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Abstract. Parallel mechanisms with reduced Degree Of Freedom (DOF) have grown
in importance for industry and researchers as they o�er a simpler architecture and lower
manufacturing/operating costs with great performance. In this paper, a two-degree-of-
freedom parallel robot is proposed and analyzed. The robot with a �xed base, a moving
platform, and three legs achieve translational and rotational motions through actuation
on prismatic and revolute joints and can be applied to pick-and-place applications, vehicle
simulators, etc. Through homogeneous transformation matrices and Sylvesters dialytic
elimination method, a closed-form solution for direct kinematics is obtained for all possible
assembly modes. Inverse kinematics is solved by the closed-form solution as well. This
greatly decreases computational time, suggesting the optimality of the proposed approach.
A case study is investigated to validate the solutions found and is compared with a CAD
model to corroborate the obtained results. Finally, a workspace calculation is carried out
for di�erent geometrical parameters of the robot.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Parallel Kinematic Machines (PKMs), compared to
serial robots, o�er some useful features such as higher
structural rigidity (sti�ness), kinematic accuracy (non-
cumulative joint error), higher payload to robot weight
ratio, compactness, and modularity [1-3]. In the
past two decades, all of these advantages have won
PKMs special reverence for the industry in the �elds
of machine tooling, high-speed pick-and-place applica-
tions, vehicle driving simulators, and solar tracking
mechanisms among others. One of the main issues
of PKMs is their complex forward kinematics, often
implying to �nd the solution of nonlinear systems
of equations which may not be unique [4] and their
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limited workspace which limits their application in
some industry markets [5].

In literature, forward kinematics has received
extensive attention. Therefore, many approaches have
been proposed, classi�ed into two main classes: nu-
merical methods and analytic techniques. Di�erent
numerical methods have been applied, e.g., neural
networks strategies [6], Taylor expansion series with
n-order polynomials [7], Newton classical methods [3],
and fuzzy inference systems [8]. Although numerical
techniques have successfully achieved a fast solution to
some problems, their accuracy is dependent on itera-
tions required for a good convergence [9]; they fail to
describe the set of solutions to the nonlinear equations
governing the problem [10]. Other numerical/graphical
methods use CAD functionalities to design computer
simulation mechanisms of PKMs that can be used
to analyze forward kinematics; further, a variation
geometry approach is proposed to shape and solve the
reachable workspace problem [11].

To �nd all the forward kinematics solutions for
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Figure 1. The US-RS-RPS parallel robot.

di�erent con�gurations on PKMs, various analyti-
cal techniques have been used for di�erent require-
ments, e.g., Sylvesters dialytic elimination method
on a 3(RSS)-S fully spherical robot [12], homotopy
continuation method for a 3-UPU translational parallel
robot [13], and Grobner basis for lexicographic ordering
of equations for a planar Stewart platform [14]. Al-
though analytical strategies lead to the discovery of
a closed-form solution, its complexity often requires
the use of numerical methods; for instance, Dhingra
et al. found a 20th-degree polynomial for the direct
kinematics of the Stewart platform [15].

To overcome complex kinematics and control,
designers have explored di�erent architectures from
universal full mobility parallel robots, such as the
Gough-Stewart platform, to robots with reduced DOF
with a simpler architecture and lower manufactur-
ing/operating costs. Although decreasing the DOF re-
duces the available workspace, it also lowers complexity
on forward kinematics solution, incidence of singular-
ities, voids and legs collisions [16] from the tracking
space as evidenced by Dunlop et al. [17]. In particular,
the two DOF parallel mechanisms have attracted much
attention of the designers, and various examples of ap-
plications of two spatial and planar DOFs mechanisms
can be found in di�erent industrial sectors; for instance,
Zhang et al. described a 2-DOF mechanism in a vehicle
driving simulator [18]; Cammarata designed a 2-DOF
mechanism for solar tracking systems [19]; Rico et al.
developed a knee rehabilitation device using a planar
parallel mechanism [20]. Although there is an increased
interest in those mechanisms, there are still many types
that have not been analyzed.

This paper studies a US-RS-RPS parallel robot,
which is a 2-DOF parallel robot with translational
and rotational capabilities (shown in Figure 1). This
architecture o�ers simple kinematic actuation on pris-
matic and revolute joints and can be used on pick-
and-place applications, simple vehicle driving simu-

lators, solar tracking mechanisms or others accord-
ing to users' requirements. The position analysis
of this mechanism is carried out using homogeneous
transformation matrices. These matrices are mainly
used for analysis of serial mechanisms, allowing for
an intuitive understanding of the relationship between
passive and active joints and the position and orienta-
tions of moving platform [21]. A closed-form solution
for all con�gurations is achieved using the Sylvesters
dialytic elimination method. Inverse kinematics is also
analyzed; �nally, a case study is shown with a symmet-
ric structure exhibiting four real con�gurations, and
the workspace calculated is also done for illustration
purposes.

2. Description of the US-RS-RPS parallel
robot

The US-RS-RPS parallel robot is composed of a moving
platform (P1; P2; P3), a �xed base (B1; B2; B3), and
three legs (B1P1; B2P2; B3P3) (see Figures 1 and 2).
Leg one has a universal (U) joint (passive) attached to
the base and is attached to the moving platform by a
spherical (S) joint; the universal joint is described by
angles  and �. Leg two has an actuated revolute (R)
joint assembled to the base and a spherical (S) joint
attached to the moving platform; angle � describes
the revolute joint. Leg three has a revolute (R) joint
connected to the base, an actuated prismatic (P) joint,
and a spherical joint connected to the moving platform;
angle  describes the revolute joint and � describes the
prismatic actuation as an expansion/contraction of the
leg's initial length. The length of the legs is de�ned by
L.

Each leg is attached to the base at points Bi
and to the moving platform at points Pi, as shown
in Figures 2 and 3. Reference coordinate system
xyz, is attached to the center of the �xed base, O.
Bi points are referenced to coordinate system xyz
through a translation in z axis described by distance d
followed by a rotation along x axis, measured through
angle �i. The orientation of the moving platform is
represented by coordinate system uvw which is located
at the center of the moving platform at point Op. Pi
points are referenced to the coordinate system uvw
through a translation in w axis described by distance a
followed by a rotation along u axis, measured through
angle i. Coordinate system uvw and its position
are described by homogeneous transformation matrix
MOp
O . Coordinate system uvw is de�ned by roll, pitch

and yaw angle parameters, namely a rotation of �x
about �xed x axis, followed by rotation �y about �xed
y axis, and rotation �z about �xed z axis. There is no
particular reason for selecting such a de�nition. Thus,
matrix MOp

O can be expressed by Eq. (1) as shown in
Box I.
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MOp
O =

2664 c�yc�z �c�ys�z s�y Ox
c�xs�z + c�zs�xs�y c�xc�z � s�xs�ys�z �c�ys�x Oy
s�xs�z � c�xc�zs�y c�zs�x + c�xs�ys�z c�xc�y Oz

0 0 0 1

3775 : (1)

Box I

Figure 2. Schematic diagram of the parallel manipulator.

cos(�) and sin(�) are represented by c(�) and s(�).
Eq. (1) is written in terms of the unit vectors uvw
attached to platform and its origin as follows:

MOp
O =

��!u �!v �!w �!
Op

0 0 0 1

�
: (2)

The center of the moving platform can be repre-
sented as a function of Pi points through the barycenter
equation:

�!
Op =

1
3

3X
i=1

Pi: (3)

Figure 3. Geometry of a general kinematic chain.

Considering that the direction of unit vector �!w
is along vector

���!
OpP3, the direction of unit vector �!u is

perpendicular to the moving platform, and unit vector�!v is perpendicular to unit vectors �!u and �!w , then
Eq. (2) is written in terms of Pi points as shown in
Box II. Using the results from Eqs. (2) and (4), the
rotation angles of Eq. (1) can be found in terms of Pi
points using the relationship shown below:

�y = a tan 2
��
u2
x + v2

x
� 1

2 ; wx
�
; (5)

�z = a tan 2
��vx
c�y

;
ux
c�y

�
; (6)

MOp
O =

2664 ���!OpPi �����!OpPi+1���!OpP1 ����!OpP2


���!
OpP3 �

�
~OpPi �����!OpPi+1

����!OpP1 ����!OpP2


���!
OpP3���!OpP3

 �!
Op

0 0 0 1

3775 : (4)

Box II
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�x = a tan 2
��wx
c�y

;
wz
c�y

�
: (7)

Finally, the DOFs of the US-RS-RPS parallel
robot are calculated using both the Gr�ubler-Kutzbach
equation as used in [22] and the analytical DOF method
of an end e�ector using reciprocal screw theory is
depicted in [23]. First, using the Gr�ubler-Kutzbach
yields:

M = � (L� 1)�
gX
i=1

fi = 6 (7� 1)� 34 = 2; (8)

where L represents the number of links, � represents
the task space, fi denotes the DOF of joint i, and g
represents the number of joints. The coordinate system
attached to the center of the moving platform can be
oriented and displaced by the actuation of prismatic
joint, �, and revolute joint, �.

The second approach calculates twist ($i) of each
leg of the platform and uses these results to compute
the wrench ($ri ) of each leg through the reciprocal
screws formula presented below:

$i � $ri = 0: (9)

The wrenches obtained are grouped in matrix $r,
and the DOFs of the mechanism are solved using again
the reciprocal screws formula, only this time to obtain
the value of $F as shown below:

$F � $ri = 0: (10)

The non-zero rows of matrix $F represent the
DOF of the mechanism; for the case of the US-RS-RPS
parallel robot, the analyses are carried out obtaining
two rows for matrix $F , and then the mechanism has
two DOFs.

3. Direct kinematic analysis

The US-RS-RPS parallel robot, as mentioned before,
has two DOFs, assuming that the actuation falls on
prismatic (�) and revolute joint on the second leg (�).
There are still three passive joints which need to be
solved in order to solve the direct kinematic problem;
these passive joints are �; �, and  .

To solve the direct kinematics primarily, coupling
points, Bi, are obtained using two transformations.
First, considering a rotation in the direction of x axis
by angle �i and a displacement in z axis by distance
d, these two transformations yield the homogeneous
transformation matrix shown below:

TBi =

26641 0 0 0
0 c�i �s�i �ds�i
0 s�i c�i dc�i
0 0 0 1

3775

=
��!xl �!yl �!zl �!Bi

0 0 0 1

�
; (11)

where �!xi ;�!yi ; and �!zi are the directions of the coordinate
system attached to point Bi.

Furthermore, according to the representation
shown in Figure 3, the position equation associated
with Pi points can be de�ned in two ways as shown
in the following equations:

Pi = Op +OpPi; (12)

Pi = Bi +BiPi: (13)

These equations can also be stated in terms of the
homogeneous transformation matrix. For Eq. (12),
the position of Op is obtained using the homogeneous
transformation matrix, MOp

O ; additionally, position
vector

���!
OpPi is determined by two transformations: a

rotation in the direction of u axis by angle i, and a
displacement in \the rotated" w axis by distance a,
obtaining subsequent equivalence for Pi:

Pi =

24OxOy
Oz

35
+

24 acis�y + ac�ys�zsi�asi (c�xc�z � s�xs�ys�z)� ac�ycis�x
ac�xc�yci � asi (c�zs�x + c�xs�ys�z)

35 :
(14)

Besides, the solution to Eq. (15) is achieved by suc-
cessive transformations through the axis of each joint
linked to every arm of the mechanism generating the
coordinates of every Pi point in the robot. As depicted
below:

P1 =

24 Lc�c�
L (c�1s�+ c�s�1s�)� ds�1
L (s�1s�� c�c�1s�) + dc�1

35 ; (15)

P2 =

24 Lc�
�s�2 (d� Ls�)
c�2 (d� Ls�)

35 ; (16)

P3 =

24 �Lc 
�s�3 (d� Ls )
c�3 (d� Ls )

35 : (17)

Using the results of Eqs. (15), (16), and (17), the
next three equations express the distance of segments
P1P2, P2P3, and P1P3, respectively:

K1 +K2c�s� +K3c�c� +K4s� = 0; (18)
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K5 +K6c +K7s = 0; (19)

K8 +K9c�s� +K10c�c� +K11s� = 0; (20)

where terms K1 to K7 are dependent on geometric
parameters (dimensions), d, L1, P1P2, P2P3, P1P3,
�1, �2, �3, and active joints, � and �; terms K8 to
K11 are functions of  and the mentioned parameters.
The detailed expressions for K1 to K11 terms are
given in the Appendix. Eq. (19) relates passive joint
 with active joint � implicitly; to explicitly solve
this equation for  , an half-angle substitution is used,
resulting in:

 = 2 tan�1

 �K7 �pK2
7 �K2

5 +K2
6

K5 �K6

!
: (21)

Using the results of  on Eqs. (18) and (20) and
performing another half angle substitution for angle �
on both equations yield:

K12T 2
� +K13T� +K14 = 0; (22)

K15T 2
� +K16T� +K17 = 0; (23)

where T stands for half angle substitution, T� =
tan(�=2); similarly, for Eq. (21), coe�cients K12 to K17
are functions of the mentioned geometric parameters,
active joints � and � and passive joints � and  . The
detailed expressions for K12 to K17 coe�cients are
given in the Appendix. The coe�cients of Eqs. (22)
and (23) are used to create the matrix shown below:

S =

2664 0 K12 K13 K14
K12 K13 K14 0

0 K15 K16 K17
K15 K16 K17 0

3775 : (24)

For this matrix, if T� is a solution to Eqs. (22) and
(23), then coe�cients K12;K13, and K14 are linear to
K15;K16, and K17; as a consequence, the determinant
of matrix S must be equal to zero, which produces the
equation below:

det(S) =K2
12K

2
17 �K12K13K16K17

� 2K12K14K15K17 +K12K14K2
16

+K2
13K15K17 �K13K14K15K16

+K2
14K

2
15 = 0: (25)

As mentioned, coe�cients K12 to K17 are functions
of already known parameters, except for �, which is
the only unknown parameter in this equation. To solve
Eq. (18) for �, another half angle substitution is carried
out, yielding the next quartic function:

K18T 4
� +K19T 3

� +K20T 2
� +K21T� +K22 = 0; (26)

where T� represents half angle substitution T� =
tan(�=2). Coe�cients K18 to K22 are described in
detail in the Appendix. Eq. (26) has four solutions and
many analytical methods exist to solve it [24]. Once a
solution for � is obtained, it is easy to solve � using one
of Eqs. (22) and (23) and substituting T� = tan(�=2).
Using Eq. (22) yields:

� = 2 tan�1

 �K13 �pK2
13 � 4K12K14

2K12

!
: (27)

Once the passive joints are explicitly solved, the direct
kinematic is obtained in a straightforward way, as every
coupling point of the platform is a function of the
passive and active joints as depicted in Eqs. (15) to
(17). Then, as described in Eqs. (3) to (7), the position
and orientation of the moving platform is also found as
these equations are functions of the coupling points.

4. Inverse kinematics

The inverse kinematic problem focuses on the solution
of the active joints position, knowing the position and
orientation of the moving platform. As mentioned
before, the position and orientation of the moving
platform are described by Eq. (1). Moreover, Eq. (15)
describes the position of Pi points as a function of the
orientation and the position of the moving platform.
Using these results, the inverse kinematic problem is
solved obtaining the values of actives joints, � and �,
as functions of points P1, P2, and P3.

Employing the expression for x coordinate of
point P2 and dividing it by the expression for y
coordinate of point P2 easily yield the expression for
active joint �:

� = tan�1
�
P2y + ds�2

s�2P2x

�
: (28)

To �nd the solution for active joint initially, it
is needed to solve the passive joint,  . Using a similar
procedure rather than the used one to �nd �,  is found
using the expression for x coordinate of point P3 and
the expression for y coordinate of point P3, producing:

 = tan�1
�
P3y + ds�3

P3x

�
: (29)

At last, the solution for active joint � is found in
a straightforward way replacing the obtained value in
Eq. (22) in the expression for z coordinate of point P3,
generating:

� =
c�3d� P3

L1s 
: (30)

Eqs. (14), (28), (29), and (30) solve the inverse
kinematic for the US-RS-RPS parallel robot.
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5. Case study

In this section, an example of a solution to direct
kinematic problem of the US-RS-RPS parallel robot
is presented. For this purpose, the constant geo-
metric parameters (d; L1; a; �1; �2; �3) and position of
the actuators (�; �) are supplied. The solution will
determine the position of the coupling points of the
platform (P1; P2; P3) by obtaining three angles �; �,
and  . Afterwards, in order to validate the solution,
the direct kinematic solution is used as an input to the
inverse kinematic model.

The architecture parameters and actuation values
are shown in Table 1. Ki coe�cients used to solve the
forward kinematic problem are also depicted for every
solution (assembly modes) in Table 2. Using these
values, passive joints �; �, and  are calculated, the
values are listed in Table 3, and the coupling points
(P1; P2; P3) are also listed in Table 3. These parameters
show the particular solution for each assembly mode.
According to these results, the solutions are shown
graphically in Figure 4.

Validation of the proposed model is made using
the coupling points as inputs for the inverse kinematic
model, and then the actives joints are obtained, as
shown in Table 4. The results corroborate the accuracy

of the proposed model for the direct position analysis
of the manipulator. This is also veri�ed through a com-
parison with a 3D CAD model developed with proper
constraints and dimensions to solve the kinematic
parameters of the platform, achieving the same results
from the proposed closed-form solution [25]. Figure 5
shows an example CAD model used for assembly mode
3 evaluation.

6. Workspace calculation

For the current case study, only theoretical workspace
is considered and calculated using the solution obtained
by forward kinematics [26]. For assembly mode C
(see Figure 4), with applied geometrical and joint con-
straints, workspace is calculated as a radial projection
of platform center on a sphere in Cartesian space, as
shown in Figure 6. By using a projected workspace,
translational and rotational capabilities of manipulator
can be seen in one graph. As stated before, robot
con�guration and dimensioning is crucial; therefore,
di�erent topologies and characteristics can be achieved
through variations on geometrical parameters. In
Figure 6(a), the dimensions of the robot are used for
the case of study, and this con�guration yields a non-
continuous workspace divided into three zones, imply-

Figure 4. Assembly modes.
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Table 1. Input data for the US-RS-RPS parallel robot case study.

d (mm) L (mm) a (mm) �1 and 1 �2 and 2 �3 and 3 � �

40 96 78:46 120� �120� 0� 0� 1

Table 2. Coe�cients Ki for all assembly modes.

Assembly mode
1 2 3 4

K1 4:763� 103 4:763� 103 4:763� 103 4:763� 103

K2 �1:152� 104 �1:152� 104 �1:152� 104 �1:152� 104

K3 �1:843� 104 �1:843� 104 �1:843� 104 �1:843� 104

K4 6:651� 103 6:651� 103 6:651� 103 6:651� 103

K5 4:763� 103 4:763� 103 4:763� 103 4:763� 103

K6 �1:843� 104 �1:843� 104 �1:843� 104 �1:843� 104

K7 �1:152� 104 �1:152� 104 �1:152� 104 �1:152� 104

K8 �6:106� 103 �6:106� 103 1:296� 104 1:296� 104

K9 �2:824� 103 �2:824� 103 �1:807� 104 �1:807� 104

K10 6:106� 103 6:106� 103 �1:296� 104 �1:296� 104

K11 8:410� 103 8:410� 103 �1:800� 104 �1:800� 104

K12 2:119� 104 9:387� 103 1:555� 104 9:581� 103

K13 1:330� 104 1:330� 104 1:330� 104 1:330� 104

K14 �1:166� 104 1:397� 102 �6:023� 103 �5:493� 101

K15 �5:200� 103 �1:239� 104 1:582� 104 2:577� 104

K16 1:682� 104 1:682� 104 �3:601� 104 �3:601� 104

K17 �7:013� 103 :793� 102 1:010� 104 1:478� 102

K18 �9:918� 1016 �9:918� 1016 �4:553� 1017 �4:553� 1017

K19 1:325� 1017 1:325� 1017 2:012� 1018 2:012� 1018

K20 3:173� 1017 3:173� 1017 �2:700� 1017 �2:700� 1017

K21 �1:325� 1017 �1:325� 1017 �2:012� 1018 �2:012� 1018

K22 �9:918� 1016 �9:918� 1016 �4:553� 1017 �4:553� 1017

Table 3. Solutions of the case study.

A. mode � � ' P1 P2 P3

1 109:349� 72:92� 52:363�

264 17:22
�24:12
73:856

375 264 96
34:641
�20

375 264�31:804
0

�50:579

375
2 109:349� �45:710� �1:215�

264 67:02
�93:13
�56:112

375 264 96
34:641
�20

375 264�31:804
0

�50:579

375
3 �45:338� �28:241� 36:263�

26468:191
�94:75
10:86

375 264 96
34:641
�20

375 26467:483
0

108:28

375
4 �45:338� 109:2� 0:469�

264�31:57
43:48
26:01

375 264 96
34:641
�20

375 26467:483
0

108:28

375
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Table 4. Solutions of the inverse kinematics problem for the assembly modes.

A. mode Coupling point [P1; P2; P3] � �

1

2664 17:22 96 �31:804

�24:12 34:641 0

73:856 �20 �50:579

3775 0� 1

2

2664 67:02 96 �31:804

�93:13 34:641 0

�56:112 �20 �50:579

3775 0� 1

3

266468:191 96 67:483

�94:75 34:641 0

10:86 �20 108:28

3775 0� 1

4

2664�31:57 96 67:483

43:48 34:641 0

26:01 �20 108:28

3775 0� 1

Figure 5. CAD model for geometry variation.

ing that the robot is limited to one of the three zones.
In Figure 6(b), the dimensions of the base platform
are increased to become equal to the moving platform
maintaining the same lengths of the legs; the result
is a small zone above the sphere. In Figure 6(c), the
dimensions of the base platform are slightly increased
to become bigger than those of the moving platform.
As a result, the workspace obtained is smaller than
that in the previous con�guration. In Figure 6(d),

the dimensions of the base and moving platforms are
the same as in the case of study; however the lengths
of the legs are heavily increased, obtaining a bigger
continuous workspace, almost 1=8 of the total volume
of the sphere. The results show that the workspace is
highly sensitive to the changes of the dimensions of the
robot; thus, it is encouraged to make an optimization
process on the robot to obtain the bigger continuous
workspace possible.

7. Conclusion

A novel US-RS-RPS 2-DOF parallel robot was pre-
sented for di�erent applications with positioning and
orientation requirements with a simple actuation. The
robot structure as well as the coordinate frames were
described, and its kinematic was shown as a combi-
nation of translation and rotation. Forward kinemat-
ics were solved using the homogeneous transforma-
tion matrices and geometrical constraints on moving
platform achieving a closed form solution. The use
of homogeneous transformation matrices was demon-
strated to be a useful and intuitive tool to develop
the kinematic of parallel robots, because every member
can be analyzed as an open kinematic chain that
can be further constrained. The system of equation
was solved using the Sylvesters dialytic elimination
method and a fourth-degree polynomial was found
(representing four possible assembly modes). Inverse
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Figure 6. Projected workspace for di�erent dimensions: (a) L = 96 mm d = 40 mm a = 78:5 mm (case study), (b)
L = 96 mm d = 58 mm a = 58 mm (base equal to moving platform), (c) L = 100 mm d = 69 mm a = 58 mm (base bigger
than moving platform), and (d) L = 288 mm d = 40 mm a = 78:5 mm (legs dimensions increased).

kinematics was also solved in a straightforward way
using matrix homogeneous matrices. A case study
was also developed; a comparison of results for direct
and inverse kinematics with those of a 3D CAD model
shows the e�ectiveness of the proposed model. Finally,
workspace calculation was performed with respect to
di�erent geometrical parameters, and showing that
the systems workspace is highly inuenced by each
parameter and con�guration.

Future works may extend the current results to
the exploration of recon�guration capabilities based
on possible assembly modes to maximize workspace,
condition index, and dynamic performance among
others, according to user's needs.
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Appendix

Detailed expressions for K1 to K11 of Eqs. (9), (10)
and (11) are as follows:

K1 = 2L2 � (P1P2)2 + 2d(d� Ls�)(1� c(�1 � �2));

K2 = �2L(d� dc(�1 � �2) + Ls�c(�1 � �2));

K3 = �2L2c�;

K4 = �2Ls(�1 � �2)(d� Ls�);

K5 =L2(1 + �2) + 2d(d� Ls�)(1� c(�2 � �3))

� (P2P3)2;

K6 = �2�L2c�;

K7 = �2�L(d� dc(�2 � �3) + Ls�c(�2 � �3));

K8 =L2 � (P1P3)2 + 2d2(1� c(�1 � �3)) + �2L2

+ Ld�s(�1 � �3 �  ) + Ld�s(�1 � �3 +  );



2154 J. Sanjuan et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 2144{2154

K9 =� 2L(d� dc(�1 � �3) + l�s(�1 � �3 +  )=2

� L�s(�1 � �3 �  )=2);

K10 = �2�L2c ;

K11 = �2Ls(�1 � �3)(d� �Ls ):

Detailed expressions forK12 toK17 of Eq. (13) and (14)
are as follows:

K12 = K1 � (K2s� +K3c�);

K13 = 2K4;

K14 = K1 + (K2s� +K3c�);

K15 = K8 � (K9s� +K10c�);

K16 = 2K11;

K17 = K8 + (K9s� +K10c�):

Detailed expressions for K18 to K22 of Eq. (17) are as
follows:

K18 = W1 +W2;

K19 = �4 �W4;

K20 = 2W1 � 2W2 + 4W3;

K21 = 4W4;

K22 = W1 +W2;

where the Wi coe�cients are described below:

W1 = 4(K1K11 �K4K8)2;

W2 = 4(K1K10 �K3K8 +K3K11 �K4K10)

(K1K10 �K3K8 �K3K11 +K4K9);

W3 =4(K1K9 �K2K8 +K2K11 �K4K9)

(K1K9 �K2K8 �K2K11 +K4K10);

W4 =4(K2K3K2
8 �K2K3K2

11 +K2
1K9K10

�K2
4K9K10 �K1K2K8K10 �K1K3K8K9

+K2K4K10K11 +K3K4K9K11):
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