-based ferrouids, Pr = 6:2, � = �3, a = 1, b = �1,
' = 0:1, and with varying M .

Figure 5. Variation of Re�1=2
x Nux with S for Fe3O4,

water-based ferrouids, Pr = 6:2, � = �3, a = 1, b = �1,
' = 0:1, and with varying M .

Figure 6. Variation of Re1=2
x Cf with � for Fe3O4,

water-based ferrouids, Pr = 6:2, M = 0:02, a = 1,
b = �1, ' = 0:1, and with varying S.

there is no solution when � < �c or S < Sc. The results
also indicate that critical values j�cj and jScj increase
as the parameters of M , a, b, and ' increase. Thus,
these processes delay the boundary layer separation.

Further, a stability analysis is performed in order
to get the smallest eigenvalues � in Eq. (23), with the
main objective of testing the stability between those

Figure 7. Variation of Re�1=2
x Nux with � for Fe3O4,

water-based ferrouids, Pr = 6:2, M = 0:02, a = 1,
b = �1, ' = 0:1, and with varying S.

Figure 8. Variation of Re1=2
x Cf with � for Fe3O4,

water-based ferrouids, Pr = 6:2, M = 0:02, S = 2, b = 0,
' = 0:1, and with varying a.

Figure 9. Variation of Re�1=2
x Nux with � for Fe3O4,

water-based ferrouids, Pr = 6:2, M = 0:02, S = 2, b = 0,
' = 0:1, and with varying a.

two solutions. It should be noted that the ow is stable
when the smallest eigenvalue is positive, i.e. there is
an initial decay. Nevertheless, the ow is unstable
when the smallest eigenvalue is negative, i.e., there
is an initial growth of disturbances. Table 3 shows
the smallest eigenvalues � for Fe3O4 ferroparticle at
several values of � (� < 0, a plate moving towards the
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Figure 10. Variation of Re1=2
x Cf with � for Fe3O4,

water-based ferrouids, Pr = 6:2, M = 0:02, S = 2, a = 0,
' = 0:1, and with varying b.

Figure 11. Variation of Re�1=2
x Nux with � for Fe3O4,

water-based ferrouids, Pr = 6:2, M = 0:02, S = 2, a = 0,
' = 0:1, and with varying b.

Figure 12. Variation of Re1=2
x Cf with � for Fe3O4,

water-based ferrouids, Pr = 6:2, M = 0:02, S = 2, a = 1,
b = �1, and with varying '.

origin), with various values M , when S = 2, a = 1,
b = �1, ' = 0:1, and Pr = 6:2 for water-based
ferrouid. It is shown from the stability analysis that
� is positive for the �rst solution and negative for the
second solution. From Eq. (23), it is inferred that the
results will converge to steady ow solution when � is
positive. Thus, we can conclude that the �rst solution

Figure 13. Variation of Re�1=2
x Nux with � for Fe3O4,

water-based ferrouids, Pr = 6:2, M = 0:02, S = 2, a = 1,
b = �1, and with varying '.

Table 3. The smallest eigenvalues � for Fe3O4

ferroparticle at several values of � (� < 0, a plate moving
towards the origin), with various values of M , when S = 2,
a = 1, b = �1, ' = 0:1, and Pr = 6:2 (water-based
ferrouids).

M � �

First solution Second solution

0

{6.00 0.1733 {0.1453
{6.10 0.1240 {0.1092
{6.20 0.0414 {0.0396
{6.21 0.0210 {0.0206

0.02

{6.10 0.2048 {0.1653
{6.20 0.1640 {0.1381
{6.30 0.1121 {0.0995
{6.39 0.0245 {0.0239

0.05

{6.40 0.1943 {0.1569
{6.50 0.1520 {0.1285
{6.60 0.0962 {0.0863
{6.67 0.0164 {0.0161

0.1

{6.90 0.1820 {0.1460
{7.00 0.1383 {0.1168
{7.10 0.0771 {0.0701
{7.14 0.0325 {0.0312

is stable and physically realizable, while the second
solution is unstable and not physically realizable.

In addition, it can be seen that Eqs. (10) and (11)
with boundary conditions (12) give singularities �si=Ssi
at some values of � = �si(< 0)=S = Ssi(> 0), as
illustrated in Table 4. The singularity is based on the
case that the at plate is moving to a di�erent direction
of the free stream.

Tables 5 and 6 show the variations of skin friction,
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Table 4. Singularities �si=Ssi for di�erent �gures and
parameters.

Figure Parameter Singularity
(�si=Ssi)

3

M = 0 �4:93 < �si < �4:92
M = 0:02 �5:26 < �si < �5:25
M = 0:05 �5:73 < �si < �5:72
M = 0:1 �6:48 < �si < �6:47

5

M = 0 1:47 < Ssi < 1:46
M = 0:02 1:39 < Ssi < 1:38
M = 0:05 1:28 < Ssi < 1:27
M = 0 1:11 < Ssi < 1:1

7

S = 1 �2 < �si < �1:99
S = 1:2 �2:48 < �si < �2:47
S = 1:5 �3:35 < �si < �3:34
S = 2 �5:26 < �si < �5:25

9

a = 0:1 �1:98 < �si < �1:97
a = 0:5 �2:63 < �si < �2:62
a = 1 �3:44 < �si < �3:43
a = 2 �5:07 < �si < �5:06

11

b = �0:1 �2 < �si < �1:99
b = �0:5 �2:72 < �si < �2:71
b = �1 �3:63 < �si < �3:62
b = �2 �5:45 < �si < �5:44

13

' = 0 �4:82 < �si < �4:81
' = 0:02 �4:98 < �si < �4:97
' = 0:05 �5:16 < �si < �5:15
' = 0:1 �5:26 < �si < �5:25

Re1=2
x Cf , and Nusselt number, Re�1=2

x Nux, with mag-
netic parameter, M , for each mixture of water- and
kerosene-based ferrouids, when � = �6, ' = 0:1,
S = 2, a = 1, and b = �1. From these tables, we
can conclude that the kerosene-based ferrouids have
higher skin friction and Nusselt number than the water-
based ferrouids do.

Finally, Figures 14-19 present the dimensionless
velocity and temperature pro�les of f 0(�) and �(�) for
di�erent values of � and M when Fe3O4 is applied
to both water- and kerosene-based ferrouids. From
these �gures, it is clearly observed that the boundary
layer thickness for the �rst solution is thinner than
that for the second solution. It is also seen that
there exist two di�erent temperature pro�les, i.e.,

Figure 14. Dimensionless velocity pro�les, f 0(�), for
several values of � Fe3O4, when Pr = 6:2, ' = 0:1, a = 1,
b = �1, M = 0:02, S = 2, and di�erent based ferrouids.

Table 5. Variation of Re1=2
x Cf with M for di�erent ferroparticles with water- and kerosene-based ferrouids when � = �6,

' = 0:1, S = 2, a = 1, and b = �1.
Magnetic

nanoparticles
M Water-based ferrouids Kerosene-based ferrouids

First solution Second solution First solution Second solution

Fe3O4

0 2.9084 2.6413 2.9901 2.4374
0.02 2.9338 2.5698 2.9912 2.3963
0.05 2.9558 2.4797 2.9913 2.3374

CoFe2O4

0 2.8429 2.7298 2.9827 2.4752
0.02 2.9012 2.6240 2.9861 2.4303
0.05 2.9371 2.5181 2.9889 2.3667

Mn-ZnFe2O4

0 2.8396 2.7337 2.9825 2.4762
0.02 2.9001 2.6256 2.9859 2.4312
0.05 2.9366 2.5191 2.9888 2.3674
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Table 6. Variation of Re�1=2
x Nux with M for di�erent ferroparticles with water- and kerosene-based ferrouids when

� = �6, ' = 0:1, S = 2, a = 1, and b = �1.

Magnetic
nanoparticles

M Water-based ferrouids Kerosene-based ferrouids

First solution Second solution First solution Second solution

Fe3O4

0 4.6705 3.0731 22.2051 20.5137
0.02 4.8251 2.2599 22.2520 20.4504
0.05 4.9818 -1.1295 22.3154 20.3231

CoFe2O4

0 4.3708 3.7791 22.0686 20.5630
0.02 4.6710 3.0214 22.1227 20.4917
0.05 4.8808 1.1299 22.1944 20.3916

Mn-ZnFe2O4

0 4.3923 3.8253 22.6766 21.1743
0.02 4.7104 3.0392 22.7312 21.1036
0.05 4.9271 1.1137 22.8037 21.0060

Figure 15. Dimensionless temperature pro�les �(�) for
several values of �, Fe3O4, when Pr = 6:2, ' = 0:1, a = 1,
b = �1, M = 0:02, S = 2, and di�erent based ferrouids.

before and after singularities, when we are using two
di�erent values of �. It is based on the existence of
singularities. The velocity and thermal boundary-layer
thicknesses increase in the �rst solution, while they
decrease with the increase of � in the second solution.
Other than that, it is observed that the velocity and
thermal boundary layer thicknesses decrease in the �rst
solution, while they increase with the increase of M
in the second solution. Further, we note that the
velocity and thermal boundary-layer thicknesses are
smaller for each of kerosene-based ferrouids due to
higher Prandtl number of kerosene; besides, far �eld

Figure 16. Dimensionless velocity pro�les f 0(�) for
several values of M , Fe3O4, when Pr = 6:2, ' = 0:1, a = 1,
b = �1, S = 2, � = �6:2, and di�erent based ferrouids.

boundary condition (12) is satis�ed asymptotically,
thus supporting the validity of the present numerical
results.

6. Conclusion

The problem of the two-dimensional MHD ow and
heat transfer over a moving at plate was implemented
for the e�ects of uniform heat ux and second-order
slip. Numerical solutions to the ordinary di�erential
equations were achieved using a shooting technique,
done with the aid of shootlib function in Maple software
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Figure 17. Dimensionless temperature pro�les �(�) for
several values of M , Fe3O4, when Pr = 6:2, ' = 0:1, a = 1,
b = �1, S = 2, � = �6:2, and di�erent based ferrouids.

Figure 18. Dimensionless velocity pro�les f 0(�) for
several values of M , Fe3O4, when Pr = 6:2, ' = 0:1, a = 1,
b = �1, S = 2, � = �4:8, and di�erent based ferrouids.

for di�erent values of governing parameters. The
stability of solutions was obtained using function bvp4c
from Matlab. The e�ects of magnetic parameter, M ,
moving parameter, �, mass transfer parameter, S, �rst-
order slip parameter, a, second-order slip parameter, b,
and volume fraction of solid ferroparticles, ', on ow
characteristics were examined for the three preferred
ferroparticles, namely magnetite, cobalt ferrite, and
Mn-Zn ferrite with water- and kerosene-based ferrou-

Figure 19. Dimensionless temperature pro�les �(�) for
several values of M , Fe3O4, when Pr = 6:2, ' = 0:1, a = 1,
b = �1, S = 2, � = �4:8, and di�erent based ferrouids.

ids. The numerical results were compared with the
results of the previous work, suggesting good agreement
between these results. Dual solutions exist within a
certain range of � (� < 0), and unique solution exists
when � > 0. The results indicate that critical values
j�cj and jScj increase as the parameters of M , a, b, and
' increase. Thus, these processes delay the boundary
layer separation. Furthermore, it was observed that
the boundary layer thickness for the �rst solution is
thinner than that for the second solution. The velocity
and thermal boundary-layer thicknesses increase in the
�rst solution, while they decrease with the increase of
� in the second solution. Moreover, the velocity and
thermal boundary-layer thicknesses decrease in the �rst
solution, while they increase with the increase of M
in the second solution. The kerosene-based ferrouids
also have higher skin friction and Nusselt number than
water-based ferrouids for both solutions. Between
these two solutions, it is noticed that the �rst solution
is stable and physically realizable, while the second
solutions are unstable and not physically realizable.

Nomenclature

a Constant �rst-order surface slip
parameter

b Constant second-order surface slip
parameter

B0 Strength of the applied magnetic �eld
B(x) Magnetic �eld
Cf Skin friction coe�cient
Cp Speci�c heat at a constant temperature
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f(�) Dimensionless stream function
F (�) Small relative to stream function
G(�) Small relative to temperature function
kf Thermal conductivity of the uid
ks Thermal conductivity of the solid
knf Thermal conductivity of the nanouid
L Characteristic length of the sheet
M Magnetic parameter
Nux Local Nusselt number
Pr Prandtl number
qw Surface heat ux
Rex Local Reynolds number
S Mass transfer parameter
Ssi Singularities of the mass transfer

parameter
t Time
T Nanouid temperature
T1 Temperature of the ambient uid
Tw Temperature of the plate
u; v Velocity components along x� and y�

axes
uw Surface velocity
uslip Surface slip velocity
U1 Free stream velocity
vw Mass ux velocity
v0 Mass transfer velocity
x; y Cartesian coordinates
�f Thermal di�usivity of the uid
�nf Thermal di�usivity of the nanouid
 First-order surface velocity slip
� Unknown eigenvalue parameter
� Independent similarity variable
�(�) Dimensionless temperature function
� Constant moving parameter
�si Singularities of the constant moving

parameter
�f Dynamic viscosity of the uid
�s Dynamic viscosity of the solid
�nf Dynamic viscosity of the nanouid
�f Kinematic viscosity of the uid
�nf Kinematic viscosity of the nanouid
�f Density of the uid
�s Density of the solid
�nf Density of the nanouid
(�Cp)f Heat capacity of the uid
(�Cp)s Heat capacity of the solid

(�Cp)nf Heat capacity of the nanouid
� Moving parameter
� Dimensionless time variable
�w Skin friction along the plate
' Volume fraction of solid particle of the

nanouid
 Stream function
! Second-order surface velocity slip
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