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Abstract. In the present work, a numerical method for solving the problem of free
convection in enclosures with complex geometries is developed. This development is
executed by the combination of projection and Galerkin �nite-element methods. Nine-
node (quadratic) quadrilateral elements are used to generate the grid for the �eld of the
problem. The results show that the convergence of this method is acceptable while there is
no necessity to use upwind schemes. Increasing the numbers of nodes and decreasing the
time increment yield a more accurate solution. The advantages of this numerical method
are the ability to model any complex geometry and no necessity to use upwind schemes.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Free convection plays a signi�cant role in the heat
transfer in many applications such as cooling of elec-
tronic equipment, solar collectors, nuclear reactors,
and energy storage systems. Although heat transfer
coe�cient in free convection is less than that in forced
convection, its calculation is no way easier. In fact,
numerical instability in free convection is more than
that in forced convection due to less viscous force,
which has a damping role.

In the following literature review, the focus is on
the numerical solution to the free convection in horizon-
tal concentric cylinders. To validate the method, the
numerical solution to the free convection in horizontal
concentric cylinders is obtained and compared with the
results obtained by previous investigators. It is obvious
that any complex two-dimensional geometry could be
divided into quadratic elements used in the present
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study (Figure 1). Almost all of the previous investi-
gators have used the Finite-Di�erence Method (FDM).
Some have used Di�erential Quadrature (DQ), Finite
Volume (FV), Finite Elements (FE), and Lattice Boltz-
mann Methods (LBM). The method used in the present
work has not been used already to solve free convection
in enclosures. In almost all of the previous works,
using upwind scheme is unavoidable, while there is no
necessity to use upwind schemes in the present work.

2. Literature survey

Numerical solution to free convection in horizontal
concentric cylinders goes back to Crawford and Lem-
lich [1], in 1962, using FDM. Before that, many
experimental investigations had been done. In 1968,
Mack [2] solved a steady two-dimensional free con-
vection between two horizontal concentric cylinders,
using power series of Rayleigh number, for low Rayleigh
numbers.

In 1976, Kuehn and Goldstein [3], using previous
experimental results, introduced some correlations to
calculate Nusselt number for free convection in 45
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Figure 1. A typical complex geometry.

horizontal eccentric and concentric cylinders. In 1981,
Projahn et al. [4] carried out a numerical analysis of
laminar free convection between horizontal eccentric
and concentric cylinders. They used the method of
boundary �tted grid based on some sort of transforma-
tion. In 1982, Cho et al. [5] numerically investigated
the problem for Rayleigh numbers less than 5 � 105.
They used the vorticity-stream function formulation
to model the problem and solved it using the �nite-
di�erence method.

In 1986, Glakpe et al. [6], considering a constant
heat ux, presented a numerical solution to the steady
laminar two-dimensional free convection in horizontal
eccentric and concentric cylinders. Their results show
that the temperature distribution on the outer heat
ux boundary is similar to the local heat ux variation
for isothermal cylinders.

Considering vorticity-stream function formulation
of the governing equations, Kumar [7] solved the
problem for Rayleigh numbers from 104 to 107 through
a kind of limitation on the diameter ratio, in 1988,
using Alternative Direction Implicit (ADI) method. He
reported that, for any diameter ratio, there is a maxi-
mum Rayleigh number used to achieve convergence.

In 1993, Vafai and Desai [8] compared the �nite-
di�erence and �nite-element methods in solving free
convection in annular cavities, and showed that the
results of FEM and FDM are relatively similar. In
1996, Moukalled and Acharya [9] presented a numerical
solution to the free convection in the annulus between
concentric horizontal circular and square cylinders.
They used FDM and compared the numerical results
with an existing correlation, and then reported a con-
siderable di�erence between the numerical and exper-
imental Nusselt numbers for some Rayleigh numbers
and relative inner radius (the ratio of inner radius to
outer radius).

In 1998, Yoo [10] numerically investigated the
problem of free convection in a narrow horizontal
cylindrical annulus for uids of Prandtl number less
than or equal to 0.3. He used the leap-frog method, and
reported that, for Prandtl number less than or equal
to 0.2, hydrodynamic instability is found responsible

for inducing steady or oscillatory ows consisting of
multiple rotating cells in the vertical section of annulus,
rotating in the same direction, whereas, for Pr =
0:3, a counter-rotating cell is created by the thermal
instability on the top of annulus.

In 2002, Francis and Itamura [11] communicated a
long report about the Computational Fluid Dynamics
(CFD) of the free convection in the annulus between
horizontal concentric cylinders. The objective of the
report was to assess the ability of CFD codes to re-
produce numerical simulation results. As a conclusion
of this communication, it was reported that, in low to
moderate Rayleigh numbers regimes, the existing cor-
relations for concentric cylinders can be applied to the
concentric cylinder with Rayleigh numbers up to 108.

In 2004, Passerini et al. [12] performed a theoreti-
cal investigation about the free convection in horizontal
concentric cylinders. They showed that, for su�ciently
small Rayleigh numbers, a steady stable solution can
be obtained. In 2005, Ding et al. [13] made a simulation
of free convection in eccentric annuli between a square
outer cylinder and a circular inner cylinder using a local
multiquadrics-based di�erential quadrature method.
Comparing the numerical results with and without a
locally orthogonal grid, they claimed that the locally
orthogonal grid is more applicable to cases in which an
intensive physical variation appears in the boundary
layer. In 2006, Padilla et al. [14] numerically analyzed
the free convection at low and moderate Rayleigh
numbers in cylindrical horizontal annuli using the �nite
volume method. In that work, it is cited that the ow
becomes unstable for Rayleigh number about 105.

In 2008, Kim et al. [15] performed a numerical
study of natural convection in a square enclosure with
a circular cylinder at di�erent vertical locations using
IBM (Immersed Boundary Method). For all Rayleigh
numbers (103 to 106) considered in that study, it
is reported that the ow eventually has reached the
steady state with a symmetric shape. In 2009, Xu et
al. [16] numerically investigated the free convection in a
horizontal triangular cylinder with di�erent inclination
angles to its concentric cylindrical enclosure, using the
�nite volume method. It is reported that the overall
heat transfer rate within the domain of interest is not
a�ected, and so it remains nearly constant with an
increasing inclination angle.

In 2011, Ataylmaz [17] studied the free convec-
tion heat transfer from horizontal concentric cylinders,
experimentally as well as numerically, using Fluent
software. It is reported that Raithby and Hollands
correlation fails for experimental data of that study due
to curvature e�ects. In that experimental investigation,
a method has been outlined to solve problems involving
both laminar and turbulent convections.

In 2013, Hu et al. [18] introduced a boundary
condition-enforced IBM into the Lattice Boltzmann
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Method (LBM) in order to satisfy the non-slip and
temperature boundary conditions, and also introduced
natural convections in a concentric isothermal annulus
between a square outer cylinder and a circular inner
cylinder.

In 2014, Patel et al. [19] presented a spectral-
element DG LBM to solve free convection heat trans-
fer. They applied the method to square cavities
and horizontal concentric annuli. In 2015, Yuan et
al. [20] performed an analysis of free convection in
horizontal concentric annuli of varying inner shape
using COMSOL software.

3. Problem statement

Calculation of Nusselt number for free convection in
horizontal concentric cylinders, using a novel method,
is the purpose of the present work. In this section,
geometry of the problem, governing equations, and
boundary conditions are described. Geometry and grid
of the problem are shown in Figure 2. Elements in the
grid are quadratic quadrilateral ones and are typically
shown in Figure 3. Quadratic quadrilateral elements
can model the geometry of the problem appropriately.
In general, these types of elements, having curved sides,
can model any complex geometry.

Equations governing on the problem include con-
tinuity, momentum, and energy equations. Using
appropriate reference values, one can derive the dimen-
sionless forms for these equations. Gap width (Ro�Ri)
is considered as the reference length. Reference velocity
is the ratio of the thermal di�usivity to the gap width.
Based on this reference velocity, all terms in the dimen-
sionless energy equation will be without any coe�cient.
Dimensionless governing equations are as follows:

Continuity equation:

r � ~V = 0: (1)

Figure 2. Geometry and grid of the problem.

Figure 3. Quadratic quadrilateral element.

Momentum equation:

@~V
@t

+r � (~V � ~V )=�rP + Prr � r~V +RaPr�êy: (2)

Energy equation:

@�
@t

+r � (~V �) = r � r�; (3)

in which Pr is Prandtl number, Ra is Rayleigh num-
ber, ~V is the dimensionless velocity vector, � is the
dimensionless temperature ( T�TC

TH�TC ), and P is the
dimensionless pressure.

3.1. Initial and boundary conditions
No-slip condition is considered as the boundary condi-
tion on the inner and outer cylinders. Dimensionless
temperatures on the inner and outer cylinders are
set equal to one and zero, respectively. Gradient of
� on the boundaries vanishes due to assemblage in
FEM. Zero values have been assumed for the initial
dimensionless velocities (both components). For di-
mensionless temperature, a distribution obtained by
the steady conduction problem has been considered.

4. Numerical procedure

Numerical method, used in the present work, is a
combination of projection method and well-known
Galerkin FEM. It is logical to assume that, in each time
level, the velocity and temperature distribution of the
previous time level are known. Based on the known
velocity distribution, an auxiliary velocity distribution
(~V �) is calculated using Galerkin FEM in each time
step. Adding this auxiliary velocity distribution to
an appropriate value gives velocity distribution for the
next time step. In other words:
~V n+1 = ~V � +r�; (4)
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in which � is a scalar function, and due to the
continuity Eq. (1), the following is formed:

r � ~V � +r2� = 0: (5)

On the other hand, r� is proportional to rP , such
that:
~V � � ~V n

�t
= Prr � r~V �r � (~V � ~V ) + RaPr�êy: (6)

This method, starting with an original work of
Chorin [21], has been used by other investigators in
several di�erent forms. Comparison of Eq. (6) with
Eq. (2) indicates that rP = �r��t ; however, in the
present method, there is no need to compute the
pressure. In Galerkin FEM, Eq. (6) is multiplied by
a shape function and integrated over the element area,
i.e.:Z

Ae
Ni

~V � � ~V n

�t
dA = Pr

Z
Ae
Nir � r~V dA

�
Z
Ae
Nir � (~V � ~V )dA+ RaPr

Z
Ae
Ni�êydA;

(7)

in which N 0is are quadratic shape functions, given in
appropriate literatures, for example [22]. In a similar
way, the dimensionless energy equation and also the
equation of � are multiplied by a shape function and
integrated over the element area, i.e.:Z

Ae
Ni
�n+1 � �n

�t
dA =

Z
Ae
Nir � r�dA

�
Z
Ae
Nir � (~V �)dA; (8)Z

Ae
Nir2�dA = �

Z
Ae
Nir � ~V �dA: (9)

Eqs. (7) to (9) generate the element system of algebraic
equations. Assemblage of these systems leads to
global system of algebraic equations. For example,
assemblage of Eq. (7) results in the following matrix
equation:

[C]~V � = [C]~V n + �t ~F ; (10)

in which [C] is a matrix generated by assembling the
element system of equations, and ~F is generated by
assemblage of the right hand of Eq. (7). The elements
of matrix [C] before assembling are calculated using
the following formula:

Cij =
Z
Ae
NiNjdA:

The global system of algebraic equations must be
solved in each time step. The stages of the method
in each time step can be summarized in the following
items:

Figure 4. Flow chart of the method.

1. Calculation of ~V � using ~V n;

2. Calculation of �;

3. Calculation of ~V n+1 using Eq. (4);

4. Calculation of �n+1.

Flow chart of the method is shown in Figure 4.

5. Validation of the method

A computer code has been developed to achieve the
numerical procedure described in the previous section.
Independence of the solution from the grid and time in-
crement is investigated in this section. Since the steady
solution is the objective, time steps are continued until
the following condition is satis�ed:

� =
P jun+1 � unjP junj < �; (11)

in which u includes all of the dependent variables, such
as velocity components and temperature. To obtain
validated results, � is taken to be equal to 10�15. In
the �rst case, Ra, Pr, and R�i = Ri

Ro�Ri (Dimensionless
inner radius) are assumed equal to 50000, 0.7, and
0.625, respectively. To check the grid independency,
the computer code has been run on various numbers
of nodes. The calculated Nusselt numbers are shown
in Figure 5. Figure 5 indicates that as the number
of nodes increases, variation of the Nusselt number
decreases, such that, at the last stage, a 50% increase in
the numbers of nodes causes less than 0:1% di�erence
in the resultant Nusselt number.
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Figure 5. Nusselt number versus numbers of nodes.

To compare the numerical results with experiment
data, the following correlation has been used.

ke�

k
= 0:386

�
RacPr

0:861 + Pr

�0:25

; (12)

in which ke� is the e�ective conductivity. This cor-
relation can be found in textbooks such as [23,24]
as well as [25] in a di�erent form. Experimental
Nusselt number is calculated based on the e�ective
conductivity. It is necessary to mention that the
reference length is the gap width for all quantities
except for the Nusselt number. For Nusselt number,
the diameter has been chosen as the reference length.
Selection of this reference length leads to the same
Nusselt number on the inner and outer surfaces due
to the conservation of energy.

5.1. Convergence rate
First of all, the rate of convergence must be studied.
To do so, the computer code has been run with the
following inputs:

Ra = 5� 104; Pr = 0:7; Ri = 0:625:

The above input data are considered to be the nu-
merical results comparable with those obtained by Pa-
tel [19]. Figure 6 shows �, de�ned by Eq. (11), versus
iteration number. This �gure indicates that although
there is an oscillation in the �rst iterations, parameter
� can be reduced to any small value. As noted already,
the convergence criterion was � < 10�15 for the test
cases. Since taking � = 10�9 leads to almost the
same results, � = 10�9 has been considered for other
cases. The resulted Nusselt numbers will be compared
with the experimental Nusselt numbers based on the
correlation (Eq. (12)) and also with the numerical
results obtained by Patel [19], in Subsection 5.4. Before
that, it is necessary to note that the Nusselt number

Figure 6. � (Eq. (11)) versus iteration number.

in the Patel investigation is based on the radius, while,
in the present work, the Nusselt number is based on
the diameter. For this reason, the Nusselt number
obtained by Patel is multiplied by two to be compared
with the Nusselt number resulted from the present
method.

5.2. E�ect of number of nodes
Based on Correlation (12), Nusselt number has been
computed and compared with the numerical Nusselt
numbers using various numbers of nodes. Comparison
shows that as the number of nodes increases, the
di�erence between numerical and experimental Nusselt
numbers decreases (Figure 7). For larger numbers
of nodes (not shown here), no considerable di�erence
has been observed. It is necessary to note that the
averaged convection heat transfer coe�cient on the
inner cylinder di�ers from that on the outer cylin-
der; however, Nusselt numbers based on the diameter
considered in the present work are the same on both

Figure 7. Error in calculation of Nusselt number versus
numbers of nodes.
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surfaces, because the averaged convection heat transfer
coe�cient multiplied by the diameter is the same for
inner and outer surfaces.

Although the vertical axis in Figure 7 is called
error percent, indeed, these values show just the
di�erences between correlated and numerical Nusselt
numbers, and it is necessary to mention that the
correlated Nusselt number has been always introduced
with an error. For example, Bejan [25] introduced the
following correlation with�10 percent error for laminar
regime:

q0 =
2:425k�T�

1 +
�
Ri
Ro

�0:6
�1:25

�
RaDiPr

0:861 + Pr

�0:25

; (13)

in which q0 is the heat transfer rate per unit cylinder
length, RaDi is Rayleigh number based on the inner
diameter, and k is the thermal conductivity. Rayleigh
number in the present work is based on the gap width,
i.e. Ro � Ri. It can be proved that Nusselt number
based on Eq. (13) is exactly equivalent to that based
on Eq. (12).

5.3. E�ect of time increment
In this subsection, the e�ect of time increment (�t)
is investigated. It is obvious that the steady solution
must be independent of the time increment, but if the
time increment is greater than a certain value, albeit
not enough to diverge, a periodic solution may be
obtained. Furthermore, the time increment must not
a�ect the solution. Therefore, the time increment must
be adequately small to obtain a solution independent
of the time increment. Maximum time increment can
be calculated using the following equation:

�tmax =
c

Ra
; (14)

in which Ra is Rayleigh number, and c is a problem-
dependent constant and proportional to the minimum
element size. For example, for the case shown in
Figure 6, c = 13:5 and �tmax = 2:7 � 10�4. Figure 8
shows that as the time increment decreases (i.e., inverse
of the time increment increases), the accuracy increases
and error decreases. For �t < 5�10�6, i.e. 10�4=�t �
20, there is no considerable change in the result, and
�t = 5 � 10�6 is a proper value for the case with
properties illustrated in Figure 8.

5.4. E�ect of Rayleigh number
Numerical Nusselt numbers have been computed and
compared with the experimental Nusselt numbers
(based on Correlation (12)) and also compared with the
numerical Nusselt numbers obtained by Patel [19] for
various Rayleigh numbers. Figure 9 shows that there
is good agreement between experimental and numerical
results, especially for high Rayleigh numbers. Figure 10

Figure 8. Nusselt number versus the inverse of time
increment.

Figure 9. Experimental and numerical Nusselt numbers
versus Rayleigh number.

Figure 10. Velocity distribution and stream lines.
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Figure 11. Isotherms of the case study.

shows the velocity distribution and stream lines for the
case of Ra = 105. Isotherms for the case of Ra = 5�104

are illustrated in Figure 11.

5.5. E�ect of dimensionless inner radius
Dimensionless inner radius is de�ned by the following
relation:

R�i =
Ri

Ro �Ri : (15)

Considering Ra = 5 � 104, for various radius ra-
tios, numerical Nusselt numbers have been computed
and compared with the experimental Nusselt numbers
(based on Correlation (12)). Figure 12 shows that
there is good agreement between experimental and
numerical results, especially for low dimensionless inner
radius.

Figure 12. Experimental and numerical Nusselt numbers
versus dimensionless inner radius.

6. Conclusion

A novel numerical procedure for solving the problem
of free convection in horizontal concentric cylinders
is developed by the combination of projection and
Galerkin �nite-element methods. The results show
that the convergence of this method is acceptable,
while there is no necessity to use upwind schemes.
Increasing the numbers of nodes and decreasing the
time increment yield a more accurate solution. Ability
to model any geometry and no necessity to use upwind
schemes are some advantages of this numerical method.

Nomenclature

�T Temperature di�erence (TH � TC)
�t Time increment
� A scalar function (rP = r�

�t )
� Dimensionless temperature
~V Dimensionless velocity vector
h Averaged convection heat transfer

coe�cient
k Thermal conductivity
Ni ith shape function

Nu Nusselt number (hDk )

Pr Prandtl number ( �� )
Ri Inner radius
R�i Dimensionless inner radius ( Ri

Ro�Ri )
Ro Outer radius

Ra Rayleigh number ( g��T (Ro�Ri)3

�2 )
TC Cold temperature
TH Hot temperature
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