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Abstract. The primary aim of the current attempt is to analyze the peristaltic

ow of non-Newtonian material in a curved channel subject to two salient features,
namely the Soret and Dufour and radial magnetic �eld. Channel walls are of compliant
characteristics. The problem formulations for constitutive equations of Je�rey 
uid are
made. The lubrication approach is implemented to simplify the mathematical analysis.
Dimensionless problems of stream function, temperature, and concentration are computed
numerically. Characteristics of distinct variables on the velocity, temperature, coe�cient
of heat transfer, and concentration are examined. Besides, the graphical results indicate
that the velocity pro�le enhances the compliant wall parameters signi�cantly, primarily due
to the resistance characteristics of Lorentz force velocity pro�le decays. Furthermore, it
is noted that the temperature pro�le enhances larger Dufour number; however, reverse
behavior is noticed in the concentration pro�le when Soret and Schmidt numbers are
increased.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The peristalsis regarding 
ows of viscous and inviscid
materials has attracted the attention of recent re-
searchers in view of their physiological and engineering
applications. Physiological processes involve peristalsis
consisting of urine movement through kidney to blad-
der, chyme transportation in intestine, spermatozoa
transport, food swallowing via esophagus, and vasomo-
tion in tiny blood vessels. Peristalsis is also quite preva-
lent in heart-lung machine, roller and �nger pumps,
sanitary and toxic liquid transport, and food, paper,
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and cosmetic industries. Pioneering research studies
on peristalsis involving viscous materials were theoret-
ically and experimentally analyzed by Latham [1] and
Shapiro et al. [2]. Afterwards, ample investigations
have been conducted into peristalsis subject and the
diverse aspects of rheological characteristics, heat and
mass transfer, magneto hydrodynamics, wave shapes,
geometries, etc. (see [3-21] and many studies therein).
Much importance in the past was directed to the
peristalsis of Newtonian and non-Newtonian liquids in
a straight channel which seems not realistic in several
applications relevant to physiological and engineering
processes. In addition, the Magneto Hydro Dynamic
(MHD) e�ect, in the existing attempts, is mostly
through the consideration of applied constant magnetic
�eld. However, there is no doubt that MHD 
ows are
of great interest in the MHD power generators, pumps,
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accelerators, hyperthermia, bleeding minimization dur-
ing surgeries, treatment of cancer tumor, blockage
treatment in the arteries, magnetic endoscopy, Mag-
netic Resonance Imaging (MRI), puri�cation of molten
metals from non-metallic inclusions, and several others.
Keeping in mind the above-mentioned uses of Magneto
Hydro Dynamic (MHD), Ellahi et al. [22] reported Ion
slip and Hall aspects in MHD peristalsis of Je�rey 
uid
in an irregular rectangular duct. In addition, Hayat
et al. [23] described the MHD peristalsis in Je�rey
material through curved channel with convective con-
straints. Few recent developments in MHD peristaltic

ow can be seen through [24-27]. Hence, the objective
of the present communication is to predict the in
uence
of radial magnetic �eld on the peristalsis of Je�rey
material in a channel. Plus, the e�ect of curvature
is studied. Moreover, the compliant wall properties of
curved channel are analyzed. Heat and mass transfer
are examined in the presence of Dufour and Soret
phenomenon. Dimensionless problems subject to lubri-
cation approach are studied. The outcome in discussion
section consists of salient features of sundry parameters
entering into the formulation. This work is structured
as follows.

The �rst section contains introduction. Sections 2
and 3 consist of formulation and technique for the so-
lutions. Section 4 discusses various pertinent variables.
Conclusions are given in Section 5.

2. Problems formulation

In Figure 1, we consider the peristaltic 
ow of an
incompressible Je�rey liquid in curved channel of a
width of 2a0, twisted in a circle of radius, R�, and a
center at O. We consider �v1 as the velocity along radial
(�r) and �v2 as the velocity along axial (�x) directions.
A radially imposed magnetic �eld of strength, B0, is
applied along radial direction. In addition, heat and
mass transfer is studied. Mathematical analysis also
involves the Soret and Dufour e�ects.

The channel walls' temperatures are denoted by
T0 and T1. The concentrations at the walls are C0

Figure 1. Physical diagram.

and C1. The 
uid 
ow here is due to propagation of
the channel walls. Mathematical description of wall
surfaces is as follows:

�h(�x; �t) = a0 + a1 sin

 
2�
�c

(�x� c�t)
!
: (1)

Here, c represents the wave speed, a0 the half width of
the channel, a1 the wave amplitude, �c the wavelength,
and �t the time in �xed frame. Velocity, �V, can be
de�ned as follows:

�V = (�v1(�x; �r; �t); �v2(�x; �r; �t); 0): (2)

extra stress tensor �S for Je�rey 
uid model is given by
[9,10,20-23,28]:

�S =
�

1 + �1
(�A1 + �2

d
d�t

�A1): (3)

In the above relation, �, �1, and �2 denote dynamic
viscosity, ratio of relaxation to retardation time, and
retardation time, respectively. The present study can
be reduced to viscous material when �1 = �2 = 0.
Moreover:

�A1 = (grad �V) + (grad �V)�; (4)

d
d�t
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The 
ow under consideration is governed by the follow-
ing expressions:
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In the above equations, �p denotes the pressure, � the

uid density, � the thermal conductivity, cp the speci�c
heat, �t the time, �Sxx, �Srr, �Srx, the stress components,
T and C the temperature and concentration of the

uid, respectively. The subjected boundary conditions
are:
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T = T1; T = T0 at �r = ��h and

C = C1; C = C0 at �r = ��h: (13)

We denote the dimensionless parameters as follows:
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Here, k represents the curvature parameter, � the wave,
Ha the Hartman, Re the Reynolds, Pr the Prandtl, Ec
the Eckert, Br the Brinkman, Du the Dufour, Sr the
Soret, Sc the Schmidt as dimensionless numbers, and
E1, E2, and E3 the wall tension, mass characterizing,
and wall damping parameters, respectively.

The dimensionless representation of the boundary
conditions (11)-(13) yields:
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where boundary condition in Eq. (15) represents the
no-slip conditions at walls, and condition for the com-
pliant wall at upper and lower walls is given in Eq. (16),
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respectively. Boundary condition for temperature and
concentration pro�les is represented in Eq. (17).

Velocity components in terms of stream function,
 , can be de�ned by:

v1 = �
k

r + k
 x; �2 = � r: (18)

In large peristaltic wavelength, low Reynolds number
approximations play a vital role (see [2,12,29,30]). The
existence of such assumptions in physiology is justi�ed
through the transportation of chyme in small intestine
[31]. In such conditions, the wavelength (�c = 8:01) of
peristaltic wave is very large in comparison to the half-
width (a0 = 1:25) of the channel/tube i.e. (a0=�c =
0:156). Further, Lew et al. [32] examined liquids
in small intestine with low Reynolds number. Urine
transport in the human ureter is also the application
of low Reynolds number approximation. In view of
the above-mentioned applications of long wavelength
and low Reynolds number assumption in peristalsis,
Eq. (6) is satis�ed identically and Eqs. (7)-(10) lead to
the following expressions:
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where � and � are the non-dimensionlized temperature
and concentration pro�les. Now, the dimensionless
boundary conditions are:
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Results for planner channel can be obtained when
curvature parameter k is large, i.e. k !1.

3. Solution procedure

The non-dimensionlized boundary value problem given
in Eqs. (20)-(22) corresponding to boundary conditions
(24)-(26) is calculated for stream function,  , tem-
perature pro�le, �, and concentration pro�le, �. The
numerical solution is presented utilizing the built-in
shooting algorithm in Mathematica software.

4. Physical interpretation

The prime objective in this section is to scrutinize the
outcome of involved physical variables on di�erent 
ow
quantities. Figure 2 (a)-(d) show the in
uences of per-
tinent parameters which are present in the momentum
equation of the considered problem. Velocity pro�le
has accelerated behavior for rising values of curvature
parameter k (see Figure 2(a)). The e�ects of the
compliant wall parameters on velocity pro�le, �2, are
drawn in Figure 2(b). Also, disturbance is observed in
the symmetry of velocity pro�le, �2, about the center
line of the channel, and symmetry retains its position
for larger curvature parameter k. It is observed that
larger values of E1, E2, and E3 enhance the velocity. It
is also important to know that an increase in E1 and E2
enhances velocity inside the channel, while it decreases
when damping parameter, E3, increases. Figure 2(c)
explores that velocity pro�le, �2, augments in non-
Newtonian 
uids (�1 6= 0) when matched with the
Newtonian liquid (�1 = 0). The behavior of Hartman
number on velocity pro�le, �2, is plotted in Figure 2(d).
It reveals that the velocity decreases in larger radial
magnetic �eld parameters, i.e. the magnetic force has
a resistive role in the 
ow.

Figure 3(a)-(e) indicate the variation in tem-
perature �, for the pertinent physical parameters.
Figure 3(a) illustrates that the temperature decreases
in the case of curvature parameter, k. Temperature
increases in the case of di�erent values of compliant
wall parameters, E1, E2, and E3 (see Figure 3(b)). It
is observed that the temperature is enhanced inside
the channel for larger wall elastance parameter, E1,
or mass characterizing parameter, E2. Note that
the temperature drops within the channel for greater
damping parameter, E3. Figure 3(c) depicts that
temperature pro�le � increases in di�erent values of
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Figure 2. Variation in �2 for di�erent parameters when 
 = 0:7, x = �0:2, t = 0:2: (a) �1 = 0:2, Ha = 1:0, E1 = 0:2,
E2 = 0:1, E3 = 0:1, (b) �1 = 0:2, Ha = 1:0, k = 2:5, (c) k = 2:5, Ha = 1:0, E1 = 0:2, E2 = 0:1, E3 = 0:1, and (d) �1 = 0:2,
k = 2:5, E1 = 0:2, E2 = 0:1, E3 = 0:1.

Figure 3. Variation in temperature � for di�erent sundry parameters when, 
 = 0:7, x = �0:2, t = 0:2, Pr = 2:0, Sr = 0:5,
Sc = 0:5, Ha = 1:0: (a) �1 = 0:2, Br = 0:5, E1 = 0:2, E2 = 0:1, E3 = 0:1, Du = 0:5, (b) �1 = 0:2, Br = 0:5, k = 2:5, Du
= 0:5, (c) k = 2:5, Br = 0:5, E1 = 0:2, E2 = 0:1, E3 = 0:1, Du = 0:5, (d) �1 = 0:2, k = 2:5, E1 = 0:2, E2 = 0:1, E3 = 0:1,
Du = 0:5, and (e) �1 = 0:2, Br = 0:5, k = 2:5, E1 = 0:2, E2 = 0:1, E3 = 0:1.

Je�rey 
uid parameter (�1, i.e. the relaxation factor
is the only cause of increasing the temperature of 
uid
in the vicinity of the upper wall of the curved channel,
Figure 3(d) shows that the temperature rises in terms
of Brinkman number Br. Physically, it means that the
increasing Br indicates larger amount of energy loss,
i.e. maximum heat is produced because of its resistance
against the shear stress in 
ow �eld, which enhances the

temperature of the material. The temperature attains
its maximum value towards the upper wall of the
curved channel. It is also found that the temperature
enhances upon increasing the values of Dufour number
Du (see Figure 3(e)). It reveals that the temperature
attains its maximum value at the center of the curved
channel.

The e�ects of pertinent sundry variables on con-
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centration, �, can be seen through Figures 4(a)-(e).
Concentration, �, shows the decreasing behavior by
increasing curvature, k (see Figure 4(a)). Figure 4(b)
characterizes that the concentration pro�le decreases
in non-Newtonian 
uid when correlated with the New-
tonian liquid. It means that the retardation time of
the Je�rey 
uid parameter retards concentration, �,
of the 
uid near the lower wall of the curved channel.
Figure 4(c) indicates 
uid concentration, �, for partic-
ular values of elasticity parameters. Surprisingly, �,

becomes negative in few values of parameters. It is
realistic when nutrients are dispersed away from the
blood vessels towards the nearby tissues. We have seen
that � reduces upon enhancing wall elastance, E1, and
wall mass characterizing, E2. However, concentration,
�, is an increasing quantity of E3. Figure 4(d) and (e)
present that the concentration decreases in distinct
values of Soret number, Sr, and Schmidt number, Sc.

Figure 5(a)-(e) indicate the 
uctuation in heat
transfer coe�cient, Z. Obviously, the behavior of

Figure 4. Variation in concentration � for di�erent pertinent parameters when 
 = 0:7, x = �0:2, t = 0:2, Pr = 2:0, Br
= 0:5, Du = 0:5, Ha = 1:0: (a) �1 = 0:2, Sr = 0:5, E1 = 0:2, E2 = 0:1, E3 = 0:1, Sc = 0:5, (b) Sr = 0:5, k = 2:5, E1 = 0:2,
E2 = 0:1, E3 = 0:1, Sc = 0:5, (c) �1 = 0:2, k = 2:5, Sr = 0:5, Sc = 0:5, (d) �1 = 0:2, k = 2:5, E1 = 0:2, E2 = 0:1, E3 = 0:1,
Sc = 0:5, and (e) �1 = 0:2, Sr = 0:5, k = 2:5, E1 = 0:2, E2 = 0:1, E3 = 0:1.

Figure 5. Variation in heat transfer coe�cient Z for di�erent parameters when 
 = 0:7, t = 0:2, Pr = 2:0, Sr = 0:5, Sc
= 0:5, Ha = 1:0: (a) �1 = 0:2, Br = 0:5, E1 = 0:2, E2 = 0:1, E3 = 0:1, Du = 0:5, (b) Br = 0:5, k = 2:5, Du = 0:5,
E1 = 0:2, E2 = 0:1, E3 = 0:1, (c) �1 = 0:2, k = 2:5, Br = 0:5, Du = 0:5, (d) �1 = 0:2, k = 2:5, E1 = 0:2, E2 = 0:1,
E3 = 0:1, Du = 0:5, and (e) �1 = 0:2, Br = 0:5, k = 2:5, E1 = 0:2, E2 = 0:1, E3 = 0:1.
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Z is oscillatory. Figure 5(a) depicts that the heat
transfer coe�cient decays when curvature parameter
k enhances. Figure 5(b) portrays that an increase in
�1 causes a decrease in the coe�cient of heat transfer.
In Figure 5(c), it is observed that compliant wall
parameters, E1, E2, and E3, decrease, Z. Variation
in Z for larger viscous dissipation e�ects on (i.e., of
Brinkman number) Br is depicted in Figure 5(d). It is
revealed that Z decreases by Br. Figure 5(e) illustrates
that Z is also the decreasing function of Du number.

Figures 6-8 show the variation in streamlines
for di�erent physical parameters. Figure 6(a)-(c) are
plotted for variation of curvature parameter, k, in
stream function,  . It depicts that, in larger curvature
parameter, k, reduces the size and circulation of
trapped bolus in upper half of the channel, whereas
the size of trapped bolus decreases and the number of
circulation increases in lower half of channel. Figure
7(a)-(c) re
ect that the number of circulation and size
of the trapped bolus reduce in case of larger radial
magnetic parameter Ha. Figure 8(a)-(d) show that the

size of trapped bolus decreases when compliant walls'
parameters E1, E2, and E3 increase.

5. Concluding remarks

Dufour and Soret e�ects on peristalsis subject to radial
magnetic �eld are analyzed. The main �ndings are
pointed out as follows:

� Velocity in inviscid 
uid is more than the viscous
material;

� The e�ects of E1 and E2 on temperature are oppo-
site to that of E3;

� There is an enhancement of temperature for
Brinkman and Dufour numbers;

� As expected, the heat transfer coe�cient has oscil-
latory characteristics;

� Circulation of trapped bolus decreases, whereas the
size of the bolus increases in larger Ha;

Figure 6. In
uence of curvature parameter k on streamlines when 
 = 0:7, t = 0:2, Ha= 3:0, �1 = 0:2, E1 = 0:2, E2 = 0:1,
and E3 = 0:1.

Figure 7. In
uence of Hartman number, Ha, on streamlines when 
 = 0:7, t = 0:2, �1 = 0:2, k = 2:5, E1 = 0:2, E2 = 0:1,
E3 = 0:1.
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Figure 8. In
uence of compliant wall properties, E1, E2, E3, on streamlines when 
 = 0:7, t = 0:2, �1 = 0:2, k = 2:5,
Ha = 3:0.

� The e�ects of E1 and E3 on trapped bolus are quite
opposite to that of E2.
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