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Abstract. In this paper, free vibration analysis of rotating annular disc made of
Functionally Graded Material (FGM) with variable thickness is presented. Elasticity
modulus, density, and thickness of the disc are assumed to vary radially according to a
power low function. The natural frequencies and critical speeds of the rotating FG annular
disc of variable thickness with two types of boundary conditions are obtained employing the
numerical Generalized Di�erential Quadrature Method (GDQM). The boundary conditions
considered in the analysis are both edges clamped (C-C): the inner edge clamped and
outer edge free (C-F). The in
uence of the graded index, thickness variation, geometric
parameters, and angular velocity on the dimensionless natural frequencies and critical
speeds is demonstrated. It is shown that we have higher critical speed and natural frequency
using a plate with a convergent thickness pro�le, and lower critical speed using a divergent
thickness pro�le. It is found that the increase in the ratio of inner-outer radii could increase
the critical speed of the FG annular disk. The results of the present work could improve
the design of the rotating FG annular disk in order to avoid resonance condition.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Functionally Graded Materials (FGM) are a new type
of composite materials, which have gained considerable
attention in various industries recently. Due to the
special advantages of using composite materials, some
mechanical structures, such wind turbine blades, are
growing in size and becoming structurally more e�-
cient [1-3]. Mechanical properties in plates made of
FG materials vary continuously in one or more direc-
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tions [4,5]. Since circular plates are extensively used in
many engineering applications, many researchers have
performed vibration analysis of these plates.

Lamb and Southwell [6] investigated vibrations
of spinning uniform disk for the �rst time. They
obtained the natural frequencies of rotating, homoge-
nous, constant thickness circular disk using exact
solution. Southwell [7] extended the Lamb's work
and analyzed the e�ects of rotation on the vibration
of uniform homogeneous circular disk, more deeply.
Deshpande and Mote [8] presented a model for in-
plane vibration of rotating thin disc. Their model
accounted for the sti�ening of the disk due to the
radial expansion resulting from its rotation. Bauer
and Eidel [9] obtained the lower approximate natural
frequencies of a spinning circular plate. In their paper,
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the plate was assumed uniform and their analysis was
performed for clamped, guided and simply supported
boundary conditions. Lee and Ng [10] used the
assumed modes method to formulate the equations of
motion of rotating homogeneous annular plates. They
assumed the thickness of the plate to vary linearly and
exponentially and obtained the natural frequencies and
critical speeds of vibration modes consisting of radial
nodal lines without any nodal circle.

Singh and Saxena [11] used Rayleigh-Ritz method
to obtain the �rst four natural frequencies, mode
shapes, and nodal radii of a circular plate. They
considered the thickness variation of the plate to be
exponential in radial direction and the material of the
plate to be homogeneous. Taher et al. [12] analyzed the
vibration of circular and annular plates with variable
thickness and combined boundary conditions. In their
paper, a 3D elasticity theory was used to obtain the
equations, and the plates were assumed to have linear
and nonlinear thickness variations.

Kermani et al. [13] used Di�erential Quadrature
Method (DQM) to solve the equations of motion of
rotating FG annular plates with constant thickness.
They assumed the variation of the elasticity modulus
and density of the plate to be exponential in radial
direction. Horgan and Chan [14] investigated the
stress in rotating functionally graded isotropic linearly
elastic disks. The purpose of their paper was mainly
discussing the e�ect of inhomogeneity on the stress
in the rotating solid and annular FG disks. Nie
and Batra [15] investigated the stress of the isotropic,
linear thermo elastic, and incompressible FG rotating
disks of variable thickness. They solved the ordinary
di�erential equation analytically and also numerically
using DQ method. Mohammadsalehi et al. [16] inves-
tigated the vibrations of variable thickness rectangular
viscoelastic nano plate based on nonlocal theory. They
used DQ method to solve the equations of motion
and evaluated the e�ect of small-scale e�ect on the
vibration features. Asghari and Ghafoori [17] presented
a general semi-analytical solution for investigating
elastic response of rotating solid and annular rotating
FG disks. They showed that although the plane-stress
solution satis�es all the governing three-dimensional
equations of motion and boundary conditions, it fails to
give a compatible three-dimensional strain �eld. Peng
and Li [18] investigated the in
uence of orthotropy
and gradient on the elastic response of the rotating
annular functionally graded polar orthotropic disks.
Bahaloo et al. [19] investigated the vibration and stress
of a rotating functionally graded circular disk with
an open circumferential crack. Khorasani and Hut-
ton [20] investigated the vibration of rotating annular
disks which were elastically restrained with rigid-body
translational degrees of freedom. They discussed the
e�ect of rotating speed on the natural frequencies of

the disk and also investigated the stability of the disks
thoroughly. G�uven and C�elik [21] investigated the
vibration of rotating functionally graded solid disks.
They used Rayleigh-Ritz method to solve the equations
of motion and considered the plate to be isotropic with
constant thickness.

In the past few years, DQM has been applied
extensively to solving engineering problems. Compared
to the other numerical methods, the DQ method can
lead to almost accurate results using a considerably
smaller number of grid points and, hence, requiring
relatively little computational e�ort [22,23]. The GDQ
method is an improvement of the DQ method, espe-
cially for solving higher order di�erential equations,
which is more computationally e�cient and accurate.
Unlike the DQ method, the GDQ method considers a
general situation, where the derivatives of a function
are approximated using a linear weighted sum of all
the functional values and also some derivatives of the
functional values [23,24]. From the above discussion
on the previous papers in the literature and to the
best of the authors' knowledge, the vibration analysis
of rotating functionally graded thin disk with variable
thickness has not been investigated so far. In this
paper, the generalized di�erential quadrature method
is used for solving the vibration equations of motion
of rotating FG annular plates with variable thickness.
The variation of the Young's modulus, density, and
thickness of the disk in radial direction are assumed
to be graded by a power-low function, and the �rst
dimensionless natural frequency and dimensionless crit-
ical speeds are obtained. The convergence of the
method is shown by the convergence diagrams, and
the boundary conditions of the disk are assumed to
be Clamped-Clamped (C-C) and Clamped-Free (C-F).
The e�ects of the graded index, thickness variation,
angular velocity, and geometric parameters on the �rst
dimensionless natural frequencies and critical speeds
are evaluated.

2. Governing equations for vibration analysis

An annular FG plate with outer radius, a, inner radius,
b, thickness, h, and outer surface thickness, h0, which is
rotating with angular velocity, ~!, is shown in Figure 1.
Thickness h can be variable in the radial direction.The
equation of motion for transverse vibration of a ro-
tating disc of variable thickness with variable material
properties can be written as follows [25]:

Dr4w +
dD
dr

�
2
@
@r

(r2w)

+
1
r

�
�
@2w
@r2 +

1
r
@w
@r

+
1
r2
@2w
@�2

��



730 M.H. Jalali et al./Scientia Iranica, Transactions B: Mechanical Engineering 25 (2018) 728{740

Figure 1. FG Rotating annular plate with variable
thickness.
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where w is the transverse de
ection, D is the 
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rigidity of the disk, D = Eh3

12(1��2) r2 = @2

@r2 + ( 1
r ) @@r +

1
r2

@2

@�2 is the Laplacian operator, and �r and �� are
the radial and circumferential stresses, respectively,
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where E is the Young's modulus and � is poison ratio
assumed to be constant. Kirsho� strain-displacement
relations lead to the expressions below:

"r =
du
dr
; "� =

u
r
; 
r� = 0; (3)

where u is the radial displacement. The Young's
modulus, density, and thickness of the disc are assumed
to vary in radial direction by the following equations:

E = E0

� r
a

�n
; (4)

� = �0

� r
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� r
a

�m1
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where n is the graded index, and m1 is the parameter
for the variation of the thickness in the radial direction.
Thus:

D =
E0h3

0rn+3m1

12(1� v2)an+3m1
: (7)

The following boundary conditions must be satis�ed.

Clamped-Clamped (C-C):

r = b; w = 0;
@w
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= 0; (8)

r = a; w = 0;
@w
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= 0: (9)

Clamped-Free (C-F):
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The transverse de
ection can be written as follows:

w = W (r) cos(m�)ei!t; (12)

where m is the circumferential wave number, and !
is the natural frequency. By substituting Eqs. (5)-(7),
(4), and (12) into Eq. (1), the following equation of
motion in terms of W (r) is obtained:
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where:
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In addition, the boundary equations become:

Clamped-Clamped (C-C):

r = b; W = 0;
dW
dr

= 0; (15)

r = a; W = 0;
dW
dr

= 0: (16)

Clamped-Free (C-F):
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Introducing the following dimensionless parameters,
the motion and boundary equations can be recast in
a dimensionless form as follows:
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The dimensionless equation of motion is:
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and the dimensionless boundary equations are:

Clamped-Clamped (C-C):

R = b=a; �W = 0;
d �W
dR

= 0; (22)

R = 1; �W = 0;
d �W
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= 0: (23)

Clamped-Free (C-F):
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In order to solve the equation of motion (Eq. (20)) and
obtaining the dimensionless natural frequency (!), the
GDQ method is utilized.

3. Generalized Di�erential Quadrature
Method (GDQM)

In the numerical GDQ method, the solution domain is
divided into points Ri (i = 1; 2; � � � ; N) and derivatives
of a function with the weighted summation of that
function [22,23,26]. The GDQR expression for the
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fourth-order boundary value di�erential equation has
been used as follows [23]:

�W (S)(Ri) =
ds �W (Ri)
dRs

=
N+2X
j=1

E(S)
ij Uj;

i = 1; 2; � � � ; N; (26)

where:
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n
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N

o
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and �Wj is the function value at point j, and �W (1)
1 and

�W (1)
N are the �rst-order derivatives of the dimensionless

displacement function at the �rst and Nth points [23].
E(S)
ij are the Sth order Weighting coe�cients at points

Ri. The GDQR explicit weighting coe�cients have
been derived in [22,23] and used directly in this paper.

In order to discretize the solution interval, two
discretization schemes (I and II) are used in this paper.

I) Equally spaced points;
II) Chebyshev-Gauss-Lobatlo discretization.
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1
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�
;

i = 1; 2; � � � ; N: (27)

Appling GDQM to Eq. (20), the GDQ form of the
equation of motion can be obtained as follows:

HijUj = 
2 �Wi; i = 2; 3; � � � ; N � 1; (28)

where is a (N)�(N+2) matrix. The (N�2) equations
are added by four boundary equations, and (N + 2)
algebraic equations are constructed. An assembled
form is constituted by arranging them [23]:24[Sbb] [Sbd]

[Sdb] [Sdd]

35�Ub
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�
=
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where:
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...
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By matrix substructuring and manipulation, one ob-
tains a standard eigenvalue problem [23]:

[S]Ud = 
2Ud; (31)

where:

[S] = [Sdd]� [Sdb] [Sbb]
�1 [Sbd] ;

with an order (N � 2)� (N � 2).
The dimensionless natural frequency (
) can be

obtained by solving the eigenvalue problem (Eq. (31)).

3.1. Application of boundary conditions in
GDQM

The following boundary equations are the GDQ form
of Eqs. (45) and (46) for (C-C) boundary conditions.

Clamped-Clamped (C-C):
�W1 = 0; U1 = 0;

�W (1)
1 = 0; U2 = 0;

�WN = 0; UN+1 = 0;

�W (1)
N = 0; UN+2 = 0: (32)

By separating the boundary and domain coe�cients
in Eq. (28), we have:
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Therefore, S = Sdd and the eigenvalues of matrix
Sdd are the dimensionless natural frequencies of (C-
C) plate.

The following equations are the GDQ form of
Eqs. (27) and (35) for (C-F) boundary conditions.
Clamped- Free (C-F):
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Separating the boundary and domain coe�cients in
Eq. (35) and in light of Eq. (33), the following
submatrices are found:

Sbb=

2664
1 0 0 0
0 1 0 0

E(2)
N1 E(2)

N2 E(2)
NN+1� �m2

R2
N

E(2)
NN+2+ �

RN
Sbb1 Sbb2 Sbb3 Sbb4

3775 ;
where:
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+
1 + n+ 3m1

RN
E(2)
N1;

Sbb2 = E(3)
N2

+
1 + n+ 3m1

RN
E(2)
N2
;

Sbb3 =E(3)
NN+1 +

1 + n+ 3m1
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E(2)
NN+1

+
m2(3� �)� (n+ 3m1)m2�
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N

;

Sbb4 =E(3)
NN+2 +

1 + n+ 3m1
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E(2)
NN+2

+
�1�m2(2� �) + (n+ 3m1)�
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and:

Sbd =

24[0]2�4
Sbd3
Sbd4

35 ; (37)

where Sbd3 = E(2)
Nj j = 3; � � � ; N and Sbd4 = E(3)

Nj +
1+n+3m1

RN E(2)
Nj j = 3; � � � ; N . In addition, Sdb and

Sdd are the same as Sdb and Sdd in (C-C) boundary
conditions. By obtaining the dimensionless natural
frequency (
), the natural frequency (!) can be
calculated. The obtained natural frequency is the
natural frequency in the rotating (non-inertial) co-
ordinate system, attached to the rotating plate. For
each rotating plate in the rotating coordinate system,
there are two corresponding natural frequencies in
the stationary (inertial) coordinate system. These
natural frequencies are obtained as follows [13]:

!f = ! +m~!;

!b = ! �m~!; (38)

where !f and !b are the forward and backward
natural frequencies, respectively. Whenever !b is
equal to zero, the critical speed might occur.

4. Results

Solving the eigenvalue problem of Eq. (31), the di-
mensionless natural frequency can be obtained for
di�erent boundary conditions. The Young's modulus
and density of the plate at the outer surface are

assumed to be 380 GPa and 3800 kg/m3, respectively,
and the poison ratio is assumed to be 0.3 and constant.
The considered material properties are the same as
those in [13] in order to validate our results compared
to those in other papers in the literature.

For the discretization of the plate in the radial
direction, two discretization methods are used: First
equally spaced discretization (I); second, using Eq. (27)
(II). Figure 2 shows the convergence diagram for the
�rst dimensionless natural frequency using the �rst
discretization method (equally spaced) and for (C-
C) boundary conditions. As can be seen from the
�gure, the results could not change appreciably if
the number of discrete points (N) increases between
15 and 25. Figure 3 shows the same diagram, but
for Chebyshev-Gauss-Labatlo discretization (Eq. (27)).
Figures 4 and 5 show the convergence diagram for
(C-F) boundary conditions. It can be seen from the
�gures that the convergence of the method in both
discretization methods is guaranteed. It should be
noted that in order to obtain the out-of-plane vibration,
�rst, the radial displacement should be calculated. In
this paper, the radial displacement was �rst obtained
using a numerical method, and the results of that were
used in order to obtain the out-of-plane vibration.

In order to validate our results, Table 1 compares
the �rst dimensionless natural frequencies obtained

Figure 2. Convergence diagram for (C-C) boundary
condition (discretization method I).

Figure 3. Convergence diagram for (C-C) boundary
condition (discretization method II).
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Figure 4. Convergence diagram for (C-F) boundary
condition (discretization method I).

Figure 5. Convergence diagram for (C-F) boundary
condition (discretization method II).

from our study with those obtained in [13]. In this
table, discretization scheme is equally spaced, rotating
speed is assumed to be zero, and the disc is assumed
to be homogenous (n = 0) with the (C-C) boundary

conditions. In Table 2, the same results are presented,
but obtained from discretization II.

Tables 3 and 4 present the �rst dimensionless
natural frequency for (C-F) boundary conditions us-
ing discretization I and discretization II, respectively.
From Tables 1-4, we can conclude the convergence of
the results, because the results are not a�ected sensibly
by increasing (N) From 15 to 25. Also, it can validate
our results, because there is good agreement between
the present results and those obtained in [13]. In
addition, in order to validate our results compared with
those of rotating disks in the literature, the values of
the �rst dimensionless natural frequency of the rotating
homogeneous disk with (C-F) boundary conditions
are presented for various inner-to-outer radii rations;
thickness-to-outer radius ratio is presented in Table 5.
As seen, the increase of thickness-to-outer radius ratios
decreases the dimensionless natural frequencies, but
the increase of inner-to-outer radii ratio increases the
dimensionless natural frequencies. As obvious, the
results are in good agreement with those in [13].

Figure 6 shows the variation of the �rst dimen-
sionless natural frequency with the variation of the
graded index for di�erent thickness pro�les for plate
with clamped edges. As can be seen, the increase in
value of m1 from {1 to 1 leads to the decrease in the
value of the natural frequency. Figure 7 shows the same
result, but for (C-F) boundary conditions.

Figure 8 shows the variation of dimensionless
forward and backward natural frequencies and that of
the dimensionless rotating speed for a rotating uniform
disk (m1 = 0) with clamped edges. In this �gure

Table 1. The lowest dimensionless natural frequency against di�erent numbers of nodal circles for plate with (C-C) edges
(n = 0, m1 = 0, h0=a = 0:001, and b=a = 0:2) (discretization method I).

m 0 1 2 3 4 5

Present N = 15 34.609 36.203 41.822 52.619 68.360 87.907
Ref. [13] N = 15 34.609 36.104 41.821 53.389 70.256 90.854
Present N = 20 34.609 36.175 41.820 52.826 68.878 88.712
Ref. [13] N = 20 34.609 36.103 41.820 53.388 70.256 90.855
Present N = 25 34.609 36.160 41.819 52.946 69.175 89.172
Ref. [13] N = 25 34.609 36.103 41.820 53.388 70.256 90.854

Table 2. The lowest dimensionless natural frequency against di�erent numbers of nodal circles for plate with (C-C) edges
(n = 0, m1 = 0, h0=a = 0:001, and b=a = 0:2) (discretization method II).

m 0 1 2 3 4 5

Present N = 15 34.609 36.228 41.819 52.367 67.620 87.521
Ref. [13] N = 15 34.609 36.104 41.821 53.389 70.256 90.854
Present N = 20 34.609 36.194 41.819 52.650 68.350 88.770
Ref. [13] N = 20 34.609 36.103 41.820 53.388 70.256 90.855
Present N = 25 34.609 36.174 41.819 52.811 69.765 88.384
Ref. [13] N = 25 34.609 36.103 41.820 53.388 70.256 90.854
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Table 3. The lowest dimensionless natural frequency against di�erent numbers of nodal circles for plate with (C-F) edges
(n = 0, m1 = 0, h0=a = 0:001, and b=a = 0:2) (discretization method I).

m 0 1 2 3 4 5

Present N = 15 5.134 4.802 6.051 11.447 19.806 30.286
Ref. [13] N = 15 5.172 4.694 6.030 12.097 21.316 32.907
Present N = 20 5.185 4.939 6.502 12.099 20.551 31.115
Ref. [13] N = 20 5.215 4.822 6.360 12.417 21.535 33.029
Present N = 25 5.180 4.898 6.440 12.147 20.782 31.628
Ref. [13] N = 25 5.180 4.817 6.342 12.394 21.514 33.014

Table 4. The lowest dimensionless natural frequency against di�erent numbers of nodal circles for plate with (C-F) edges
(n = 0, m1 = 0, h0=a = 0:001, and b=a = 0:2) (discretization method II).

m 0 1 2 3 4 5

Present N = 15 5.180 5.006 6.441 11.588 19.558 29.607
Ref. [13] N = 15 5.172 4.694 6.030 12.097 21.316 32.907
Present N = 20 5.181 4.959 6.447 11.861 20.316 30.661
Ref. [13] N = 20 5.125 4.822 6.360 12.417 21.535 33.029
Present N = 25 5.181 4.929 6.447 12.016 20.511 31.240
Ref. [13] N = 25 5.213 4.817 6.342 12.394 21.514 33.014

Table 5. The lowest dimensionless natural frequency versus di�erent inner-to-outer radii ratios and di�erent
thickness-to-outer radius ratios for the rotating functionally graded annular plate with clamped inner edge and free outer
edge (m = 0, and ~! = 1000 rpm).

b=a

h0=a
0.1 0.2 0.3 0.4

Present Ref. [8] Present Ref. [8] Present Ref. [8] Present Ref. [8]
0.005 6.115 6.125 7.400 7.412 9.066 9.077 11.395 11.401
0.010 4.309 4.300 5.125 5.241 6.602 6.619 8.712 8.750
0.015 3.820 3.843 4.652 4.715 6.030 6.046 8.102 8.160
0.020 3.652 3.667 4.502 4.515 5.800 5.832 7.860 7.943
0.025 3.595 3.582 4.302 4.419 5.739 5.730 7.789 7.840
0.030 3.532 3.534 4.350 4.366 5.596 5.673 7.756 7.784

and also Figures 9-13, the mode shapes are denoted
by (x;m) in which x indicates the number of nodal
diameters and m indicates the number of nodal circles
(excluding the boundary edges). It should be noted
that all the results in the paper are based on zero
nodal diameters. Figure 9 shows the same result for the
plate with the inner edge clamped and outer edge free.
As it was mentioned, whenever the backward natural
frequency equals zero, the critical angular velocity
occurs. Figure 10 shows the variation of the �rst
dimensionless natural frequency for a rotating disk of
variable thickness with clamped edges, and Figure 11
shows the same result for the plates with the inner edge
clamped and outer edge free. Figures 12 and 13 show
the variation of the dimensionless natural frequencies of
a rotating FG uniform disk with that of the dimension-
less rotating speed with clamped edges and clamped-

free edges, respectively. The critical speed is recognized
when the backward natural frequency goes to zero. At
this speed, the disk has zero e�ective bending rigidity
and cannot bear any transverse load.

From Figures 8-13, the critical speeds of the rotat-
ing plate with the corresponding material and thickness
characteristics can be achieved. Table 6 presents the
�rst dimensionless critical speed of rotating FG uniform
plate with di�erent values of graded index. It can be

Table 6. First dimensionless critical speed of rotating FG
plate with clamped edges (m1 = 0, and b=a = 0:2).

m 1 2 3 4

n = 0 28.474 21.017 18.231 17.754
n = �1 33.120 22.771 18.878 18.018
n = 1 25.394 19.939 17.942 17.714
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Figure 6. Fundamental natural frequency against graded
index for (C-C) plate (b=a = 0:2, ho=a = 0:01, m = 0, and
~! = 0).

Figure 7. Fundamental natural frequency against graded
index for (C-F) plate (b=a = 0:2, ho=a = 0:01, m = 0, and
~! = 0).

Figure 8. First dimensionless natural frequency as a
function of dimensionless rotating speed for a rotating
annular disk with clamped edges (n = 0 and m1 = 0).

Figure 9. First dimensionless natural frequency as a
function of dimensionless rotating speed for a rotating
annular disk with clamped-free edges (n = 0 and m1 = 0).

seen that the value of critical speed for n = �1 is larger
than its value for n = 0 and n = 1.

In Table 7, the �rst dimensionless critical speed
of the rotating FG uniform plate with (C-F) boundary
conditions is presented. It should be mentioned that
the critical angular velocity for the wave number one
(m = 1) for the plate with clamped-free edges is not

Table 7. First dimensionless critical speed of rotating FG
plate with clamped-free edges (m1 = 0 and b=a = 0:2).

m 2 3 4

n = 0 4.510 4.756 5.772
n = �1 6.505 5.630 6.344
n = 1 3.254 4.176 5.353
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Figure 10. First dimensionless natural frequency as a
function of dimensionless rotating speed for a rotating
annular disk with clamped edges (n = 0 and m1 = 0).

Figure 11. First dimensionless natural frequency as a
function of dimensionless rotating speed for a rotating
disk with clamped-free edges (n = 0 and m1 = 0).

in the interval of the angular velocity considered in the
analysis. The same results are also obtained in [13] for
(m = 1).

In Table 8, the values of the �rst dimension-
less critical speed for di�erent thickness pro�les and
rotating homogenous plate with clamped edges are
presented. Table 9 illustrates the same results, but
for (C-F) boundary conditions. From Tables 8 and 9,

Table 8. First dimensionless critical speed of rotating
plate with clamped edges (n = 0 and b=a = 0:2).

m 1 2 3 4

m1 = 0 28.474 21.017 18.231 17.754
m1 = �1 43.488 33.951 28.384 26.123
m1 = 1 19.920 14.688 12.940 12.795

Figure 12. First dimensionless natural frequency as a
function of dimensionless rotating speed for a rotating
disk with clamped edges (n = �1 and m1 = 0).

Figure 13. First dimensionless natural frequency as a
function of dimensionless rotating speed for a rotating
disk with clamped-free edges (n = �1 and m1 = 0).

it can be concluded that by fabricating a plate with
convergent thickness pro�le (m1 = �1), we can have
a higher critical speed; by fabricating a plate with a
divergent thickness pro�le (m1 = �1), we can have
a lower critical speed. This conclusion can help to
improve the design of rotating FG disk in order to avoid
the resonance condition.

Figure 14 shows the graph of dimensionless crit-

Table 9. First dimensionless critical speed of rotating
plate with (C-F) edges (n = 0 and b=a = 0:2).

m 2 3 4

m1 = 0 4.510 4.756 5.772
m1 = �1 18.055 10.243 9.447
m1 = 1 1.896 3.157 4.320
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Figure 14. Dimensionless critical speed versus
inner-to-outer radius ratio for C-C boundary condition.

Figure 15. Dimensionless critical speed versus
inner-to-outer radius ratio for C-C boundary condition.

ical speed versus the ratio of inner-to-outer radius for
a FG plate with variable thickness and with clamped
edges. Figure 15 shows the corresponding graph for
a plate with the inner edge clamped and outer edge
free. It can be seen that an increase in the inner-to-
outer radii ratio could increase the critical speed. It
suggests that we can have higher critical speed for the
rotating annular disk if we design the annular disk with
a bigger central hole with respect to the outer radius.
It should be mentioned that the authors obtained their
results for di�erent values of m, n, and m1; the same
conclusion was derived.

5. Summary and conclusions

In this paper, free transverse vibration of rotating
FG thin disc with variable thickness was studied.
The thickness pro�le, elastic modulus, and density
of the annular disk were considered to vary in the
radial direction by a power function. The numerical
generalized di�erential quadrature method was used to
solve the equations of motion, and the convergence of
the method was proved for two types of discretization
methods. The e�ects of material and geometric pa-
rameters on the natural frequencies and critical speeds

of the rotating annular FG plate with (C-C) and (C-
F) boundary conditions were investigated, and the
obtained results were compared with the available data
from the literature; the results were validated. The
obtained results can be used to improve the design of
the rotating FG disk considering the avoidance of the
resonance condition. It was shown that:

1. FG annular plate with a convergent thickness pro-
�le has higher critical speed than FG annular plate
with uniform thickness pro�le, and FG annular
plate with uniform thickness pro�le has higher crit-
ical speed than FG annular plate with a divergent
thickness pro�le. This conclusion can be used to
improve the design of the rotating FG disks in order
to increase or decrease the critical speed;

2. Using a convergent thickness pro�le can lead to
higher natural frequency than using uniform and
divergent thickness pro�les;

3. The increase in the ratio of inner-to-outer radius
can lead to the increase in the critical speed of the
rotating FG disk;

4. The increase of thickness-to-outer radius ratios
decreases the dimensionless natural frequencies, but
the increase of inner-to-outer radii ratio increases
the dimensionless natural frequencies.
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