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Abstract. In this article, an analytical solution to the moderately large amplitude
transverse vibration of thin Functionally Graded Micro-Plates (FGMPs) is presented based
on a practical approach. The size-dependent nonlinear governing equation is obtained in
conjunction with the Kirchho�'s plate and modi�ed couple stress theories. The material
properties of Functionally Graded (FG) micro-plates vary according to the Reddy's model.
The employed non-classical theory contains one material length-scale parameter to capture
the size e�ects. The highly nonlinear governing equation is solved by means of homotopy
analysis method so as to obtain accurate analytic approximations. Both of simply
supported and clamped micro-plates with immovable edges are considered. The comparison
made between the present results and those of earlier studies con�rms the reliability and
e�ectiveness of the present formulation for the design purpose. Furthermore, the e�ects of
di�erent parameters, such as material gradient index, length-scale parameter, and aspect
ratio, on the nonlinear frequency ratio are investigated.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Functionally Graded Materials (FGMs) are a kind
of inhomogeneous composites usually made from a
mixture of two materials. The properties vary with
a smooth and continuous pattern from one surface to
another as a function of position along a certain axis.
This e�ectively eliminates the stress concentration
found in laminated composites. In recent years, the
application of FGMs has spread rapidly for micro- and
nano-scale devices such as thin �lms in the form of
shape memory alloys, atomic force microscopes, and
Micro- and Nano-Electro-Mechanical Systems (MEMS
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and NEMS) [1]. Also, the two-dimensional struc-
tures with the order of microns or sub-microns have
been widely used in MEMS, NEMS, and many other
micro-structures. The properties of such elements
are closely related to their microstructures. Thus, it
is necessary to investigate the microstructure e�ects
on the mechanical behavior of the aforementioned
structures. The local continuum theories could not
capture the micro-sized e�ects due to the lack of a
material length-scale parameter; thus, non-classical
theories, such as the couple stress, nonlocal elasticity,
and strain gradient theories, have been proposed and
widely implemented [2-13]. The strain gradient theory
is a more general form of the higher-order non-classical
theories taking into consideration both anti-symmetric
and symmetric parts of the higher-order deforma-
tion gradients. However, this theory may involve
some di�culties; therefore, alternative theories have
been developed to e�ectively capture the size e�ect.
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Among higher-order continuum theories, the classical
couple stress theory was introduced and extended by
Toupin [14] as well as Mindlin and Tiersten [15]. They
used two constants in order to take into account the
size e�ects for isotropic materials. Meanwhile, Yang
et al. [16] utilized the idea of the couple stress theory
and proposed the modi�ed version of the couple stress
theory. The Modi�ed Couple Stress Theory (MCST)
bene�ts from two main advantages of the inclusion
of symmetric couple stress tensor and involvement of
only one material length-scale parameter. Based on
the modi�ed couple stress theory, di�erent studies
have been conducted concerning vibrational behavior
of micro-plates [17-22].

Meanwhile, researchers have started to explore
potential application of Functionally Graded (FG)
microstructures by focusing on the vibration response
analysis. Shenas et al. [23] investigated vibration of
functionally graded micro beams with variable section
in thermal environment. Therefore, in another work,
Shenas et al. [24] presented vibrational behaviors of
rotating pre-twisted functionally graded micro beams
in thermal environment. Setoodeh and Rezaei [25]
employed modi�ed couple stress theory to analyze large
amplitude free vibration of FG nano/micro beams on
nonlinear elastic foundation. Ke and Wang [26] inves-
tigated size e�ects on the dynamic stability of func-
tionally graded micro beams based on modi�ed coupe
stress theory. Setoodeh and Afrahim [27] developed
a strain gradient model for nonlinear free vibration of
FG micro pipes conveying uid. Thai and Kim [28]
developed a size-dependent model for bending and free
vibration of functionally graded Reddy plate using
analytical solutions. Thai and Choi [29] presented a
model with one material length-scale parameter for
bending, buckling, and vibration of FG Kirchho� and
Mindlin plates. Thai and Vo [30] developed a size-
dependent model for bending and free vibration of
FG plates based on the MCST and sinusoidal shear
deformation theory.

Although micro plates are susceptible to large
amplitude vibration on the basis of design considera-
tion, only few studies have explored nonlinear vibration
behavior of FG micro-plates. In this regard, Ke et
al. [31] presented a non-classical model for axisym-
metric nonlinear free vibration analysis of annular
micro plates made of FGMs using MCST. Therefore,
Ansari et al. [32] investigated nonlinear vibrations of
FG Mindlin micro plates based on the modi�ed couple
stress theory. Lou and He [33] provided closed-form
solutions for nonlinear bending and free vibration of
functionally graded micro plates based on the modi�ed
couple stress theory using physical neutral surface.
Mohammadimehr and Mohandes [34] investigated the
e�ect of modi�ed couple stress theory on buckling and
vibration analysis of functionally graded double-layer

piezoelectric plates. He et al. [35] presented a size-
dependent four-variable re�ned plate model for func-
tionally graded micro-plates based on modi�ed couple
stress theory. Shenas and Malekzadeh [36] investigated
free vibration of functionally graded quadrilateral mi-
cro plates in thermal environment. Thus, according
to the available literature, no analytical expressions
for nonlinear frequencies of FG micro plates have been
derived so far. Normally, it is desirable for designers
to provide explicit expressions for linear and nonlinear
fundamental frequencies in conformity with a reason-
able engineering approximation, whenever it is possi-
ble. In this regard, the Homotopy Analysis Method
(HAM) has been successfully implemented already on
a wide range of nonlinear vibration problems [37-
39]. The HAM possesses certain superiority compared
with the conventional perturbation methods. The
perturbation methods for any perturbation quantity
and the modi�ed iteration method can be considered
as the special case of the HAM [40].

The structure of this article is organized as fol-
lows: Section 2 presents the displacement �eld and
material properties of FG micro plates. In Section 3,
the nonlinear dynamic governing equation of function-
ally graded thin micro-plates is derived in the context
of the modi�ed couple stress theory using Hamilton's
principle. The governing equation is obtained in terms
of the stress resultants, and the related boundary
conditions are introduced. In Section 4, �rstly, the
Galerkin method is used to solve the resulted nonlinear
partial di�erential equation; afterwards, the governing
equation is analytically solved using homotopy analysis
method. In addition, the analytical explicit expressions
for the size-dependent linear and nonlinear natural
frequencies of the FG micro plates are presented. The
accuracy of the explicit solution is illustrated in the
subsequent section, wherein the model is used to carry
out some parametric studies. The last section closes
this article with a brief conclusion.

2. Displacement �eld and material properties

Figure 1 shows a rectangular FGMP with in-plane
dimensions a and b in x and y directions, respectively,

Figure 1. Schematic representation of a FG micro-plate.
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and thickness h in z direction. The reference Cartesian
coordinate system (x; y; z) is located on the mid-plane
of the plate. The FGMP is made of a mixture of
ceramic and metal. The lower surface (z = �h=2) and
upper surface (z = h=2) are pure metal and ceramic,
respectively. In this study, the material properties are
assumed to vary in terms of power law distribution
given by:
p(z) = pm + (pc � pm)Vc; (1)

where pc and pm are, respectively, the corresponding
properties of ceramic (c) and metal (m), and Vc =
(z=h+ 0:5)n is the volume fraction of ceramic. Also, n
denotes the material gradient index which takes values
greater than or equal to zero. The volume fractions of
ceramic and metal phases are de�ned as in Vc+Vm = 1.
Among the properties, the Poisson's ratio is assumed
to be constant in the numerical results.

The displacement components (ux; uy; uz) along
(x; y; z) directions are given according to the Kirch-
ho�'s plate theory in terms of mid-surface displace-
ments (u0; �0) and transverse deection w as follows:

ux(x; y; z; t) = u0 � z @w(x; y; t)
@x

;

uy(x; y; z; t) = �0 � z @w(x; y; t)
@y

;

uz(x; y; z; t) = w(x; y; t): (2)

3. The modi�ed couple stress governing
equation

According to the modi�ed couple stress theory, strain
energy, U , for a deformable linear elastic material that
occupies volume, V , can be written as follows [4]:

U =
1
2

Z
V

(�ij"ij +mij�ij)dV; (i; j = x; y; z);
(3)

where �ij ; "ij ;mij , and �ij are, respectively, stress
tensor, strain tensor, deviatoric part of the couple
stress tensor, and symmetric curvature tensor de�ned
as follows:
�ij = ��ij"kk + 2�"ij ;

� =
E�

(1 + �)(1� 2�)
; � =

E
2(1 + �)

; (4)

�ij =
1
2

(�i;j + �j;i); (5)

mij = 2l2��ij ; (6)

where, in all relations (i; j = x; y; z), � and � are the
Lame's constants, E and � are, respectively, Young's
modulus and Poisson's ratio, and l denotes the material
length-scale parameter. Also, ui represents the compo-
nents of displacement vector, u, and �i refers to the

components of rotation vector de�ned as follows:

�i =
1
2

[curl(u)]i: (7)

The Green strain-displacement relation, which takes
into account the nonlinear terms, is as follows:

"ij=
1
2

(ui;j+uj;i+uk;iuk;j); i; j; k=x; y; z: (8)

Using Eqs. (2) and (8) for a thin elastic plate, based
on the von Karman kinematic assumptions, the strain
components in terms of the displacements can be
written as follows:

"xx =
@u0

@x
+

1
2

�
@w
@x

�2

� z @2w
@x2 ;

"yy =
@�0

@y
+

1
2

�
@w
@y

�2

� z @2w
@y2 ;

xy =
@u0

@y
+
@�0

@x
+
@w
@x

@w
@y
� 2z

@2w
@x@y

;

xz = yz = "zz = 0: (9)

For a thin elastic plate with moderately large amplitude
vibration in the absence of in-plane forces and assuming
that the edges of the plate are immovable, the non-
zero stress components can be found in terms of dis-
placement components according to the linear elastic
constitutive relations as follows [41-44]:

�xx =
E(z)

1� �2(z)

(
� z @2w

@x2 +
1
2

�
@w
@x

�2

+ �(z)
�

1
2

�
@w
@y

�2

� z @2w
@y2

#)
;

�yy =
E(z)

1� �2(z)

(
� z @2w

@y2 +
1
2

�
@w
@y

�2

+ �(z)
�

1
2

�
@w
@x

�2

� z @2w
@x2

#)
;

�xy =
E(z)

2(1 + �(z))

�
@w
@x

@w
@y
� 2z

@2w
@x@y

�
: (10)

Eq. (5) in conjunction with Eq. (7) results in the
components of curvature tensor as follow:

�xx=
@2w
@x@y

; �yy=� @2w
@x@y

; �xy=
1
2

�
@2w
@y2 � @

2w
@x2

�
:

(11)

Subsequently, the components of the couple stress
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tensor are found by substituting Eq. (11) into Eq. (6)
as follows:

mxx = 2l2�(z)�xx = l2
E(z)

1 + �(z)
@2w
@x@y

;

myy = 2l2�(z)�yy = �l2 E(z)
1 + �(z)

@2w
@x@y

;

mxy = 2l2�(z)�xy =
1
2
l2

E(z)
1 + �(z)

�
@2w
@y2 � @2w

@x2

�
;

mxz = myz = mzz = 0: (12)

By expanding Eq. (3), the variation of strain energy of
the FGMP can be written as follows:

�U =
Z
A

Z h=2

�h=2
(�xx�"xx + �yy�"yy + �xy�xy

+mxx��xx +myy��yy + 2mxy��xy)dzdA

=
Z
A

�
Nxx

@w
@x

@�w
@x
�Mxx

@2�w
@x2 +Nyy

@w
@y

@�w
@y

�Myy
@2�w
@y2 � 2Mxy

@2�w
@x@y

+Nxy

 
@w
@y

@�w
@x

+
@w
@x

@�w
@y

!
+ Pxx

@2�w
@x@y

� Pyy @
2�w
@x@y

+ Pxy
�
@2�w
@y2 � @2�w

@x2

�#
dA; (13)

where A is the cross-sectional area of the micro-plate.
Also, the stress resultants are de�ned as follows:

(N�� ;M��)=
Z h=2

�h=2
(1; z)���dz; (�; �=x; y); (14)

P�� =
Z h=2

�h=2
m��dz; (�� = x; y): (15)

The kinetic energy and variation of kinetic energy of
the FGMP are de�ned as follows:

T =
1
2

Z
V
� _ui _uidV =

1
2

Z
A

Z h=2

�h=2
�

 �
@ux
@t

�2

+
�
@uy
@t

�2

+
�
@uz
@t

�2
!
dzdA; (i=x; y; z); (16)

�T =
Z
A

"
I0
@w
@t

@�w
@t

+I2

 
@ _w
@x

@� _w
@x

+
@ _w
@y

@� _w
@y

!#
dA;
(17)

where dot overscript convention denotes the di�erenti-
ation with respect to time variable, t. Also, various
inertias are calculated according to the power law
distribution of properties as follows:

(I0; I2) =
Z h=2

�h=2

"�
�m(1; z2)

�
+ (�c � �m)

 
z
h

+ 0:5

!n
(1; z2)

#
dz: (18)

The nonlinear dynamic governing equations of the FG
micro plate are derived using the Hamilton's principle
which is stated in terms of the variation of strain energy
(�U), variation of kinetic energy (�T ), and variation of
the work done by external forces (�W ):Z t2

t1
[�(T � U) + �W ]dt = 0: (19)

In the absence of body moments and surface tractions
and using the fundamental lemma of the calculus of
variation, the governing equation in terms of the stress
resultants is obtained following some mathematical
manipulations:

@2Mxx

@x2 + 2
@2Mxy

@x@y
+
@2Myy

@y2 +
@2Pxy
@x2 +

@2Pyy
@x@y

� @2Pxy
@y2 � @2Pxx

@x@y
+N(w)

= I0 �w � I2
�
@2 �w
@x2 +

@2 �w
@y2

�
: (20)

The stress resultants can also be expanded in terms of
displacements' components as follows:

Mxx =
Z h=2

�h=2
�xxzdz = �C2

@2w
@x2 +

B2

2

�
@w
@x

�2

+
B3

2

�
@w
@y

�2

� C3
@2w
@y2 ;

Myy =
Z h=2

�h=2
�yyzdz = �C2

@2w
@y2 +

B2

2

�
@w
@y

�2

+
B3

2

�
@w
@x

�2

� C3
@2w
@x2 ;

Mxy =
Z h=2

�h=2
�xyzdz=

B1

2
@w
@x

@w
@y
�C1

@2w
@x@y

;
(21)
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Nxx =
Z h=2

�h=2
�xxdz = �B2

@2w
@x2 +

A2

2

�
@w
@x

�2

+
A3

2

�
@w
@y

�2

�B3
@2w
@y2 ;

Nyy =
Z h=2

�h=2
�yydz = �B2

@2w
@y2 +

A2

2

�
@w
@y

�2

+
A3

2

�
@w
@x

�2

�B3
@2w
@x2 ;

Nxy =
Z h=2

�h=2
�xydz =

A1

2
@w
@x

@w
@y
�B1

@2w
@x@y

; (22)

Pxx =
Z h=2

�h=2
mxxdz = A1l2

@2w
@x@y

;

Pyy =
Z h=2

�h=2
myydz = �A1l2

@2w
@x@y

;

Pxy =
Z h=2

�h=2
mxydz =

A1

2
l2
�
@2w
@y2 � @2w

@x2

�
; (23)

where:

fA1; B1; C1g =
Z h=2

�h=2
E(z)

1 + �(z)
f1; z; z2gdz

fA2; B2; C2g =
Z h=2

�h=2
E(z)

1� �2(z)
f1; z; z2gdz

fA3; B3; C3g =
Z h=2

�h=2
E(z)�(z)
1� �2(z)

f1; z; z2gdz: (24)

Also, N(w) is de�ned by:

N(w) =
@
@x

�
Nxx

@w
@x

+Nxy
@w
@y

�
+

@
@y

�
Nxy

@w
@x

+Nyy
@w
@y

�
: (25)

It should be noted that if length-scale parameter, l, is
set to zero, the equation of motion is reduced to the
form of the classical continuum theory.

The boundary conditions of the following types
are considered for FGMPs:

(a) Fully simply supported:

w(0; y; t) = w(a; y; t) = w(x; 0; t) = w(x; b; t) = 0

@2w(0; y; t)
@x2 =

@2w(a; y; t)
@x2 =

@2w(x; 0; t)
@y2

=
@2w(x; b; t)

@y2 = 0: (26)

(b) Fully clamped:

w(0; y; t) = w(a; y; t) = w(x; 0; t) = w(x; b; t) = 0

@w(0; y; t)
@x

=
@w(a; y; t)

@x
=
@w(x; 0; t)

@y
=

@w(x; b; t)
@y

=0: (27)

4. Method of solution

The techniques of separation of variables in conjunction
with the Galerkin method are used to solve the resulted
nonlinear partial di�erential equation. The transverse
displacement can be written as follows:

w(x; y; t) = W (t)X(x)Y (y): (28)

Based on the �rst mode shape of vibration, functions
X(x) and Y (y) might be de�ned according to Eqs. (29)
and (30) for fully simply supported and fully clamped
end conditions, respectively [45]:

X(x) = sin
�
�x
a

�
; Y (y) = sin

�
�y
b

�
; (29)

X(x)=c
�

cosh
�
qx
a

�
�cos

�
qx
a

�
� cosh(q)�cos(q)

sinh(q)�sin(q) 
sinh

�
qx
a

�
�sin

�
qx
a

�!�
;

Y (y)=c
�

cosh
�
qy
b

�
�cos

�
qy
b

�
� cosh(q)�cos(q)

sinh(q)�sin(q) 
sinh

�
qy
b

�
� sin

�
qy
b

�!�
;

c = 0:6297; q = 4:730041: (30)

By substituting Eq. (28) into Eq. (20), multiplying the
result by functions, X(x)Y (y), and then integrating
them over the area of the plate, a new form of the
governing equation is obtained as follows:

@2W
@t2

+ ��W + ��W 2 + �W 3 = 0: (31)

The coe�cients in Eq. (31) are de�ned as shown in the
Appendix.

4.1. Homotopy analysis method
The developed nonlinear governing di�erential equa-
tion is analytically solved for two di�erent boundary
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conditions using homotopy analysis method. The HAM
initially introduced by Liao [46] is a powerful and
computationally cost-e�ective method which is capable
of solving strongly nonlinear di�erential equations. At
�rst, the solution procedure is briey explained. For
further details, one can refer to [46]. Consider a series
of time-dependent nonlinear di�erential equations as
follows:

Ni[zi(t)] = 0 i = 1; 2; :::; n: (32)

In Eq. (32), Ni represents nonlinear operators, t
denotes an independent variable, and zi(t) represents
unknown functions. Liao [46] constructed the so-called
zero-order deformation equations as follows:

(1�q)L[�i(t; q)�zi;0(t)]=q~ihi(t)Ni[�i(t; q)]; (33)

where q is an embedding parameter that varies in the
range of [0,1], ~i represents nonzero auxiliary param-
eters, and hi(t) denotes nonzero auxiliary functions.
zi;0(t) represents the initial guesses of zi(t), �i(t; q)
represents unknown functions, and L is the selected
auxiliary linear operator. There are some degrees of
freedom to choose auxiliary linear operator and h(t).
Parameters ~i and hi(t) adjust the convergence region
of the solution. Here, when q increases from 0 to 1, the
solutions �i(t; q) alter from the initial guesses to zi(t)
solutions. In other words, �i takes the following forms
for q = 0 and q = 1, respectively:

�i(t; 0) = zi;0(t); �i(t; 1) = zi(t): (34)

By di�erentiating Eq. (33) with respect to q, the �rst-
order deformation equation can be obtained as follows:

L[zi;1(t)] = ~ihi(t)Ni[�i(t; q)]q=0: (35)

With expanding �i(t; q) in the form of Taylor series,
one obtains:

�i(t; q) = zi;0(t) +
+1X
m=1

zi;m(x; t)qm; (36)

where:

zi;m =
1
m!

@m�i(t; q)
@qm

�����
q=0

: (37)

By substituting Eq. (36) into the constructed zero-
order equation and di�erentiating the resulted equation
m times with respect to embedding parameter q, then
setting q = 0, and �nally dividing all of the terms
by m!, the so-called mth-order deformation equation
is obtained as follows:

L[zi;m(t)� �mzi;m�1(t)] = ~ih(t)Ri;m(~zi;m�1); (38)

where:

~zi;m = fzi;0(t); zi;1(t); :::; zi;m(t)g: (39)

Ri;m(~zi;m�1) =
1

(m� 1)!
@m�1Ni[�i(t; q)]

@qm�1

����
q=0

�m =

(
0;m � 1;
0;m > 1:

(40)

4.2. Explicit expressions for nonlinear
frequencies

It is convenient to transform Eq. (31) by setting a
new variable � = !t, where ! denotes the nonlinear
frequency. After some manipulations, one obtains:

!2 d2V (�)
d�2 + ��V (�) + ��V 2(�) + �V 3(�) = 0; (41)

subject to the following initial conditions at the center
of the micro-plate:

V0(0) = Wmax;
dV0(0)
d�

= 0: (42)

Herein, Wmax is the maximum amplitude of the FGMP
vibration. Initial guess, V0(�), should be selected, such
that the initial conditions are satis�ed:

V0(�) = Wmax cos(�): (43)

The linear and nonlinear operators can be written as
follows:

L[�(� ; q)] = !2
0

�
d2�(� ; q)
d�2 + �(� ; q)

�
; (44)

N [�(� ; q); !(q)] =!2(q)
d2�(� ; q)
d�2 + ���(� ; q)

+ ���2(� ; q) + ��3(� ; q): (45)

In Eq. (45), !(q) is de�ned as follows:

!(q) = !0 + !1q + !2q2 + : : : (46)

In order for the present solution to achieve accurate
results by only few terms, we set h(t) = 1, and �h = �1.
Also, to start the solution procedure, parameter m is
considered to be 1 in Eq. (38), which is read as follows:
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R1(z0(t)) =N [�(t; 0)]

=!0
2 d2�(� ; 0)

d�2 + ���(� ; 0) + ���2(� ; 0)

+ � �3(� ; 0)

=!0
2 d2V0(�)

d�2 + ��V0(�) + ��V0
2(�)

+ �V0
3(�): (47)

Subsequently, the �rst-order deformation equation is
found according to Eq. (35) as follows:

!0
2
�
d2V1(�)
d�2 + V1(�)

�
=
�
!2

0
d2V0(�)
d�2

+ ��V0(�) + ��V0
2(�) + �V0

3(�)
�
; (48)

where the initial conditions are:

V1(0) =
dV1(0)
d�

= 0: (49)

After substituting V0(�) from Eq. (43) into Eq. (48)
and solving the resulted equation, one obtains:

V1(�)=
2 ��W 2

max
3!2

0
+
�

(4��� 4!2
0)Wmax+3�W 3

max
8!2

0

�
� sin(�) +

��8 ��W 2
max + 3�W 3

max
24!2

0

�
cos(�)

�
� ��W 2

max
3!2

0

�
cos2(�)�

�
�W 3

max
8!2

0

�
cos3(�):

(50)

The coe�cient of the secular term, � sin(�), must be
zero since the amplitude of the micro-plate vibration is
�nite. Thus:

�W 2
max � 4

3
!0

2 +
4
3

�� = 0: (51)

The solution of Eq. (51) leads to the �rst approxima-
tion of the nonlinear frequency (!0) as follows:

!0 =
r

��+
3
4

�W 2
max: (52)

Now, m is set to 2 in order to obtain V2(�). In view of
Eqs. (38), (40), (44), (45), and (50), the second stage
of formulations can be written as follows:

L[V2(�)� V1(�)] = ~h(t)
@N [�(t; q)]

@q
jq=0 (53)

!0
2
�
d2V2(�)
d�2 + V2(�)

�
� !0

2
�
d2V1(�)
d�2 + V1(�)

�
=
�
2!(q)

d!(q)
dq

@2�(� ; q)
@�2 + !(q)2 @2

@�2

�
@�(� ; q)
@q

�
+ �

@�(� ; q)
@q

+ 2��(� ; q)
@�(� ; q)
@q

+ 3�2(� ; q)
@�(� ; q)
@q

�
q=0

: (54)

Considering the initial conditions in Eq. (42):

V2(0) =
dV2(0)
d�

= 0: (55)

Using the developed code, which is prepared in Maple
software, V2(�) is obtained as follows:

V2(�) =
�

8
15
A2 +

2
3
A4 +A6

�
+
�

7
48
A1 � 1

5
A2

+
1
8
A3 � 1

3
A4 �A6

�
cos(�)

�
�

64A2+80A4

240

�
cos2(�)�

�
25A1+30A3

240

�
cos3(�)

�
�
A2

15

�
cos4(�)�

�
A1

24

�
cos5(�)

+
�

5A1 + 6A3 + 8A5

16

�
� sin(�);

(56)

where:

A1 = �3
8

�2W 5
max

!4
0

; A2 = �5
4

� ��W 4
max

!4
0

;

A3=
(�3����16 ��2+51�!2

0)W 3
max�24 ���W 4

max+9�2W 5
max

24!4
0

;

A4 =
(56 ��!2

0
� 8����)W 2

max � 16 ��2W 3
max + 54 ���W 4

max

24!4
0

;

A5 =
�

4!0!1 � ��� !2
0

2!2
0

�
Wmax +

� ��!2
0 � ����
3!4

0

�
W 2

max;

+
�

3��� + 32 ��2 � 12�!2
0

24!4
0

�
W 3

max;

A6 =
�

2��� 2 ��!2
0

3!4
0

�
W 2

max: (57)

Again, the coe�cient of the secular term � sin(�) should
be identical to zero. Therefore:

A1 +
6
5
A3 +

8
5
A5 = 0: (58)
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The second analytical approximation for the nonlinear
frequency (!1) is achieved according to Eq. (58) by
substituting the calculated coe�cients A1; A3, and A5
from Eq. (57) and solving the resulted equation:

!1 = � 160 ��2W 2
max � 96� ��W 3

max + 9
2 �2W 4

max

384
�

��+ 3
4 �W 2

max

��s
��+ 3

4 �W 2
max

� : (59)

Finally, the analytical expressions for the linear and
nonlinear natural frequencies of FG micro plates are
presented as follows:

!L =
p

��

!NL =!0 + !1 =
r

��+
3
4

�W 2
max

� 160 ��2W 2
max � 96� ��W 3

max + 9
2 �2W 4

max

384
�

��+ 3
4 �W 2

max

��q
��+ 3

4 �W 2
max

� ;
(60)

where !L and !NL denote the linear and nonlinear
natural frequencies, respectively. Also, V (�) can be
obtained by collecting the related terms as follows:

V (�) = V0(�) + V1(�) + V2(�): (61)

5. Numerical results

Before proceeding with the parametric study of the
large amplitude free exural vibration behavior of
FG micro-plates, the validity and accuracy of the
formulation developed here are con�rmed against the
available results. Afterwards, further numerical results
obtained through studying the size-dependent nonlin-
ear vibration analysis of the FGMPs are presented
using developed analytical expressions. FGMPs with
two types of boundary conditions, including SSSS
and CCCC, are considered, where simply supported
and clamped edges are designated, respectively, by S
and C. In all of the developed results, the following
dimensionless parameters are de�ned, unless otherwise
speci�ed.

�max = Wmax
h , �!L = !La2

h

q
�c
Ec , 
 = !NL

!L .

5.1. Validation studies
Table 1 lists the fundamental nonlinear frequency
ratio of a clamped square isotropic plate in terms of
dimensionless maximum amplitude, �max. The present
solution is compared with the classical plate theory
solution of Han and Petyt [47] which provided distinct
results with and without inclusion of the in-plane
displacements. The plate has a length of 0.5 m, height
of 2 mm, and material properties of E = 210 GPa,
� = 0:3, and � = 7800 kg/m3. It is noticeable that
the present results agree well with the corresponding

solution of [47] which takes into account the in-plane
displacements. It is worth noting that this agreement
holds over a wide range of the dimensionless maximum
amplitude.

To better clarify the e�cacy of the present formu-
lation, nonlinear frequency ratios of simply supported
FGM plates reported by Sundararajan et al. [48] are
compared successfully with those obtained in this study
as shown in Table 2. A moderately thick plate with a
thickness ratio of a=h = 10 and two gradient indices
is considered. The solution of [48] is based on the
Mindlin's plate theory. The FGM plate considered
consists of silicon nitride (Si3N4) and stainless steel
(SUS304) with material properties of �c = 2370 kg/m3,
�m = 8166 kg/m3, Ec = 322:2715 GPa, Em =
207:7877 GPa, and � = 0:28. Again, the present results
agree well with those predicted by Sundararajan et al.
[48]. In this example, the accuracy and reliability of the
approach are e�ectively con�rmed through the compar-
ison carried out between the Mindlin's plate theory and
a common value of the thickness ratio. To validate the
size dependency of the natural frequency resulted from
the present approach, some comparisons are made with
other relevant solutions from the literature as shown
in Table 3. Dimensionless linear natural frequencies,
�!, of an isotropic square micro plate with simply
supported boundary conditions are obtained in terms
of the proposed admissible values of dimensionless
length-scale parameter (l=h) in [19,28] and two di�erent
aspect ratios. An analytical solution was developed
for vibration analysis of micro-scale plates based on
the modi�ed couple stress theory in the context of the
Classical Plate Theory (CPT) in [19], while a size-
dependent Navier solution was presented for bending
and free vibration of functionally graded micro plates
using the Third-order Shear Deformation Theory of
Reddy (TSDT) [28]. Herein, the dimensionless natural

Table 1. Comparison of nonlinear frequency ratios, 
, of
a clamped square isotropic plate with and without
mid-plane displacements.

�max

With mid-plane
displacements

Without mid-plane
displacements

Ref. [47] Ref. [47] Present

0.2 1.0072 1.0082 1.0079

0.4 1.0285 1.0324 1.0311

0.6 1.0631 1.0714 1.0686

0.8 1.1095 1.1235 1.1187

0.1 1.1663 1.1866 1.1797

1.2 1.2320 1.2591 1.2498

1.4 1.3052 1.3392 1.3276
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Table 2. Comparison of nonlinear frequency ratios, 
, of simply supported FGM plates.

a=h n
�max

0.2 0.6 1
Ref. [48] Present Ref. [48] Present Ref. [48] Present

10 2 1.0057 1.0268 1.1654 1.2108 1.4666 1.5251
10 1.0163 1.0262 1.1905 1.2136 1.4963 1.5164

Table 3. Comparison of dimensionless linear natural
frequencies for an isotropic simply supported square
micro-plate.

a=h l=h �!

Present TSDT [28] CPT [19]

20

0 5.9608 5.9199 5.9734

0.2 6.4420 6.4027 6.4556

0.4 7.7076 7.6708 7.7239

0.6 9.4474 9.4116 9.4673

0.8 11.4470 11.4108 11.4713

1 13.5926 13.5545 13.6213

100

0 5.9725 5.9712 5.9734

0.2 6.4547 6.4535 6.4556

0.4 7.7228 7.7217 7.7239

0.6 9.4660 9.4651 9.4673

0.8 11.4697 11.4689 11.4713

1 13.6194 13.6186 13.6213

frequency is de�ned as �! = (!a2=h)(�=E)0:5. Also,
the micro plate is made of epoxy with the material
properties [28]:

E = 1:44GPa � = 0:3; � = 1220 kg/m3;

h = 88� 10�6m:

Again, it is observed that the present results are in close
agreement with those reported in the aforementioned
references; speci�cally, they are more accurate in
comparison with those of the CPT solution. This
demonstrates again the validity of the previous assump-
tions made in developing the governing equation of thin
micro plates.

5.2. Parametric studies
The FGMP considered here is composed of aluminum
(Al) and alumina (Al2O3). The mechanical properties
of the FGMP are listed as:

Metal (Al):

Em = 70 GPa; �m = 2702 kg/m3; �m = 0:3;

Ceramic (Al2O3):

Ec = 380 GPa; �c = 3800 kg/m3; �c = 0:3:

Parametric studies are presented to investigate the
e�ects of various variables such as dimensionless length
scale parameter, h=l, dimensionless maximum ampli-
tude, �max, material gradient index, n, aspect ratio,
a=b, and boundary conditions on the nonlinear free
vibration of the FGMPs using the developed analytical
expressions. Initially, the value of material length-
scale parameter l was proposed equal to 17.6 �m
based on the experimental work reported by Lam et
al. [2] for homogeneous epoxy beams. However, so
far, no experimental data have been available for the
functionally graded micro plates [28]. Therefore, in this
study, the length-scale parameter of the micro plate is
approximately assumed to be l=15 �m wherever it is
needed. Meanwhile, in order to present a comprehen-
sive parametric study, the results are exhibited in terms
of the dimensionless form of the length-scale parameter
as h=l. It is worth noting that the inuence of the
length-scale parameter is only considerable when the
thickness of plate is small and in order of micron scale,
but the size e�ect is negligible when the plate thickness
becomes larger [28].

In order to illustrate the importance of performing
a nonlinear non-classical analysis for FGMPs, varia-
tions of di�erent frequency ratios versus dimensionless
length scale parameter, h=l, based on classical and non-
classical continuum theories are depicted in Figure 2.
The results show the signi�cant impact of length-scale
parameter on the nonlinear vibration of FGMPs. It is
also revealed that, only for the values of h=l greater
than 7, one can ignore the size e�ects captured by the
present nonlinear non-classical model.

Table 4 demonstrates the inuences of dimen-
sionless length-scale parameter on dimensionless linear
frequency, �!L, as well as the nonlinear frequency ratio
for di�erent boundary conditions. It is seen that with
increasing the dimensionless length-scale parameter,
the dimensionless linear frequency decreases, while the
nonlinear frequency ratio increases. It can be further
viewed that the nonlinear frequency ratio increases
with the increase in the dimensionless maximum am-
plitude, as expected.
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Table 4. E�ects of dimensionless length scale parameter h=l on dimensionless linear frequency, �!L, and nonlinear to linear
frequency ratio, 
, for di�erent boundary conditions (n = 2; a=b = 1, and a=h = 50).

Boundary
condition

h=l �!L �max

0.2 0.6 1

SSSS

Classic 4.7481 1.0247 1.2015 1.4897

10 4.8364 1.0238 1.1949 1.4750

6 4.9894 1.0224 1.1842 1.4511

3 5.5619 1.0175 1.1465 1.3655

2 6.6102 1.0128 1.1094 1.2786

1 10.3510 1.0053 1.0463 1.1231

CCCC

Classic 8.6854 1.0096 1.0828 1.2144

10 8.8469 1.0093 1.0803 1.2082

6 9.1269 1.0087 1.0754 1.1963

3 10.3388 1.0068 1.0594 1.1563

2 12.0916 1.0050 1.0438 1.1167

1 18.9346 1.0020 1.0182 1.0496

Table 5. E�ects of material gradient index, n, on the dimensionless linear frequency, �!L, and nonlinear to linear
frequency ratio, 
, for di�erent boundary conditions (h=l = 2; a=b = 1, and a=h = 50).

Boundary
condition

n �!L �max

0.2 0.6 1

SSSS

Al2O3 8.5492 1.0136 1.1158 1.2940
2 6.6102 1.0128 1.1094 1.2786
10 5.4543 1.0117 1.1002 1.2567
Al 3.1153 1.0264 1.2147 1.5190

CCCC

Al2O3 15.6386 1.0053 1.0463 1.1234
2 12.0916 1.0050 1.0438 1.1167
10 9.9772 1.0045 1.0401 1.1071
Al 5.6990 1.0103 1.0883 1.2282

Figure 2. Frequency ratio versus dimensionless length
scale parameter h=l (n = 2; a=b = 1; a=h = 50, and
�max = 0:6).

Table 5 investigates the e�ects of material gra-
dient index, n, on the dimensionless linear frequency
and nonlinear frequency ratio of simply supported

and clamped FGMPs. The dimensionless length-scale
parameter is assumed to be identical to 2. In general,
when n increases from a zero value (Al2O3) to in�nity
(Al), the dimensionless linear frequency decreases.
However, the non-dimensional nonlinear frequency ra-
tio decreases with the increase in the material gradient
index up to a particular value; afterwards, it increases
with further increase in n. Such behavior can be seen
in di�erent analyses. In fact, for higher values of
n, although the linear as well as nonlinear frequency
values decrease, the reduction in linear frequency is
more considerable in comparison to the corresponding
value of the nonlinear frequency. Due to the greater
reduction in the linear frequency at higher values of n,
the trend of the resulted nonlinear frequency ratio is
increasing.

In addition, the variations of non-dimensional
nonlinear frequency ratio with respect to material prop-
erty gradient index, n, and the maximum amplitude
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Figure 3. E�ect of material property gradient index, n,
on dimensionless frequency ratio versus dimensionless
maximum amplitude for FGMPs (h=l = 2; a=b = 2, and
a=h = 50): (a) SSSS and (b) CCCC.

ratio are illustrated in Figure 3. The FGMP with both
simply supported and clamped boundary conditions is
considered.

Figure 4 demonstrates the variations of dimen-
sionless frequency ratio with dimensionless maximum
amplitude corresponding to di�erent ratios of micro-
plate aspect ratio. These variations are depicted for
simply supported and clamped boundary conditions.
It is found that the dimensionless frequency ratio
increases with increasing the aspect ratio. However,
this e�ect is enhanced for the case of simply supported
FGMPs as the overall sti�ness is decreased.

6. Conclusions

In this investigation, the size-dependent explicit ex-
pressions for the nonlinear vibration of thin FG micro
plates are presented based on modi�ed couple stress
and Kirchho�'s plate theories. A power law distribu-
tion rule is used to capture the variation properties
through the thickness of the plate. Hamilton's prin-
ciple is employed to obtain the nonlinear governing
equation of FGMPs. The homotopy analysis method in
conjunction with the Galerkin technique is utilized to
solve the resulted nonlinear di�erential equation. The
analytical solutions are provided for simply supported

Figure 4. E�ects of aspect ratio a=b on dimensionless
frequency ratio versus dimensionless maximum amplitude
for FGMPs (n = 2; h=l = 2, and a=h = 50): (a) SSSS and
(b) CCCC.

and clamped FGMPs with immovable edges in the
absence of in-plane forces. The e�cacy and accuracy of
the present formulation are tested by studying the non-
linear free exural vibration of thin isotropic and FGM
plates with simply supported and clamped boundary
conditions for several examples, which are available
in the literature. The model enables researchers to
straightforwardly examine the e�ects of various param-
eters on the nonlinear frequencies. For instance, pa-
rameter studies are carried out to investigate the e�ects
of di�erent parameters, such as dimensionless length
scale parameter, dimensionless maximum amplitude,
material gradient index, aspect ratio, and boundary
conditions, on the nonlinear frequencies of the FGMPs
using the developed analytical expressions.

The numerical results reveal that the length-scale
parameter signi�cantly a�ects the nonlinear vibration
of FGMPs. It is found that the sti�ness of micro
plates and, consequently, the frequency increase with
the inclusion of the small-scale e�ects. It is also ob-
served that the nonlinear natural frequencies of FGMPs
deviate from the corresponding linear frequencies that
exhibit the necessity of performing a nonlinear analysis
for moderately large amplitude vibrations.
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Appendix

The coe�cients of Eq. (31) are de�ned in Box A.I,
where functions X(x) and Y (y) are, respectively, ab-
breviated by X and Y . Also, the subscript comma
denotes a partial derivative with respect to the corre-
sponding coordinate:

�1 = C2 +
A1l2

2
;

�2 = 2C1 + 2C3 +A1l2;

�3 = B1 � 2B3;

�4 = �A1 +A3

2
;
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�� =

R a
0

R b
0

�
XY

�
�1(X;xxxxY +XY;yyyy) + �2(X;xxY;yy)

��
dxdy

�5
;

�� =
sa0 s b0

�
XY

�
�3

�
(X;xY;y)2 �XYX;xxY;yy

���
dxdy

�5
;

� =

R a
0

R b
0

�
XY

�
� 1:5A2(X;xxY (X;xY )2 +XY;yy(XY;y)2

���
dxdy

�5

+

R a
0

R b
0

�
XY

�
�4

�
(XY;y)2X;xxY + (X;xY )2XY;yy

�
+ 4�4

�
XY (X;x)2(Y;y)2

���
dxdy

�5
: (A.1)

Box A.I

�5 =
as
0

bs
0

�
XY (I0XY �I2X;xxY � I2XY;yy)

�
dxdy:

(A.2)
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