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Abstract. Nonlinear �ltering techniques are used to fuse the Global Positioning System
(GPS) with Inertial Navigation System (INS) to provide a robust and reliable navigation
system with a performance superior to that of either INS or GPS alone. Prominent
nonlinear estimators in this �eld are Kalman Filters (KF) and Particle Filters (PF). The
main objective of this research is the comparative study of the well-established �ltering
methods of EKF, UKF, and PF based on EKF and UKF in an INS-GPS integrated
navigation system. Di�erent features of INS-GPS integrated navigation methods in the
state estimation, bias estimation, and bias/scale factor estimation are investigated using
these four �ltering algorithms. Both ground-vehicle experimental test and 
ight simulation
test have been utilized to evaluate the �lters performance.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The global positioning system can determine an ob-
server's position on Earth with acceptable accuracy
using four or more satellites; however, sometimes, GPS
signal obstruction can occur due to signal blockage,
multipath e�ects, interference, or jamming. To over-
come the limitations of GPS, the inertial navigation
system can be integrated with GPS. In INS, measure-
ments from accelerometer and gyroscope are used to
determine the position and orientation of an object.
However, the errors of INS increase without bounds
in the long term due to inherent sensors errors. It
can be said that INS and GPS have complementary
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error characteristics; therefore, fusion of INS with GPS
results in a more accurate, reliable and continuous
positioning solution. The most common sensor fusion
technique is Extended Kalman Filter (EKF). This �lter
linearizes the primary nonlinear state model around
the previous estimated state vector, and this technique
may show divergence problems due to the linearization
process in some applications. Alternatively, another
KF type, named Unscented Kalman Filter (UKF), uses
a �xed number of sample points to avoid the lineariza-
tion of the original nonlinear model. Nevertheless,
UKF algorithm still treats the noise as a Gaussian
distribution [1].

Particle �lter is another fusion technique that can
deal with any nonlinearities or distributions without
any assumptions on the system model and noise dis-
tribution. In fact, PFs are sequential Monte Carlo
methods based on which particles are drawn from the
proposal density function to evaluate the probability
density function of the system to estimate the system
state variables. A full description of di�erent �ltering
techniques is provided in [2]. In PFs, choosing the
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proposal density function from which samples are
drawn is one of the most important issues. One
method to determine the proposal density function
is to use other �lters' approximations, e.g. EKF and
UKF, as the proposal density functions [3,4]. There
are several examples of di�erent �ltering techniques
used in INS-GPS navigation systems. For instance,
Wendel and Trommer [5] used a tightly coupled INS-
GPS integration for missile applications and, in [6],
data from GPS, IMU, and a digital compass were fused
together using UKF algorithm. In [7], the investigators
used EKF to fuse GPS with IMU data, and in [8],
both EKF and UKF algorithms were applied onto INS-
GPS integration using quaternions as a representation
of the attitudes. In addition, some adaptive approaches
to KF were proposed toward INS-GPS navigation sys-
tems [9,10]. In [11-14], the authors proposed di�erent
algorithms of the PFs, including UPF and EPF, for
INS-GPS integrated systems. Li, et al. [15] carried out
both simulation test and vehicle-ground experiment to
compare the performances of the direct and indirect
modes in an INS-GPS integrated system. Moreover,
some recent researches, such as [16-19], on INS-GPS
navigation system started to focus on the application
of other techniques such as neural networks, learning
algorithms, and map matching along with the fusion
algorithms. The main contribution of this paper is
the comparative study of the well-established �ltering
methods of EKF, UKF, EPF, and UPF. Di�erent
features of integration methods in the state estimation,
bias estimation, and bias/scale factor estimation in the
indirect mode of INS-GPS integration are investigated
using these four �ltering methods. The accuracy and
robustness of these algorithms are veri�ed by carrying
out both ground-vehicle experimental and 
ight simu-
lation tests. The paper is organized as follows. Section
2 will introduce the theory and implementation details
of PFs. Section 3 discusses INS-GPS indirect nonlinear
state models in three di�erent state models. Section 4

discusses results, and Section 5 provides the concluding
remarks and future work.

2. Particle �ltering

Particle Filters (PFs) which calculate sequential Monte
Carlo estimations numerically through a set of random
particles are suboptimal �lters. Depending on which
proposal density functions or resampling methods are
chosen, di�erent versions of PFs are made. The state
model is assumed as follows:

xk+1 = f (xk; vk) ; (1)

zk = h (xk; nk) : (2)

Sampling Importance Resampling (SIR) Particle Fil-
ter, Unscented Particle Filter (UPF), and Extended
Particle Filter (EPF) are summarized as follows. The
symbols used in this section are given in Table 1.

2.1. Sampling Importance Resampling (SIR)
particle �lter

This basic version of PF uses the transitional density
function as the proposal density function. In other
words, particles are predicted from the motion model,
and the received measurements are used to compute the
particles' importance weights. It is worth mentioning
that as the proposal density function is independent of
the observation likelihood, this �lter can be ine�cient
and sensitive to outliers:

q
�
xkjxik�1; zk

�
= p(xkjxik�1): (3)

The pseudo code for SIR particle �lter is summarized
below [3,4].

Pseudo code for SIR particle �lter

i. Initialization: random generation of N particles
from the initial distribution p(x0):

Table 1. List of symbols in the �lters.

q(xkjxk�1; zk) Proposal density function

p(xkjxk�1) Transitional density function

p(zkjxk) Likelihood function

N(x;m;P ) Gaussian density with argument x, mean m, and covariance P

nx Dimension of the state vector

nv Dimension of the process noise

nn Dimension of the measurement noise8>>><>>>:
�

�

�

Scaling parameters in the unscented transformation
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�
xi0 � p (x0) i = 1; : : : ; N

wi0 = 1
N

for k = 1; 2; ::: (4)

ii. Importance sampling step for i = 1; 2; :::; N :

xik � q
�
xkjxik�1; zk

�
= p(xkjxik�1): (5)

iii. Evaluation of the particles' importance weights for
i = 1; 2; :::; N :

wik = wik�1

p
�
zkjxik

�
p
�
xikjxik�1

�
q
�
xikjxik�1; zk

�
= wik�1p

�
zkjxik

�
: (6)

iv. Normalization of the importance weights for i =
1; 2; :::N :

wik = wik

0@ NX
j=1

wjk

1A�1

: (7)

v. Resampling step, obtaining N samples by sup-
pression of the low importance weighted samples
and multiplication of the high importance weighted
samples, and assigning equal weights to the sam-
ples:�

xik; w
i
k
�Resampling)

�
xik; w

i
k =

1
N

�
: (8)

iv. Output: Computation of desired statistical mea-
sures, such as mean and covariance, using a set of
selected samples:

�Xk =
1
N

NX
j=1

xjk; (9)

�Pk =
1
N

NX
j=1

( �Xk � xjk)( �Xk � xjk)T : (10)

2.2. Unscented particle �lter and extended
particle �lter

As mentioned earlier, in these versions of PF, the
proposal density function is devised by UKF, EKF, or
Gaussian approximations. In fact, in order to sample
particles from the region of high likelihood, EPF and
UPF use EKF and UKF to generate the proposal
density function for each individual particle. The
description for EPF and UPF is presented according
to [3,4].

Pseudo code for extended particle �lter

i. Initialization: random generation of N particles
from initial distribution p(x0):

xi0 � p (x0) wi0 =
1
N

i = 1; : : : ; N

for k = 1; 2; :::: (11)

ii. For i = 1; 2; :::; N :

�x(i)
kjk�1 = f

�
x(i)
k�1

�
; (12)

P (i)
kjk�1 = F (i)

k�1P
(i)
k�1F

T (i)
k�1 +G(i)

k�1Qk�1G
T (i)
k�1;

F (i)
k�1 =

@fk�1

@x

����
x(i)
k�1

;

G(i)
k�1 =

@fk�1

@v

����
x(i)
k�1

; (13)

H(i)
k =

@hk
@x

����
�x(i)
kjk�1

; U (i)
k =

@hk
@n

����
�x(i)
kjk�1

Kk =P (i)
kjk�1H

T (i)
k

�
U (i)
k RkU

T (i)
k

+H(i)
k P (i)

kjk�1H
T (i)
k

��1

; (14)

�x(i)
k = �x(i)

kjk�1 +Kk

�
zk � h

�
�x(i)
kjk�1

��
; (15)

P̂ (i)
k = P (i)

kjk�1 �KkH
(i)
k P (i)

kjk�1: (16)

Importance sampling:

x̂(i)
k � q

�
x(i)
k jx(i)

k�1; zk
�

= N
�

�x(i)
k ; P̂ (i)

k

�
: (17)

iii. Evaluation of the importance weights for i =
1; 2; :::; N :

�W i
k /

p
�
zkjx̂(i)

k

�
p
�
x̂(i)
k jx(i)

k�1

�
q
�
x̂(i)
k jx(i)

k�1; zk
�

=
p
�
zkjx̂(i)

k

�
p
�
x̂(i)
k jx(i)

k�1

�
N
�
x̂(i)
k ; �x(i)

k ; P̂ (i)
k

�
=
p
�
zkjx̂(i)

k

�
N
�
x̂(i)
k ; �x(i)

kjk�1; P
(i)
kjk�1

�
N
�
x̂(i)
k ; �x(i)

k ; P̂ (i)
k

� : (18)

iv. Normalization of the importance weights for i =
1; 2; :::; N :

W i
k = �W i

k

0@ NX
j=1

�W j
k

1A�1

: (19)



1284 S. Kaviani et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 1281{1295

v. Resampling step, obtaining N samples by sup-
pression of the low importance weighted samples
and multiplication of the high importance weighted
samples, and assigning equal weights to the sam-
ples:

(x̂(i)
k ; P̂ (i)

k ;W i
k)

Resampling)
�
x(i)
k ; P (i)

k ;W i
k=

1
N

�
:

(20)

vi. Calculation of outputs:

�Xk =
1
N

NX
i=1

x(i)
k ; (21)

�Pk =
1
N

NX
i=1

( �Xk � x(i)
k )( �Xk � x(i)

k )T : (22)

Pseudo code for unscented particle �lter

i. Initialization: Random generation of N particles
from initial distribution, p(x0), and setting of the
augmented state vector and covariance for i =
1; 2; :::; N :

x(i)a
0 =

��
x(i)

0

�T
00
�T
; (23)

P (i)a
0 =

24 P (i)
0 0 0
0 Q 0
0 0 R

35 ;
for k = 1; 2; :::: (24)

ii. For i = 1; 2; :::; N :

Sigma points calculation:

X (i)a
k�1 =

�
x(i)a
k�1x

(i)a
k�1 �

q
(na + �)P (i)a

k�1

�
;

na = nx + nv + nn; (25)

X (i)x
kjk�1 = f

�X (i)x
k�1 ;X (i)v

k�1

�
; (26)

�x(i)
kjk�1 =

2naX
j=0

W (m)
j X (i)x

j;kjk�1; W (m)
0 =

�
na + �

;

W (c)
0 =

�
na + �

+
�
1� �2 + �

�
;

W (m)
j = W (c)

j =
1

2 (na + �)
;

� = �2 (na + �)� na: (27)

P (i)
kjk�1 =

2naX
j=0

W (c)
j

hX (i)x
j;kjk�1 � �x(i)

kjk�1

i
hX (i)x

j;kjk�1 � �x(i)
kjk�1

iT
; (28)

Y(i)
kjk�1 = h

�X (i)x
kjk�1;X (i)n

k�1

�
; (29)

�y(i)
kjk�1 =

2naX
j=0

W (m)
j Y(i)

j;kjk�1; (30)

Pykyk =
2naX
j=0

W (c)
j

hY(i)
j;kjk�1 � �y(i)

kjk�1

i
hY(i)

j;kjk�1 � �y(i)
kjk�1

iT
; (31)

Pxkyk =
2naX
j=0

W (c)
j

hX (i)x
j;kjk�1 � �x(i)

kjk�1

i
hY(i)

j;kjk�1 � �y(i)
kjk�1

iT
; (32)

Kk = PxkykP
�1
ykyk ; (33)

�xik = �x(i)
kjk�1 +Kk

�
zk � �y(i)

kjk�1

�
; (34)

P̂ (i)
k = P (i)

kjk�1 �KkPykykK
T
k : (35)

Importance sampling:

x̂(i)
k � q

�
x(i)
k jx(i)

k�1; zk
�

= N
�

�x(i)
k ; P̂ (i)

k

�
: (36)

iii. Evaluation of the importance weights for i =
1; 2; :::; N :

�W i
k /

p
�
zkjx̂(i)

k

�
p
�
x̂(i)
k jx(i)

k�1

�
q
�
x̂(i)
k jx(i)

k�1; zk
�

=
p
�
zkjx̂(i)

k

�
p
�
x̂(i)
k jx(i)

k�1

�
N
�
x̂(i)
k ; �x(i)

k ; P̂ (i)
k

�
=
p
�
zkjx̂(i)

k

�
N
�
x̂(i)
k ; �x(i)

kjk�1; P
(i)
kjk�1

�
N
�
x̂(i)
k ; �x(i)

k ; P̂ (i)
k

� : (37)

iv. Normalization of the importance weights for i =
1; 2; :::N :

W i
k = �W i

k

0@ NX
j=1

�W j
k

1A�1

: (38)



S. Kaviani et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 1281{1295 1285

v. Resampling step, obtaining N samples by sup-
pression of the low importance weighted samples
and multiplication of the high importance weighted
samples, and assigning equal weights to the sam-
ples:

(x̂(i)
k ; P̂ (i)

k ;W i
k)

Resampling)
�
x(i)
k ; P (i)

k ;W i
k=

1
N

�
:

(39)

vi. Calculation of output:

�Xk =
1
N

NX
i=1

x(i)
k ; (40)

�Pk =
1
N

NX
i=1

( �Xk � x(i)
k )( �Xk � x(i)

k )T : (41)

3. INS-GPS system and measurement model

The navigation equations are developed on the basis
of NED navigation frame, which is widely used in the
navigation applications. The error dynamics equations
obtained using perturbation analysis are presented in
three types of models: 9-variable, 15-variable, and 21-
variable models. The perturbation of the position, ve-
locity, attitude, and gravity can be expressed as [20,21].

Equation section

r̂n = rn + �rn; (42)

v̂n = vn + �vn; (43)

Ĉnb = (I3�3 � En)Cnb ; (44)

En =

24 0 �"D "E
"D 0 �"N�"E "N 0

35 ; (45)

ĝn = gn + �gn; (46)

where � and � denote computed values and errors. En
denotes the skew symmetric form of the attitude errors,
and N , E, and D refer to the north, east, and down
directions. The symbols used in this section are given
in Table 2.

3.1. 9-state-variable system model
Without considering the inertial sensors' error, the
error dynamics equations are obtained in the nonlinear
form as shown in Box I, where �f bk�1 and �!bib are the
process noise vector associated with each of the IMU
measurements. In other words, part of the stochastic
errors in the readings of the accelerometer triad is
�f bk�1 and part of the stochastic errors in the readings
of the gyroscope triad is �!bib:

f̂b = fb + �fb =

24 fxb
fyb
fzb

35+

24 �fxb
�fyb
�fzb

35 ; (50)

!̂bib = !bib + �!bib =

24 !bxib
!byib
!bzib

35+

24 �!bxib
�!byib
�!bzib

35 : (51)

3.2. 15-state-variable system model
In this model, it is assumed that the outputs measured
by accelerometer triad and gyroscope triad consist of
the constant bias and zero mean white noise:

f̂b =fb + bacc + �fb =

24 fxb
fyb
fzb

35+

24 bxacc
byacc
bzacc

35
+

24 �fxb
�fyb
�fzb

35 ; (52)

Table 2. List of symbols in the equations.

' Latitude �r Position error vector
� Longitude �v Velocity error vector
h Altitude " Attitude error vector8>><>>:
VN
VE
VD

Velocity components along north, east, and down !bib Gyroscope output vector

M Meridian radius of curvature of the earth reference ellipsoid fb Accelerometer output vector
N Normal radius of curvature of the earth reference ellipsoid bacc Accelerometer bias vector
Cnb Direction cosine matrix from the body to navigation frame bgyr Gyroscope bias vector

!nie
Rotation rate vector of the earth frame with respect to the

inertial frame projected to the navigation frame
%acc Accelerometer scale factor vector

!nen
Rotation rate vector of the navigation frame with respect to the

earth frame projected to the navigation frame
%gyr Gyroscope scale factor vector
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Frr =

2666664
0 0 �VN

(M+h)2

VEsin'
(N+h)(cos')2 0 �VE

(N+h)2cos'

0 0 0

3777775 ; (47)

Frv =

266664
1

M+h 0 0

0 1
(N+h)cos' 0

0 0 �1

377775 ; (48)

24 �rnk
�vnk
"nk

35 =

24 �rnk�1
�vnk�1
"nk�1

35+ dt

26666664
(Frr)k�1�r

n
k�1 + (Frv)k�1�v

n
k�1

: : : : : : : : : : : : : : : : : : : : : : : :
vnk�1 
 (2�!nie + �!nen)k�1 � (2!nie + !nen)k�1 
 �vnk�1 + : : :
�vnk�1 
 (2�!nie + �!nen)k�1 + (�gn)k�1 + (Cnb fb 
 "n)k�1

: : : : : : : : : : : : : : : : : : : : : : : :
�!nink�1

+ (En!nin)k�1 + (En�!nin)k�1

37777775
+dt

264 03�1

(Cnb � EnCnb )k�1�f
b
k�1

�Cnb k�1

�
�!bib

�
k�1

375 : (49)

Box I

!̂bib =!bib + bgyr + �!bib =

24 !bxib
!byib
!bzib

35+

24 bxgyr
bygyr
bzgyr

35
+

24 �!bxib
�!byib
�!bzib

35 : (53)

With this assumption, the error dynamics equations
are obtained by Eq. (54) as shown in Box II.

3.3. 21-state-variable system model
In this model, it is assumed that the outputs of the
IMU consist of the scale factor, constant bias, and zero
mean white noise as follows:

f̂b =

24 Sxaccfxb
Syaccf

y
b

Szaccfzb

35+

24 bxacc
byacc
bzacc

35+

24 �fxb
�fyb
�fzb

35
=

24 (1 + %xacc)fxb
(1 + %yacc)f

y
b

(1 + %zacc)fzb

35+

24 bxacc
byacc
bzacc

35+

24 �fxb
�fyb
�fzb

35 ;
(55)

!̂bib =

24 Sxgyr!bxib
Sxgyr!

by
ib

Sxgyr!bzib

35+

24 bxgyr
bygyr
bzgyr

35+

24 �!bxib
�!byib
�!bzib

35
=

24 (1 + %xgyr)!bxib
(1 + %ygyr)!

by
ib

(1 + %zgyr)!bzib

35+

24 bxgyr
bygyr
bzgyr

35+

24 �!bxib
�!byib
�!bzib

35 :
(56)

On the basis of this assumption, the error dynamics
equations are given in Eq. (57) as shown in Box III.

3.4. Measurement model
The position and velocity from GPS can be considered
as measurements. The measurement equation can be
written as follows:

zk =
�
rnINS � rnGPS
vnINS � vnGPS

�
=

0BB@ 'nINS � 'nGPS
�nINS � �nGPS
hnINS � hnGPS
vnINS � vnGPS

1CCA ; (58)

zk = Hxk + ek; (59)

ek � N (0; Rk) ; (60)

' and � are in radians, and they are very small in
comparison to the other state variables. Therefore, to
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266664
�rnk
�vnk
"nk
bacck
bgyrk

377775 =

266664
�rnk�1
�vnk�1
"nk�1
bacck�1

bgyrk�1

377775+ dt

2666666666666664

(Frr)k�1�r
n
k�1 + (Frv)k�1�v

n
k�1

: : : : : : : : : : : : : : : : : : : : : : : :
vnk�1 
 (2�!nie + �!nen)k�1 � (2!nie + !nen)k�1 
 �vnk�1 + : : :

�vnk�1 
 (2�!nie + �!nen)k�1 + (�gn)k�1 + (Cnb fb 
 "n)k�1 + : : :
(Cnb � EnCnb )k�1bacck�1

: : : : : : : : : : : : : : : : : : : : : : : : : : :
�!nink�1

+ (En!nin)k�1 + (En�!nin)k�1 � Cnb k�1
bgyrk�1

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
03�1
03�1

3777777777777775

+dt

2666664
03�1

(Cnb � EnCnb )k�1�f
b
k�1

�Cnb k�1

�
�!bib

�
k�1

�bacck�1

�bgyrk�1

3777775 : (54)

Box II

2666666664
�rnk
�vnk
"nk
bacck
bgyrk
%acck
%gyrk

3777777775 =

2666666664
�rnk�1
�vnk�1
"nk�1
bacck�1

bgyrk�1

%acck�1

%gyrk�1

3777777775+ dt

2666666666666666666666666666664

(Frr)k�1�r
n
k�1 + (Frv)k�1�v

n
k�1

::::::::::::::::::::::::::::::
vnk�1 
 (2�!nie + �!nen)k�1 � (2!nie + !nen)k�1 
 �vnk�1 + : : :

�vnk�1 
 (2�!nie + �!nen)k�1 + (�gn)k�1 + (Cnb fb 
 "n)k�1 + : : :

(Cnb � EnCnb )k�1bacck�1 + (Cnb � EnCnb )k�1

24fxb 0 0
0 fyb 0
0 0 fzb

35
k�1

24%xacc%yacc
%zacc

35
k�1

:::::::::::::::::::::::::
�!nink�1

+ (En!nin)k�1 + (En�!nin)k�1 � Cnb k�1
bgyrk�1 � : : :

Cnb k�1

24!bxib 0 0
0 !byib 0
0 0 !bzib

35
k�1

24%xgyr%ygyr
%zgyr

35
k�1

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
03�1
03�1
03�1
03�1

3777777777777777777777777777775

+dt

26666666664

03�1

(Cnb � EnCnb )k�1�f
b
k�1

�Cnb k�1

�
�!bib

�
k�1

�bacck�1

�bgyrk�1

�%acck�1

�%gyrk�1

37777777775
: (57)

Box III
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avoid numerical issues, zk is taken as follows:

zk =

0BB@ (M + h0) ('nINS � 'nGPS)
(N + h0) cos'0(�nINS � �nGPS)

(hnINS � hnGPS)
vnINS � vnGPS

1CCA : (61)

For 9-state-variable system model, H is equal to:

H =2664 (M+h0) 0 0
0 (N+h0) cos'0 0
0 0 1

03�3 03�3

03�3 I3�3 03�3

3775 :
(62)

For 15-state-variable system model, H is obtained by
Eq. (63), as shown in Box IV, and for 21-state-variable
system model, it is obtained by Eq. (64) as shown in
Box V.

4. Field test and simulation

Both ground-vehicle experimental test and 
ight sim-
ulation test are employed to identify inertial sensors'
bias and scale factor by di�erent �ltering methods
including EKF, UKF, EPF, and UPF. The estimation
improvement due to identi�cation of inertial sensors'
error is shown by comparing the obtained results.
An Intel(R) Core (TM) i5-3570 CPU is utilized for
integrating GPS and INS.

4.1. Field test
A �eld test lasting 336 s is conducted based on the
car ride. UPF, EPF, UKF, and EKF for all the three
presented system models are considered in this test.
The road test trajectory and INS estimation of that
are shown in Figure 1. In this test, (Gyro VG910F1
Fizoptika FOG) and (Accl QA2000 Honeywell VQ)

Figure 1. Field test trajectory and INS estimation.

are integrated with the UBlox NEO-6M GPS receiver.
The �lter is initialized with readings from the magne-
tometer and accelerometer. The experimental car ride
data include 2 sec GPS signal outages as this occurs
in reality; however, three to ten seconds GPS signal
outages are also purposely assumed for the test, and
these outages are shown by yellow bands in �gures.
Since there is no reference information to evaluate
the estimate errors in the performed experimental test,
the results are evaluated with respect to a reference
solution made by GPS receiver omitting 2 sec GPS sig-
nal outages as reference information. In addition, the
path of experimental test can be completely speci�ed
in a map as shown in Figure 1. However, there is no
reference information to evaluate the attitude estimates
and inertial sensors' error identi�cation. To overcome
these inevitable limitations in our experimental test, we
check the algorithms by providing a 
ight simulation in
which the whole true trajectories in position, velocity,
and angles are available. The experiment results for all

H =

2664 (M + h0) 0 0
0 (N + h0) cos'0 0
0 0 1

03�3 03�3 03�3 03�3

03�3 I3�3 03�3 03�3 03�3

3775 : (63)

Box IV

H =

2664 (M + h0) 0 0
0 (N + h0) cos'0 0
0 0 1

03�3 03�3 03�3 03�3 03�3 03�3

03�3 I3�3 03�3 03�3 03�3 03�3 03�3

3775 : (64)

Box V
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Figure 2. Position estimates for �eld test.

Figure 3. Velocity estimates for �eld test.

Figure 4. Euler angle estimates for �eld test.

three types of system models are depicted in Figures 2
to 7 and Table 3.

In the legends of �gures, type of the system model
used by the �lters is indicated by the number of its state
variables. For example, EPF21 refers to EPF employed
for 21-state-variable system model. As can be seen
in the results, identi�cation of inertial sensors' error
resulted in estimates that are more accurate, especially
in the 15-state-variable system model for all of the
�lters. It can be seen that gyro bias estimations have
good convergence in comparison to accelerometer bias.

However, there is no reference value for the inertial
sensor characteristics to evaluate the accuracy of bias
and scale factor estimates. Furthermore, it is shown
in Figure 7 that EPF and UPF have much better
performances for position estimates in comparison to
EKF and UKF for a 9-variable system model.

Number of particles used in UPF and EPF is 15,
and the computational time (CPU time) in Table 3
shows that EPF algorithm, similar to EKF and UKF
algorithms, can work in real time in 9-variable and 15-
variable system models.

4.2. Simulation
To overcome the experimental test limitations, a 
ight
simulation lasting 800 sec with four 20 sec GPS
signal outages, shown by yellow bands in �gures, is
checked. Inertial sensors' characteristics are illustrated
according to Table 4. Simulation results are available
in Figures 8 to 13 and Table 5.

Similar to the �eld test results, simulation results
showed that identi�cation of inertial sensors' error
improved the accuracy of estimates. As seen in
Figure 11, the gyroscope biases estimates converged
to the true values. In contrast, the accelerometer
bias estimates converged to the wrong values, and
both gyroscope and accelerometer scale factors were
identi�ed poorly. Moreover, EPF and UPF have
much better performances for position estimates in
comparison to EKF and UKF for all types of system
models; performance accuracies of EPF and UPF are
similar to those of EKF and UKF for the velocity and
attitude estimates of all the three system models.

Number of particles in UPF and EPF is 15, and
the computational time shows that EPF algorithm,
similar to EKF and UKF algorithms, can work in real
time in 9-variable and 15-variable system models.

5. Conclusion

Within this study, UPF, EPF, UKF, and EKF are
implemented for INS-GPS integration during a ground-
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Figure 5. Gyro bias and accelerometer bias estimates for �eld test.

Figure 6. Gyro scale factor and accelerometer scale factor estimates for �eld test.

Figure 7. Position and velocity RMSE (Root Mean Square Error) for �eld test.
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Table 3. Root mean square error for �eld test.

Filter System model Position RMSE
(m)

Velocity RMSE
(m/sec)

CPU time
(sec)

EPF
9-variable 14.2218 3.2619 108.6703s

15-variable 10.0898 1.4777 130.4948

21-variable 8.8541 1.0777 629.1208

UPF
9-variable 14.6036 3.2599 2089.0

15-variable 9.9574 1.7201 3834.9

21-variable 7.6990 1.1022 7282.7

EKF
9-variable 22.4245 3.7213 14.4145

15-variable 9.7980 2.1030 15.1321

21-variable 7.4562 1.4370 16.9261

UKF
9-variable 22.4164 3.7203 147.8889

15-variable 9.9433 2.0140 252.4876

21-variable 10.2458 4.9734 406.8974

Table 4. Inertial sensors' characteristics.

Accelerometer Gyroscope

Random walk �acc 0:0005 gp
Hz

�gyr 0:0017 deg=sp
Hz

Bias time constant � 60 s � 100 s
Bias variation �biasacc 50� 10�5g �biasgyr 0:35 deg

hr

Constant o�set
bxacc 2 mg bxgyr 14 deg

hr

byacc -2 mg bygyr �14 deg
hr

bacc 4 mg bzgyr 10 deg
hr

Scale factor sacc 300 ppm sgyr 150 ppm
Sample rate fs 100 Hz fs 100 Hz

Figure 8. Position estimates for 
ight simulation.
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Table 5. Root mean square error for 
ight simulation.

Filter System
model

Position RMSE
(m)

Velocity RMSE
(m/sec)

Angle RMSE
(deg)

CPU time
(sec)

EPF
9-variable 336.6927 14.0956 2.1307 256.5904
15-variable 20.0499 2.6417 0.8998 312.7508
21-variable 20.0390 2.8496 1.0216 1451.5

UPF
9-variable 328.2547 13.7649 2.1128 5000.5
15-variable 23.4743 3.0346 1.1245 9432.8
21-variable 20.9421 2.7604 1.0075 17448

EKF
9-variable 493.8215 14.1492 2.1250 32.4638
15-variable 88.9628 3.0184 1.0496 35.1470
21-variable 88.9628 3.0184 1.0496 42.0423

UKF
9-variable 493.9893 14.1521 2.1251 332.6721
15-variable 88.4659 3.0046 1.0586 597.7958
21-variable 88.4659 3.0046 1.0586 1013

vehicle experimental test and 
ight simulation test. In
algorithms implementation, inertial sensors' character-
istics and three types of system models with 9, 15, 21

Figure 9. Velocity estimates for 
ight simulation.

Figure 10. Euler angle estimates for 
ight simulation.

state variables are considered. Some outcomes of the
research are as follows.

Sensors output corrections led to highly accurate
estimates in both dataset (i.e., the ground vehicle test
and 
ight simulation). Estimation accuracies of 15-
variable and 21-variable system models are so much
better than that of the 9-variable system model in each
�lter. In addition, it is shown in the simulation that
gyroscope biases are identi�ed properly.

In each system model, four EKF, UKF, EPF, and
UPF algorithms provide comparable results. Accord-
ing to the simulation results, EPF and UPF position
estimates are more accurate than both EKF and UKF
position estimates, while the velocity and attitude
estimates are measured similarly by all four algorithms
in each system model. According to the ground-vehicle
test, estimates done by these four �lters in each system
model are close together, except for 9-variable system
model case; EPF and UPF position estimates are
more accurate than EKF and UKF position estimates
are.

From a computational point of view, the EKF
provided the lowest overall computational burden.
Moreover, EPF and UKF algorithms can work in real
time for 9-variable and 15-variable system models for
both dataset.

Compared with the conventional PF algorithms,
EPF and UPF can present accurate results with a
small number of particles, as we chose 15 optimum
particles for them. However, one drawback to EPF
and UPF in drawing particles is that they depend on
EKF and UKF estimates, which can be problematic in
a serious non-Gaussian case. To enhance the estimates
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Figure 11. Gyro bias and accelerometer bias estimates for 
ight simulation.

Figure 12. Gyro scale factor and accelerometer scale factor estimates for 
ight simulation.

Figure 13. Position, velocity, and attitude RMSE (Root Mean Square Error) for 
ight simulation.
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accuracy, an implementation of a PF or KF, which can
be updated along with other algorithms such as map
matching, neural network or genetic algorithms, can be
a next step within future e�orts concerning the INS-
GPS integrated systems.
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