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Abstract. In this paper, we present an alternative representation of the fractional space-
time Fourier's law equation using the concept of derivative with two fractional orders �
and �. The new de�nitions are based on the concept of power law and the generalized
Mittag-Le�er function, where the �rst fractional order is incorporated into the power law
function, and the second fractional order is the generalized Mittag-Le�er function. The new
approach is capable of considering media with two di�erent layers, scales, and properties.
The generalization of this equation exhibits di�erent cases of anomalous behaviors and
Non-Fourier heat conduction processes. Numerical solutions are obtained using an iterative
scheme.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Fourier's law combined with the energy conservation
principle is the basis for the analysis of most conduction
processes [1]. However, the Fourier's equation is not
adequate to describe certain processes in some cases.
Fractional Calculus (FC) is the generalization of ordi-
nary calculus. In recent years, fractional systems have
been considered in many publications, e.g., biomedical,
electromagnetism, electrical circuits, and transport
phenomena [2-10].

The study of non-Fourier heat conduction pro-
cesses has attracted much interest in recent years.
Mainardi et al. [11] presented the interpretation of the
corresponding Green function as a probability density
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and obtained the fundamental space-time fractional
di�usion equation from the standard di�usion equa-
tion. Qi and Jiang [12] derived the exact solution to
the Cattaneo-Vernotte equation by joint Laplace and
Fourier transforms. Liu et al. [13] proposed a new time-
space fractional Cattaneo-Christov upper-convective
derivative 
ux heat conduction model. In this work,
the space fractional derivative was characterized by the
weight coe�cient of forward versus backward transition
probability. Ezzat et al. [14] presented a new math-
ematical model of heat conduction; they considered
the isotropic generalized thermoelasticity with a three-
phase lag, and their proposed model was considered
as the methodology of FC. Zhao et al. [15] studied
the Soret-Dufour e�ects on Maxwell 
uid embedded in
Darcy-Boussinesq medium. Other applications of FC
in heat conduction are given in [16-21].

The fractional order that appears in the Riemann-
Liouville or Liouville-Caputo operators can be used to
represent some physical parameters. Nevertheless, it
is not possible for these operators to be used in order
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to describe the movement of heat via material with
di�erent layers, where each layer possesses di�erent
materials. To solve the problem, Abdon Atangana [22]
introduced fractional operators with two orders in
Riemann-Liouville and Liouville-Caputo sense using
the concept of fractional derivative with non-local and
non-singular kernel. These operators allow for describ-
ing problems that are more complex with di�erent
layers and di�erent properties, e.g., the problem in the
case of thermal conduction where the heat is 
owing
within a medium with two di�erent properties. In
this context, the aim of this contribution is to present
an alternative representation of the fractional-time
Fourier's law equation using the concept of derivative
with two fractional orders � and �. The fractional
orders considered are n� 1 < � < n and 0 < � < 1 for
the fractional equation.

The paper is organized as follows: Section 2
presents new de�nitions of fractional operators with bi-
order; Section 3 discusses the fractional-time Fourier's
law equation; Section 4 concludes the paper.

2. Fractional operators with bi-order

In the following, some de�nitions of fractional opera-
tors with bi-order are presented [22].

The Atangana-Caputo (AC) de�nition with bi-
order (�; �) for f(t) is:

AC
0 D�;�

t f(t) =
B(�)
n� � �

1
�(n� �)

Z t

0

dn

dtn
f(t)

(t� �)1���nE�
n� �

n� � (t� �)�+�
o
d�:

n� 1 < � < n; n� 1 < � < n: (1)

The Laplace transform of Eq. (1) produces:

L[AC0 D�;�t f(t)](s) =
B(�)
1� � �

1
�(1� �)

fsF (s)� f(0)g

Lnt��E��� �
1� � t�+�

oo
; (2)

where:

Lnt��E��� �
1� � t�+�

�o
= s��1

2	1264(1; 1); (1� �; �+ �);
�� �

1�� � 1
s�+�

�
(1; �);

375 ; (3)

function a	b is the Wright's generalized hyper-
geometric function [23].

Substituting Wright's function (3) into Eq. (2),
we obtain:

L[AC0 D�;�t f(t)](s) =
B(�)
1� � �

s
�(1� �) 2	1264(1; 1); (1� �; �+ �);
�� �

1�� � 1
s�+�

�
(1; �);

375F (s)

�B(�)
1� � �

s��1

�(1� �) 2	1264(1; 1); (1� �; �+ �);
�� �

1�� � 1
s�+�

�
(1; �);

375 f(0):
(4)

For this operator, the inverse Laplace transform
is de�ned by:

AC
0 D�;�t f(t) =AR

0 D�;�t f(t)� B(�)
1� � �

1
�(1� �)

� f(0) t��E�f�t�+�g: (5)

For the fractional operator with bi-order (1),
when � = 0, we recover Atangana-Baleanu fractional
derivative in Liouville-Caputo sense (ABC). This oper-
ator is de�ned as follows [24]:

ABC
0 D�t f(t)=

B(�)
1��

Z t

0

_f(�)E�
h� �

1�� (t��)�
i
d�;

0 < � � 1; (6)

where d�
dt� =ABC

0 D�t is an ABC fractional derivative with
respect to t, and B(�) is a normalization function that
has the same properties as in Caputo and Caputo-
Fabrizio case.

The Laplace transform of Eq. (6) is de�ned as
follows:

L[ABC
0 D�t f(t)](s) =

B(�)
1� �L

h Z t

a

_f(�)E�h� �
1� � (t� �)�

i
d�
i

=
B(�)
1� �

s�L[f(t)](s)� s��1f(0)
s� + �

1��
: (7)

For the fractional operator with bi-order Eq. (1),
when � = 0, we recover Liouville-Caputo fractional
derivative (C). This operator is de�ned as follows:

C
0 D�t f(t) =

1
�(1� �)

Z t

0
(t� �)�� d

dt
f(�)d�;

0 < � � 1]: (8)
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3. Fourier's law equation

To keep the dimensionality of the di�erential equation,
new parameters �t and �x are introduced [25]. For the
AC fractional derivative with bi-order Eq. (1), we have:

d
dt
! 1

�1��;�
t

� AC0 D�;�t ; 0 < �; � � 1; (9)

d2

dx2 ! 1
�2(1��;�)
x

� AC0 D2(�;�)
x ; 0 < �; � � 1;

(10)

when � = 0 in Eqs. (9) and (10), we obtain the
fractional operator of type ABC (6) as follows:

d
dt
! 1

�1��
t
� ABC

0 D�t ; 0 < � � 1; (11)

d2

dx2 ! 1
�2(1��)
x

� ABC
0 D2�

x ; 0 < � � 1: (12)

For all cases, �t has the dimension of time, and
�x has the dimension of length. These parameters are
associated with the temporal and spatial components
in the system [25], when (� = � = 1) and (� = 1),
respectively; the expressions above are recovered in
the traditional sense. From now on, this idea will be
appliedto the fractional Fourier's law.

The Fourier's law is described by the classical
parabolic equation:

�
@2T (x; t)
@x2 � @T (x; t)

@t
= 0; (13)

where � = k
�Cp , � is the thermal di�usivity, k is the

thermal conductivity, � is density, Cp is the speci�c
heat capacity, and T is the temperature. conduction in
a planar medium with constant properties.

3.1. Fractional time Fourier's law equation
Considering Eq. (13) and assuming that the time
derivative is fractional and the space derivative is
ordinary, the temporal fractional equation will be as
follows:

AC
0 D�;�t T (x; t)� �@2T (x; t)

@x2 = 0: (14)

A particular solution to Eq. (13) can be found in
the following form:

T (x; t) = T0 � e�i~kxu(t): (15)

Substituting Eq. (15) into Eq. (14) and considering
Eq. (9), we obtain:

AC
0 D�;�t u(t) + ~!u(t) = 0; (16)

where ~! = !�1��;�
t and ! = �~k2 are the angular

frequencies.
The numerical approximation of Eq. (16) is given

by:

B(�)
1� � �

1
�(1� �)

Z t

0

du(�)
d�

(t� �)��

E�
n� �

1� � (t� �)�+�
o
d� + ~!u(t) = 0;

B(�)
1� � �

1
�(1� �)

Z t

0

u(t)� u(t+ �t)
2�t

(t� �)��E�n� �
1� � (t� �)�+�

o
d� + ~!u(t) = 0;

B(�)
1� � �

1
�(1� �)

nX
i=0

Z ti+1

ti

u(ti+1)� u(ti)
2�t

(tn � �)��E�
n� �

1� � (tn � �)�+�
o
d�

+ ~!
hu(tn+1)� u(tn)

2

i
= 0;

B(�)
1� � �

1
�(1� �)

nX
i=0

u(ti+1)� u(ti)
2�t

Z tn�ti+1

tn�ti
���

E�
n� �

1� � ��+�
o
d�+~!

hu(tn+1)�u(tn)
2

i
=0;

(17)

thus:

u(t) =
B(�)
1� � �

1
�(1� �)

nX
i=0

ui+1 � ui
2�th

(tn � ti+1)1��E�;2��n� �
1� � (tn � ti+1)�+�

o
� (tn � ti)1��E�;2��

n
� �

1� � (tn � ti+1)�+�
oi

+ ~!
hu(tn+1)� u(tn)

2

i
; (18)

where E� is the Mittag-Le�er function.
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The particular solution to Eq. (16) is written as
follows:

T (x; t) =T0 � e�i~kx
"
B(�)
1� � �

1
�(1� �)

nX
i=0

ui+1 � ui
2�th

(tn � ti+1)1�� � E�;2��n� �
1� � (tn � ti+1)�+�

o
� (tn � ti)1��E�;2��n� �

1� � (tn � ti+1)�+�
oi

+ ~!
hu(tn+1)� u(tn)

2

i#
:

(19)

Eq. (19) represents the time thermal di�usion.
If � = 0 in Eq. (16), we recover ABC fractional

derivative Eq. (6); from Eq. (14), we have:

ABC
0 D�t T (x; t)� �@2T (x; t)

@x2 = 0: (20)

A particular solution to this equation can be
found in the form of Eq. (15), and by substituting
Eq. (15) into Eq. (20) and considering Eq. (11), we
obtain:

ABC
0 D�;�t u(t) + ~!u(t) = 0; (21)

where ~! = !�1��
t and ! = �~k2.

Applying Laplace transforms (7) to (21) and
considering U(0) = u0 yield the following expression:

U(s) =
(1� �)s��1

s� [B(�) + ~!(1� �)]
+

B(�)u0

B(�) + ~!(1� �)

� s��1

s� + ~!�
B(�)+~!(1��)

:
(22)

Taking the inverse Laplace transform of Eq. (22),
we obtain the following particular solution of the
Eq. (21):

T (x; t) =T0 � e�i~kx
(

1� �
B(�) + ~!(1� �)

� E�;1
"
� � ~!�

B(�) + ~!(1� �)

�
t�
#

+
B(�)u0

B(�) + ~!(1� �)

� E�;1
"
� � ~!�

B(�) + ~!(1� �)

�
t�
#)

; (23)

where E� is the Mittag-Le�er function. In this case,
when (� = 1), we have:

~T (x; t) = <[ ~T0 � e�!t�i~kx]; (24)

where < indicates the real part. Equation (24) rep-
resents the classical case for the time Fourier's law
equation.

Figure 1 shows numerical simulations for temper-
ature, T (x; t), considering di�erent values of � and �,
in Eq. (19), arbitrarily chosen.

Figure 2 shows numerical simulations for tem-
perature, T (x; t), considering di�erent values of �, in
Eq. (23), arbitrarily chosen.

Considering, ~! = �~k2�1��
t and 1=� as the recipro-

cal of the time constant or thermal di�usion coe�cient,
we have:

~! = ~k2
��1��

t
�

�
= ~k2

� 1
��

�
; (25)

where if �� = ����1
t , it can be called fractional time

constant, and when � = 1, it is the classical time
constant; ~! is the angular frequency in the medium
in the presence of fractional time components, ~k is
the wave number, and 1=� is the time constant of the
system. Substituting Eq. (25) into Eq. (23), we obtain:

T (x; t) =T0 � e�ikx
(

1� �
B(�) + ( ~k2

�� )(1� �)

� E�;1
"
� � ( ~k2

�� )�

B(�) + ( ~k2

�� )(1� �)

�
t�
#

+
B(�)u0

B(�) + ( ~k2

�� )(1� �)

� E�;1
"
� � ( ~k2

�� )�

B(�) + ( ~k2

�� )(1� �)

�
t�
#)

:
(26)

Figure 3 shows the simulation results of Eq. (26)
using fractional exponents � = 1, � = 0:95, � = 0:9,
� = 0:85, and � = 0:80, respectively.

Table 1 shows di�erent values of the thermal
di�usion when � changes from � = 1, � = 0:95, � =
0:90 to � = 0:85, respectively, when � < 1, the thermal

Table 1. Thermal di�usion versus Constant time �� .

� Constant time (��) Thermal di�usion
1 1 0.63

0.95 0.9376 0.63
0.90 0.9216 0.63
0.85 0.9143 0.63
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Figure 1. Thermal di�usion for di�erent values of � and � arbitrarily chosen, using numerical evaluation of Eq. (19): (a)
� and � take the same value, (b) � and � take di�erent values, (c) � = 0:90 and � = 0:85, and (d) � = 0:85 and � = 0:80.

Figure 2. Thermal di�usion for di�erent values of � arbitrarily chosen, using numerical evaluation of Eq. (23): (a) � takes
di�erent values, and (b) � = 0:85.

di�usion occurs in less time than the ordinary thermal
di�usion. This phenomenon indicates the change of the
medium properties, and the system presents dissipative
e�ects [11].

3.2. Fractional space Fourier's law equation
Considering Eq. (13) and assuming that the space
derivative is fractional and the time derivative is ordi-
nary, the spatial fractional equation will be as follows:

AC
0 D2(�;�)

x T (x; t)� 1
�
@T (x; t)
@t

= 0: (27)

A particular solution to Eq. (27) can be found in

the following form:

T (x; t) = T0 � e�!tu(x): (28)

Substituting Eq. (28) into Eq. (27) and considering
Eq. (10), we obtain:

AC
0 D2(�;�)

x u(x) + ~k2u(x) = 0; (29)

where ~k2 = k2�2(1��;�)
x is the fractional wave number

with bi-order and k = !
� is the classical wave number.

The numerical approximation of Eq. (29) is given
by:
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Figure 3. Thermal di�usion versus constant time, using
exponent � = 1, �� = 0:63 located in t = 1 s, � = 0:95;
�� = 0:63 located in t = 1:033 s, � = 0:90; �� = 0:63
located in t = 1:037 s, � = 0:85; �� = 0:63 located in
t = 1:041 s and � = 0:80; �� = 0:63 located in t = 1:044 s.

B(�)
2� � �

1
�(2� �)

Z x

0

d2u(�)
d�2 (x� �)��E2�n� �

2� � (x� �)2(�+�)
o
d� + ~k2u(x) = 0;

B(�)
2� � �

1
�(2� �)

Z x

0

u(x)� u(x+ �x)
2�x

(x� �)��E2�

n� �
1� � (x� �)2(�+�)

o
d�

+ ~k2u(x) = 0;

B(�)
2� � �

1
�(2� �)

nX
i=0Z xi+1

xi

u(xi+1)� 2u(xi) + u(xi�1)
2(�x)2

(xn � �)�� � E2�

n� �
2� � (xn � �)2(�+�)

o
d�

+ ~k2
hu(xn+1)� u(xn)

2

i
= 0;

B(�)
2� � �

1
�(2� �)

nX
i=0

u(xi+1)� 2u(xi) + u(xi�1)
2(�x)2Z xn�xi+1

xn�xi
���(xn � �)��

� E2�

n� �
2� � (xn � xi+1)

o
d�

+ ~k2
hu(xn+1)� u(xn)

2

i
= 0;

thus:

u(x) =
B(�)
2� � �

1
�(2� �)

nX
i=0

u(xi+1)� 2u(xi) + u(xi�1)
2(�x)2h

(xn � xi+1)1�� � E2�;2��n� �
2� � (xn � xi+1)2(�+�)

o
� (xn � xi)1��E2�;2��n� �

2� � (xn � xi+1)2(�+�)
oi

+ ~k2
hu(xn+1)� u(xn)

2

i
; (30)

where E2� is the Mittag-Le�er function.
The particular solution to Eq. (28) is written as

follows:

T (x; t) =T0 � e�!t
"
B(�)
2� �

� 1
�(2� �)

nX
i=0

u(xi+1)� 2u(xi) + u(xi�1)
2(�x)2h

(xn � xi+1)1�� � E2�;2��n� �
2� � (xn � xi+1)2(�+�)

o
� (xn � xi)1�� � E2�;2��n� �

2� � (xn � xi+1)2(�+�)
oi

+ ~k2
hu(xn+1)� u(xn)

2

i#
:

(31)

Eq. (31) represents the thermal di�usion with spatial-
decaying amplitude with respect to space x.

If � = 0 in Eq. (29), we recover ABC fractional
derivative (6); from Eq. (27), we have:

ABC
0 D�t T (x; t)� �@2T (x; t)

@x2 = 0: (32)
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A particular solution to this equation can be
found in the form of Eq. (28); substituting Eq. (28)
into Eq. (32) and considering Eq. (12), we obtain:

ABC
0 D2�

x u(x) + ~k2u(x) = 0; (33)

where, ~k2 = k2�2(1��)
x is the fractional wave number

and k = !
� is the classical wave number.

Applying Laplace transform (8) to (33) and con-
sidering u(0) = u0 and _u(0) = 0 yield the following
expression:

U(s) =
1

B(�)2 + ~k2(1� �)2"
(1� �)2s2��1�

s� + i~k�
B(�)+i~k(1��)

��
s� � i~k�

B(�)�i~k(1��)

�
+

2�(1� �)s��1�
s� + i~k�

B(�)+i~k(1��)

��
s� � i~k�

B(�)�i~k(1��)

�
+

�2s�1�
s� + i~k�

B(�)+i~k(1��)

��
s� � i~k�

B(�)�i~k(1��)

�#

+
B(�)2u0

B(�)2 + ~k2(1� �)2"
s2��1�

s� + i~k�
B(�)+i~k(1��)

��
s� � i~k�

B(�)�i~k(1��)

�#:
(34)

Taking the inverse Laplace transform of Eq. (34),
we obtain the following particular solution to Eq. (33):

T (x; t) =T0 � e�!t
"

(1� �)2

B(�)2 + ~k2(1� �)2

� aE�;1(ax�) + bE�;1(�bx�)
a+ b

+
2�(1� �)

B(�)2 + ~k2(1� �)2

� aE�;�+1(ax�) + bE�;�+1(�bx�)
a+ b

� x�

+
�2

B(�)2 + ~k2(1� �)2

� aE�;2�+1(ax�) + bE�;2�+1(�bx�)
a+ b

� x2�

+
B(�)u0

B(�)2 + ~k2(1� �)2

� aE�;1(ax�) + bE�;1(�bx�)
a+ b

#
; (35)

where a = i~k�
B(�)+i~k(1��)

, b = i~k�
B(�)�i~k(1��)

and E� is
the Mittag-Le�er function.

In this case, when (� = 1), we have:

~T (x; t) = ~T0 � e�!t cos(kx): (36)

Eq. (36) represents the classical case for the space
Fourier's law equation.

Figure 4 shows the numerical simulations for
temperature, T (x; t), considering di�erent values of �
and �, in Eq. (31), arbitrarily chosen.

Figure 5 shows numerical simulations for tem-
perature, T (x; t), considering di�erent values of �, in
Eq. (23), arbitrarily chosen.

When fractional orders �; � change from �; � 2
[0:85; 1], the simulated fractional di�usion occurs in
greater time than the simulated ordinary di�usion.
This phenomenon indicates the change of the medium
properties, di�erent from the ideal properties presented
in Eq. (13). The velocity of the concentration wave
through a medium is determined by the inertia and
the elasticity of the medium. Usually this dissipation
is known as internal friction [26].

3.3. Fractional space-time Fourier's law
equation

Now, considering Eq. (13) and assuming the space
time derivatives as fractional, the order of space-time
fractional di�erential equation is 0 < �; � � 1 and
0 < 
; � � 1; the space-time fractional equation is as
follows:

AC
0 D2(�;�)

x T (x; t)� 1
�
AC
0 D(
;�)

t T (x; t) = 0: (37)

The numerical approximation of Eq. (37) is given
by:

T (x; t) = A �
"
B(�)
2� �

� 1
�(2� �)

nX
i=0

u(xi+1)� 2u(xi) + u(xi�1)
2(�x)2h

(xn � xi+1)1�� � E2�;2��n� �
2� � (xn � xi+1)2(�+�)

o
�(xn � xi)1�� � E2�;2��
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Figure 4. Thermal di�usion for di�erent values of � and � arbitrarily chosen, using numerical evaluation of Eq. (32): (a)
� and � take the same value, (b) � and � take di�erent values, (c) � = 0:90 and � = 0:85, and (d) � = 0:85 and � = 0:80.

Figure 5. Thermal di�usion for di�erent values of � arbitrarily chosen, using numerical evaluation of Eq. (23): (a) � takes
di�erent values, and (b) � = 0:85.n� �

2� � (xn � xi+1)2(�+�)
oi#

�
"
B(�)
1� � �

1
�(1� 
)

nX
k=0

uk+1 � uk
2�t

h
(tn � tk+1)1�
E�;2�


n� �
1� � (tn � tk+1)�+


o

�(tn � ti)1�
E�;2�
n� �
1� � (tn � tk+1)�+


oi#
; (38)

where A is a constant.
Figure 6 shows the simulations where the frac-

tional time and the spatial fractional derivatives are
taken at the same time for di�erent particular cases of
(�; �) and (
; �). These �gures show di�erent behaviors
of anomalous thermal di�usion; when the fractional
orders are less than 1, the thermal di�usion is slower
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Figure 6. Thermal di�usion for di�erent values of (�; �) and (
; �) arbitrarily chosen, using numerical evaluation of
Eq. (38): (a) � = 1; � = 0:9 and 
 = 0:95; � = 0:9, (b) � = 0:9; � = 1 and 
 = 0:9; � = 0:95, and (c) � = 0:95; � = 0:85 and

 = 0:85; � = 0:9, and (d) � = 0:85; � = 0:9 and 
 = 0:8; � = 0:85.

(thermal subdi�usion). These cases can represent a
medium with two di�erent properties represented by
fractional bi-order � and �.

4. Conclusion

In this paper, we presented an alternative represen-
tation of the fractional-time Fourier's law equation
using the concept of derivative with two fractional
orders � and �. The new approach is capable of
considering media with di�erent properties represented
by fractional bi-order � and �. This is the case,
for instance, in thermal conduction for a reaction
di�usion within a medium with two di�erent layers
and properties. These novel fractional operators allow
studying the heat transfer through a material with
di�erent scales or heterogeneous media. Our results
indicate that fractional bi-order � and � have an
important in
uence on the temperature.

The motivation of this study comes from the fact
that it is possible to �nd in nature some systems with
di�erent material layers, where each layer possesses
di�erent materials, e.g., in thermal conduction where
the heat is 
owing within a medium with two di�er-
ent properties. These types of problems cannot be
portrayed with the existing derivatives and fractional
order, which are based on the power law. For this
reason, the Atangana derivative uses a kernel that is

more powerful than x�� , and the generalized Mittag-
Le�er function is combined with a power law.

In the case where the space-time fractional dif-
ferential equation is considered, Eq. (38) shows the
numerical solution to the Fourier's law equation using
the concept of derivative with two fractional orders
(�; �) and (
; �) for space and time, respectively.
Di�erent values of � and � or 
 and � represent
intermediate states between conservative and dissi-
pative systems, which present anomalous relaxations.
This combination of stored and dissipated energies
is conveniently based on the representation of linear
thermoviscoelasticity theory [27].

It is suggested that this derivative can be used
to model more complex problems found in nature,
groundwater studies, the phenomena of heat transfer
from continuous media to discontinuous media, thermal
convection of non-Fourier 
uids, the non-Newtonian
e�ects in thermal convection, relaxing gas dynamics,
irreversible thermodynamics, thermoelasticity, ortho-
dox viscoelastic materials and for the study of systems
with heterogeneous media.

Nomenclature

T Temperature (�C)

� Thermal di�usivity (m2/s)
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� Thermal conductivity (W/mK)
� Density (kg/m3)
Cp Speci�c heat capacity (J/kgK)
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