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Abstract. Biological cell studies have many applications in biology, cell manipulation,
and diagnosis of diseases such as cancer and malaria. In this study, Inverse Finite Element
Method (IFEM) combined with Levenberg-Marquardt optimization algorithm has been
used to extract and characterize material properties of mouse oocyte and embryo cells
at large deformations. Then, the simulation results have been validated using data
from experimental works. In this study, it is assumed that cell material is hyperelastic,
isotropic, homogenous, and axisymmetric. For inverse analysis, FEM model of cell injection
experiment implemented in Abaqus software has been coupled with Levenberg-Marquardt
optimization algorithm written in Matlab; through this coupling, the optimum hyperelastic
coe�cients, which give the best match between experimental and simulated forces, are
extracted. Results show that among di�erent hyperelastic material models, Ogden material
is suitable for characterization of mouse oocyte cell and Mooney-Rivlin or polynomial is
suitable for characterization of mouse embryo cell. Moreover, the evaluated Poisson ratio
of the cell is obtained to be equal to 0.5, which indicates that the structural materials of
mouse oocyte and embryo are compressible.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Since the structural and functional integrity of gen-
eral tissues could be determined by their construc-
tive individual cells, understanding and investigating
of biological cells behavior are very important [1].
Biological cells, during their life, experience di�erent
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physiological processes such as di�erentiation, growth,
and migration. Therefore, a range of di�erent ex-
perimental techniques regarding their environmental
conditions have already been proposed for better an-
alyzing and investigation of the complex relationship
between a biological cell and its environment, e.g., cell
injection [2,3], in which a single cell is injected by a
micro or nano needle; shear 
ow [4], in which 
uid
shear stress is applied to investigate cell adhesion; cell
compression by micro plate [5], in which two micro
plates are used to compress a single cell (this technique
has been used to measure the mechanical properties
of the cell); micropipette aspiration [6] that uses a
micropipette to aspirate a single cell by a suction
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Figure 1. Classi�cation of di�erent mechanical models for living cells [1].

pressure; AFM indentation [7], which is similar to cell
injection technique; optical tweezers [8], also known as
laser traps, in which a single cell is stretched by optical
forces or a laser beam; microarrays for investigation of
local cellular environment [9], which can also be used
to measure cellular response to environmental stimuli;
and Magnetic Twisting Cytometry (MTC) [10,11] and
oscillatory magnetic twisting cytometry [1], which are
two recent techniques similar to optical tweezers.

Based on these widely various experimental tech-
niques, a range of di�erent mechanical models have
been developed for detailed characteristic description of
the cells. These models can be classi�ed into two main
groups: models which use continuum approaches such
as Maxwell, Newtonian, and so on (see Figure 1); and
models which use micro/nano structural approaches
such as open cell foam, tensegrity [12], and so on (see
Figure 1).

In addition, there are numerical models which
have been used for prediction of force as well as
deformation of cells, e.g. Arti�cial Neural Network
(ANN) [13-18], support vector machine method [19,20],
adaptive neural fuzzy inference [21-23], and Inverse Fi-
nite Element Method (IFEM) [24]; in these techniques,
dimple depth is another input variable considered in
the modeling; these models are more suitable for online
applications.

Among di�erent numerical approaches, Inverse
Finite Element Method (IFEM) has been found to
be an e�ective technique to obtain material properties
using experimental data [25-28]. IFEM could be used
to solve complex problems, physically or geometri-
cally, with more details and accuracy. Namani and
Simha [25] used this method to �nd the behavior of soft
tissue layers. In this regard, they used trial and error
approach to �nd hyperelastic parameters, which needed
more calculations to give the optimized parameters;

moreover, the study did not consider other hyperelastic
materials such as Ogden, Arruda-Boyce, etc. Delalleau
and his co-workers used inverse analysis combined with
extended Kalman �lter to determine the mechanical
properties of human skin [26]. However, in Kalman
�lter method, the divergence of the covariance matrix
was a big problem. Moreover, this study did not
consider di�erent hyperelastic models. Several inves-
tigations used inverse �nite element analysis, which
focused on small deformation assumption [27,28].

In spite of the fact that all investigations men-
tioned are useful to study behavior of the biological
cells in many cases, challenges in this area still exist.
For example, studying the mechanical properties of
neutrophil cells using di�erent experimental techniques
lead to di�erent mechanical properties for the same
cells [1,29,30]; therefore, developing optimization-based
numerical models could help to achieve better charac-
teristic behavior of the cell.

The present study uses inverse �nite element
analysis combined with Levenberg-Marquardt opti-
mization algorithm to extract material properties of
mouse oocyte and embryo cells at large deformations.
With respect to the previous work of the authors
[24], which used only Neo-Hookean hyperelastic model,
in this study, it is tried to take other hyperelastic
models into account. Also, it is shown that classic
contact mechanic models are not suitable for large
deformation characterization. Di�erent hyperelastic
material models, e.g. Arruda-Boyce, Mooney-Rivlin,
Neo Hooke, Ogden, Polynomial, reduced polynomial,
and Van der Waals, are considered to �nd the one able
to give the best �t with the experimental data. The
mechanical model of the cell injection experiment is
implemented in Abaqus software [31] and optimization
algorithm is written in Matlab [32]. Experimental data
of mouse oocyte and embryo cells for data validation
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are captured from the work of Sun et al. [33] and
Fl�uckiger [34].

2. Material models

As experimental data have been obtained in a time-
independent manner, modeling is based on the Hypere-
lastic scheme rather than the viscoelastic one. Hypere-
lastic materials are described using strain energy func-
tion, which is usually de�ned based on strain energy
stored in the material per unit of volume in the initial
form. In this regard, several forms of three-dimensional
strain energy potentials have been investigated such
as Arruda-Boyce, Mooney-Rivlin, Neo Hooke, Ogden,
Polynomial, reduced polynomial, and Van der Waals.
Each model used in this investigation will be described
brie
y in the next sections.

2.1. Arruda-Boyce model
The form of the Arruda-Boyce strain energy potentials
is as follows [35] :
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where, U is strain energy per unit of reference volume,
�I1 is �rst deviatoric strain invariant, Jel is elastic
volume ratio, � and �m are the temperature-dependent
material coe�cients, and D is a temperature-
dependent material parameter, which controls the com-
pressibility of the material. For typical value of �m = 7,
the initial shear modulus �0 is related to � by [31]:

�0 = 1:0125�: (2)

� and D are obtained from the IFE analysis.
In order to determine cell mechanical properties,

Young's modulus (E), and Poisson's ratio (�), the
initial bulk modulus should be calculated using the
following relation [31]:

k0 =
2
D
: (3)

Then, Poisson's ratio, �, [31] and Young's modulus,
E, [36] are determined as follows:
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3k0
�0
� 2
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�0

+ 2
; (4)

E = 2�0(1 + �): (5)

The above relations, i.e. Eqs. (3)-(5), will also be used
in other hyperelastic models to calculate mechanical
properties of the cell.

2.2. Mooney-Rivlin model
The form of the Mooney-Rivlin strain energy potential
is as follows [37,38]:

U = C10(�I1 � 3) + C01(�I2 � 3) +
1
D1

(Jel � 1)2; (6)

in which C10 and C01 are temperature-dependent
material parameters, D1 is compressibility, �I1 and �I2
are the �rst and second deviatoric strain invariants,
respectively, and Jel is the elastic volume ratio. The
initial shear modulus for this model is derived using
the equation below [31]:

�0 = 2(C10 + C01): (7)

2.3. Neo-Hookean model
The Neo-Hookean strain energy potential form is as
follows [39,40]:

U = C10(�I1 � 3) +
1
D1

(Jel � 1)2: (8)

Again, C10 and D1 are respectively the temperature-
dependent material parameters and compressibility
and Jel is the elastic volume ratio. The initial shear
modulus is as follows [31]:

�0 = 2C10: (9)

2.4. Ogden model
The following equation shows the form of the Ogden
strain energy potential [41]:

U=
NX
i=1

2�i
�2
i

(���i1 +���i2 +���i3 � 3)+
NX
i=1

1
Di

(Jel � 1)2i;
(10)

where, ��i is the deviatoric principal stretch, N is the
order of the energy function, Di is compressibility, and
�i and �i describe the shear behavior of the material.
The initial shear modulus can also be derived as [31]:

�0 =
NX
i=1

�i: (11)

2.5. Polynomial model
Polynomial strain energy model can be de�ned as [42]:

U =
NX

i+j=1

Cij(�I1 � 3)i(�I2 � 3)j+
NX
i=1

1
Di

(Jel � 1)2i;
(12)

where, Cij is temperature-dependent material parame-
ter, which describes the shear behavior of the material;
N is the order of the energy function; Di, again,
introduces compressibility, and for fully incompressible
material it is equal to zero; other parameters are the
same as those described above.
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2.6. Reduced polynomial model
Reduced polynomial strain energy is described as fol-
lows [31]:

U =
NX
i=1

Ci0(�I1 � 3)i+
NX
i=1

1
Di

(Jel � 1)2i; (13)

where, Ci0 is temperature-dependent material param-
eter. �0 can also be found from Eq. (9). Other
parameters are the same as those described above.

2.7. Van der Waals model
Van der Waals strain energy model, which is also known
as the Kilian model, may be written as [43]:
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where, �m is the locking stretch, � is the initial shear
modulus, a is the global interaction parameter, D
controls compressibility, and ~I and � could be de�ned
as [31]:

~I = (1� �)�I1 + � �I2; (15)

� =

s
~I � 3
�2
m � 3

; (16)

where, � is the invariant mixture parameter. Initial
bulk modulus may be derived from Eq. (3) and the
initial shear modulus can be described as [31]:

�0 = �: (17)

3. Experimental setup

The experimental system includes a cell holding unit, a
vacuum unit, capacitive force sensor unit, an imaging
unit, and a software unit (Figure 2). The cell holding
unit is a standard pipette, which can �x a biologic cell
by applying a sucking pressure through the vacuum
unit. Capacitive force sensor includes an injection
micropipette, the motion of which is controlled by a

Figure 2. Cell injection system con�guration [33].

3-DOF micro robot. A uniaxial compressing load is
increasingly applied to the cell until its membrane is
ruptured. During this process, the related forces and
deformations are recorded by imaging and software
units. More details of experimental setup and sample
preparations could be found in [33].

4. Finite element model

Finite element method of cell injection experiment has
been implemented in Abaqus software [31]. The cell
has been assumed to be circular with the radius of
25 um before deformation and it has isotropic and
homogenous material properties. The simulation is
performed under axisymmetric conditions, in which the
computation time will be reduced; therefore, the center
of the cell is assumed to be �xed in the x-direction
while it is free to move in the y-direction. Because of
the axisymmetry, a half of the cell has been used for
analysis and, for convenience of expression, a quarter of
the cell has been shown (Figure 3). The outer boundary
of the cell is free to move. The bottom of the cell is
in contact with an axisymmetric rigid substrate, which
has been restricted in the directions of x and y axes.

The mesh has been re�ned in the neighborhood of
the contact regions, where the largest deformations are
expected to happen. The element size in the contact
and non-contact areas has been carefully chosen to
get a proper accuracy of the computed force. The
mesh density has also been carefully chosen and tested
to ensure that the solutions converge and acceptable
results will be acquired. Dimension of the �nite element
meshing in the contact area is much smaller than that
in other parts of the cell. Information of nodes and
elements for the implemented model in Abaqus has
been provided in Figure 3 and Table 1.

Initial indenter radius is 3 um. Since indenter is
much sti�er than the cell, it is approximated as a rigid
body. Therefore, in Abaqus, it is de�ned as analytical
rigid body, which is used to model very sti� parts. The
indenter geometry and dimension have been illustrated
in Figure 4.

Figure 3. Stress distribution obtained from FE analysis.
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Table 1. Information of nodes and elements of �nite
element model.

Element
type

Number of
nodes

Number of
elements

CAX 4H 85541 36732

Figure 4. Indenter geometry and dimension in �nite
element model.

The interactions between the deformable slave cell
body and the rigid indenter as well as those between the
cell and the rigid substrate are considered as surface-
based contact pairs including the faces of the elements
in the contact regions. The surface of the cell is
moisturized; therefore, it has been assumed that there
is no friction between indenter and cell in the contact
points. Also, the adhesion between the surfaces has
been ignored. Because of the large deformation of
the cell, �nite sliding has been allowed between the
surfaces in contact regions. A static loading is applied
to the indenter and the indenter is slowly displaced
downwards from 0 um to the depth of 22 um for mouse
oocyte and from 0 um to the depth of 25 um for
mouse embryo, and the reaction forces are measured.
Loading is done in 11 displacement steps, each of which
requires 20-22 iterations. The models are analyzed in
Abaqus/standard.

The procedure of inverse analysis for determina-
tion of hyperelastic parameters is as follows [24,44,45]:

1. The �nite element model of cell injection experi-
ment is run by Abaqus software, which includes the
initial hyperelastic parameters;

2. The output data of Abaqus are written in the `I-
th.dat' �le;

3. The output data are read in the `i-th.dat' �le by
Matlab software;

4. The new hyperelastic parameters are estimated by
Matlab and input �le of Abaqus is modi�ed based
on the new estimation;

5. The modi�ed �nite element model is run and
outputs are transmitted to Matlab again;

6. The Jacobean is evaluated based on two di�erent
outputs, and the Hessian matrix is computed from
Marquardet parameter, �, and the Jacobean ma-
trix;

7. The new hyperelastic parameters are estimated,
Abaqus input �le is modi�ed, and �nite element
model is run again;

8. If the limited condition of �tness function, �, is
satis�ed, the iteration is �nished and the optimized
hyperelastic parameters could be obtained.

The de�ned �tness function form is as [44,45]:

� =
1
n

nX
i=1

�
Fexp(i)� Fsim(i)

Fexp(i)

�2

; (18)

in which Fexp is the experimental force, Fsim is the
simulated force, and n is the total number of the data.

In this study, Levenberg-Marquardt optimization
method is used due to its high e�ciency in process time
in comparison with other techniques such as genetic
algorithm or neural network. For example, �nding
optimized parameters for mouse oocyte cell using Neo-
Hookean model needs 88 minutes (for 50 iterations),
which means that each �nite element simulation needs
about 1.75 minutes to run while other techniques need
more time.

5. Result and discussions

The hyperelastic material coe�cients of mouse oocyte
and embryo cells for di�erent hyperelastic material
models obtained by inverse �nite element analysis are
shown in Table 2.

Table 2 presents the hyperelastic parameters for
both mouse oocyte and embryo cells. In this table,
the obtained parameters by the Mooney-Rivlin model
are same as those obtained by the polynomial form,
while those obtained by Neo-Hookean are equal to
those obtained by reduced polynomial forms. It is in
the validation of the IFE model in our study that for
material parameter, N = 1 (see Eqs. (12) and (13)),
the obtained values of these two sets of models are the
same. The obtained hyperelastic parameters indicate
that all models predict almost the same quantity for
mouse oocyte and embryo cells. By comparing di�erent
hyperelastic material parameters of mouse oocyte and
embryo cells by di�erent models (see Table 2), it can be
observed that, in all models, the material parameters of
mouse embryo are greater than those of mouse oocyte.
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Table 2. Material parameters of mouse oocyte and embryo cells for di�erent hyperelastic models resulting from inverse
�nite element model.

Material model Mouse oocyte Mouse embryo
Arruda-Boyce � = 0:0101 D = 0:0070 �m = 7 � = 0:0136 D = 0:0115 �m = 7
Mooney-Rivlin C10 = 0:0030 C01 = 0:0014 D1 = 0:0084 C10 = 0:0041 C01 = 0:0017 D1 = 0:0103
Neo-Hookean C10 = 0:0051 D1 = 0:0106 C10 = 0:0069 D1 = 0:0125
Ogden � = 0:0100 � = 1:9700 D = 0:0011 �1 = 0:0131 � = 1:9700 D = 0:0089
Polynomial C10 = 0:0030 C01 = 0:0014 D1 = 0:0084 C10 = 0:0041 C01 = 0:0017 D1 = 0:0103
Reduced polynomial C10 = 0:0051 D1 = 0:0106 C10 = 0:0069 D1 = 0:0125

Van der Waals � = 0:0089 � = 0:0111 D = 0:0122 � = 0:0117 � = 0:0135 D = 0:0144
� = 0:1099 �m = 10 � = 0:1102 �m = 10

Table 3. Evaluated Young's modulus, Poisson's ratio, initial bulk modulus, initial shear modulus, and objective function
for mouse oocyte cell.

Material model E (MPa) � k0 (MPa) �0 (MPa) �

Arruda-Boyce 0.0308 0.5 284.6643 0.0103 0.0049
Mooney-Rivlin 0.0264 0.5 237.2902 0.0088 0.0054
Neo-Hookean 0.0308 0.5 187.8095 0.0103 0.0047
Ogden 0.0300 0.5 1813.7 0.0100 0.0045
Polynomial 0.0264 0.5 237.2902 0.0088 0.0054
Reduced polynomial 0.0308 0.5 187.8095 0.0103 0.0047
Van der Waals 0.0267 0.5 164.4130 0.0089 0.0050

Table 4. Evaluated Young's modulus, Poisson's ratio, initial bulk modulus, initial shear modulus, and objective function
for mouse embryo cell.

Material model E (MPa) � k0 (MPa) �0 (MPa) �

Arruda-Boyce 0.0414 0.5 173.7256 0.0138 0.4720
Mooney-Rivlin 0.0347 0.5 193.7921 0.0116 0.3737
Neo-Hookean 0.0416 0.5 159.7731 0.0139 0.4751
Ogden 0.0394 0.5 225.7533 0.0131 0.3983
Polynomial 0.0347 0.5 193.7921 0.0116 0.3737
Reduced polynomial 0.0416 0.5 159.7731 0.0139 0.4751
Van der Waals 0.0352 0.5 139.1338 0.0117 0.3793

Results indicate that embryo cell is much sti�er than
oocyte cell.

The values of elasticity module, E, Poisson's
ratio, �, initial shear modulus, �0, initial bulk modulus,
k0, and �tness function, �, of mouse oocyte and embryo
cells are evaluated and presented in Tables 3 and 4.

In Tables 3 and 4, it can be seen that the
calculated Poisson's ratio of mouse oocyte and embryo
cells for all hyperelastic material models is 0.5, which
shows that the materials of mouse oocyte and embryo
cells are compressible.

In addition, the elastic moduli of mouse oocyte
obtained by hyperelastic material models are di�erent;
the predicted values of elastic moduli by Arruda-
Boyce, Neo-Hookean, and reduced polynomial models
are larger than those by other models (see Table 3)

and those obtained by Neo-Hookean and reduced poly-
nomial models are the largest (see Table 4). The
reported elastic modulus of mouse embryo cell by
Sun et al. [33] is 42.2 kPa. As can be seen, in
some models, this value is very close to the values
reported in Table 4, which are between 34.7 kPa
to 41.6 kPa; However, for mouse oocyte, the value
reported by sun et al. is 17.9 kPa, while the val-
ues in Table 3 are between 26.4 kPa to 30.8 kPa.
This di�erence is basically because of two di�erent
datasets used by the two studies. Reported values
by Sun et al. are the results of interpolation between
3 groups of datasets while this study, because of
limitation, just uses one group of the mentioned data
sets.

By taking the values of �tness function, �, into
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account, it could be seen that among these di�erent
hyperelastic materials, Ogden model is more suitable
for characterizing mouse oocyte cell (see Table 3),
while for mouse embryo cell, Mooney-Rivlin as well
as polynomial form shows the best performance (with
lower �) (see Table 4). It could also be concluded
that for large strains, for mouse embryo and oocyte
cells, Mooney-Rivlin, and Ogden material models
are more suitable. These values of elastic modu-
lus are signi�cantly lower than those for zebra�sh
embryo's elastic moduli [46] and greater than those
for red blood cell membrane [46,47], indicating that,
in comparison, the constitutive materials of mouse
oocyte and embryo cells are much softer than ze-
bra�sh embryos and sti�er than red blood cell mem-
brane.

It is clear that Ogden and Mooney-Rivlin models
are best �tted for simulation of mouse oocyte and
embryo cells. Normalized hyperelastic parameters of
Ogden and Mooney-Rivlin models versus the number
of iterations are shown in Figures 5 and 6.

The simulation indicates that after 7-8 iterations,
the parameter values asymptotically approach their
constant values.

The force-deformation results obtained from sim-
ulation of mouse oocyte and embryo cells using the
IFEM in comparison with the experimental data have
been presented in Figures 7 and 8.

As can be seen in these �gures, the simulated

Figure 5. Normalized hyperelastic material parameters
for mouse oocyte.

Figure 6. Normalized hyperelastic material parameters
for mouse embryo.

Figure 7. Simulated force-deformation in comparison
with experimental data for mouse oocyte.

Figure 8. Simulated force-deformation in comparison
with experimental data for mouse embryo.

Figure 9. Sensitivity analysis results for mouse oocyte
cell.

results are in good agreement with the experimental
data.

Levenberg-Marquardt optimization algorithm is
sensitive to the initial guess [48]. The sensitivity
analysis on initial guesses within �5%, �10%, and
�20% is presented in Figures 9 and 10.

In Figures 9 and 10, di�erent initial guesses
converge on their �nal values, which shows that this
algorithm is not sensitive to initial guess or, at least, in
the range of the considered initial guesses, this is the
case.

Because of the nature of such biological cells and
their constructed materials, among di�erent hypere-
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Figure 10. Sensitivity analysis results for mouse embryo
cell.

lastic models, there are one or sometimes two models
which can well describe the material of the cell; for
example, Davies et al. [49] reported that Mooney-Rivlin
model could better characterize behavior of the potato
cell wall.

In addition, in the case of di�erent growth stages
of one cell type, it is possible that one model could
describe one stage well while, for the next stage, the
other model is better; for example, Tan et al. [46]
reported that in Blastula stage of zebra�sh embryo cell,
the Mooney-Rivlin model could well describe it, while
in other stages, such as segmentation and Pharyngula,
Yeoh material, and Cheng material could well describe
the cell, respectively .

As pointed out in Section 2, on material model,
our study is based on the large deformation, but for fur-
ther investigation and validation, the elasticity module
of mouse embryo and oocyte cells has also been evalu-
ated using the classical Hertz-Sneddon model, which is
developed to be suitable for small deformations [50,51].
This classical model is based on two assumptions. The
material of the cell is characterized using the linear
elastic theory even in large deformations and, in order
to be able to assume in�nitesimal deformations, the
size of the indenter tip should be small enough.

Three di�erent tip geometries, namely, 
at, coni-
cal, and parabolic, are used to investigate assumptions
of Hertz-Sneddon model (Figure 11).

The evaluated Young moduli of mouse oocyte and

Table 5. Elasticity module for di�erent tip geometries
using Hertz-Sneddon model.

Indenter Parabolic
tip

Conical
tip

Flat
tip

Mouse embryo, E (kPa) 8.5944 21.5535 132.5335
Mouse oocyte, E (kPa) 7.7898 15.3517 118.1663

embryo cells using Hertz-Sneddon model are presented
in Table 5.

As could be seen in Tables 3 and 4, the evaluated
Young modulus for mouse oocyte is 30 kPa based
on Ogden model, while for embryo cells, based on
Mooney-Rivlin material model, it is 34.7 kPa; this
values are di�erent from those obtained by classical
contact mechanics theory (Table 5). This indicates
that classical contact mechanics is not valid for large
deformations. Moreover, it shows that complex geome-
try between cell and indenter should also be considered
in evaluation of elasticity module, which violates the
second assumption in classical Hertz-Sneddon model.

Though the study uses hyperelastic models to
extract the mechanical properties of biological cells,
other models such as nonlinear fractional derivative
model [1,52,53] can also be adopted in the study;
moreover, the research results can be explained in the
layman way [54], which can be considered in future
works for more comparison.

6. Conclusion

Biological cell studies have many applications in biol-
ogy, cell manipulation, and diagnosis of the diseases
such as cancers and malaria. A wide variety of
experimental techniques and mechanical models have
been developed to better analyze their mechanical
behavior and internal physiological structure.

In some cases, it has been reported that more than
6 months of training are required for a biologist to get
enough skill to manipulate and work with a cell [55].
Therefore, one application of such models could be in
virtual reality based simulators to reduce the training
time for a biologist.

Figure 11. Indentation of cell by three di�erent geometries of indenters: (a) Flat, (b) conical, and (c) parabolic.
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In this study, inverse �nite element and
Levenberg-Marquardt optimization algorithm were
used to characterize constructive material of mouse
oocyte and embryo cells in cell injection experi-
ment. Di�erent hyperelastic material models, namely,
Arruda-Boyce, Mooney-Rivlin, Neo Hooke, Ogden,
Polynomial, Reduced polynomial, and Van der Waals,
were used to �nd the material model that could give
the best �t between experimental and simulated forces.
It was shown that Ogden material model could better
characterize mouse oocyte cell, while Mooney-Rivlin
material was more suitable for mouse embryo cell.
Moreover, Poisson's ratio for all of the material models
was 0.5, which showed that constructive materials of
both mouse oocyte and embryo cells were compressible.
In this study, by taking the elastic moduli of mouse
oocyte and embryo cells into account, it was seen that
mouse oocyte cell was softer than mouse embryo cell
by 30 percent. Also, the study showed that the clas-
sical contact mechanics models could not describe the
phenomena caused by large deformations and complex
geometry between the cell and indenter tip.

Nomenclature

U Strain energy potential function;
Cij Temperature-dependent material

parameter;
� Temperature-dependent material

parameter;
D Incompressibility;
�I1 First deviatoric strain invariant;
Jel Elastic volume ratio;
� Fitness parameter;
Fexp Experimental force;
Fsim Simulated force;
n The number of data;
P Estimated hyperelastic parameter

matrix;
J Jacobean matrix;
H Hessian matrix;
�0 Initial shear modulus;
K0 Initial bulk modulus;
� Poisson's ratio;
E Young's modulus.
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