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Abstract. Analytical relations for slow-motion thin liquid �lms bounded by a �xed
wall and free surface for Newtonian and non-Newtonian uids are obtained in this work.
Assuming long-wave approximation, the momentum and continuity equations for thin liquid
�lms of power-law uids are simpli�ed and solved analytically to derive the evolution
equation of thin liquid �lms. The evolution equation is derived for two- and three-
dimensional cases. A relation for evolution of thin �lms is obtained for a simple case
in which the liquid �lm is supported from below by a solid surface and subjected to gravity
and constant surface tension forces. This evolution equation of thin �lm has been solved
numerically in order to compare the behavior of Newtonian and non-Newtonian liquids for
di�erent Bond numbers. It is shown that the power-law model at low and high strain rates
is invalid and it a�ects the results. The Rayleigh-Taylor instability is another subject that
is studied in this work. This interesting phenomenon is investigated by numerically solving
the evolution equation for di�erent Bond numbers. The results show that the evolution of
the free surface thin �lm for pseudo plastic uids is di�erent from that for Newtonian and
dilatant uids.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Competing with numerical methods, analytical solu-
tion of governing equations of uid ows has attracted
the attention of many scientists and engineers. Deriv-
ing analytical solutions for uid ows is challenging in
most cases. Thus, application of numerical methods is
inevitable; however, numerical methods have their own
limitations, such as inaccuracy, numerical instability,
and computational costs. Yet, solving a single partial
di�erential equation, which well expresses the uid
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ow, is far preferred over solving a system of equations,
including continuity and momentum equations, due to
limitations of numerical methods. In cases with thin
�lm ows, it is possible to track the interface by a
single partial di�erential equation, which is obtained
from governing equations using some simplifying as-
sumptions. The aim of this work is to �nd a single
general equation for tracking the non-Newtonian thin
�lm.

Liquid �lm is a layer of uid that is supported
by a solid plate and bounded by an interface between
the plate and another uid. Laminar ow of thin
liquid �lms is one of the interesting subjects in uid
mechanics as it is applicable in biophysics, physics,
and engineering, in addition to being an interesting
natural phenomenon. From industrial point of view,
this subject is applicable in slivering, optical coating,
lubricating, adhesives, common liquids such as water
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and oil, more complex materials such as polymer solu-
tions and melts, and mixtures of di�erent uids. Films
subjected to various mechanical and thermal inuences
show interesting phenomena such as wave propagation,
wave steepening, �ngering, and spreading. Therefore,
scientists and engineers pay signi�cant attention to this
topic.

Liquid �lm in which the perturbed wavelength at
the interface is much larger than its mean thickness is
considered as thin liquid �lm. Under such conditions,
by using long-wave approximation and simplifying
continuity and momentum equations for slow ow of
Newtonian incompressible viscous uid, one achieves
a single equation governing �lm evolution. For the
simplest case in which the �lm is supported from below
by a solid surface and is subjected to constant surface
tension forces and gravity is the only body force, the
evolution of thin �lms is expressed by a single fourth
order equation [1]. When the liquid �lm is positioned
under a plate, except for small Bond numbers (rela-
tively large surface tension force to gravitational one),
the �lm is unstable and Rayleigh-Taylor instability
occurs [2]. The Rayleigh-Taylor instability has been
studied by Yiantsios and Higgins [3,4] for cases that a
layer of uid with lower density is positioned under
a semi-in�nite uid. They stated that \instability
leads to a spectrum of steady-state interfacial shapes
characterized by �lm rupture and formation of pendant
drops, such that the gravity and interfacial forces
are in balance." Oron and Rosenau [5] also studied
this phenomenon for thin liquid �lm under a rigid
plane. Fermigier et al. [6] investigated the problem
both experimentally and theoretically. In their work,
the formation of patterns of di�erent symmetries and
transition between patterns and droplet detachment
were observed. Ruyer-Quil and Mannevilla [7] repre-
sented a high order model for ows on inclined planes
that was capable to handle strong nonlinear regimes.
More information about thin liquid �lms for Newtonian
uids is provided in [2].

Study of low-velocity non-Newtonian uid ows is
important since some of the uids used in industry as
well as in laboratories are non-Newtonian. Houseman
and Molnar [8] studied Rayleigh-Taylor instability to
�nd out how stress-dependent viscosity a�ected convec-
tive instability associated with thickening of cold, dense
lithosphere beneath mountain belts. They showed
that \the non-linearity in constitutive law e�ects a
delay in the convective thinning that is not seen when
Newtonian viscosity is assumed." Fomin et al. [9]
investigated rimming ows of power-law uid in the
inner side of horizontally rotating cylinder. Using
lubrication theory, they showed that when the mass
of non-Newtonian uid exceeded a certain value or the
rotation speed was less than a certain limit, a hydraulic
jump would occur. They determined the height and lo-

cation of the hydraulic jump. Perazzo and Gratton [10]
studied the �ngering instability of a slow ow of non-
Newtonian liquid on an inclined surface. In another
work [11], they studied a family of traveling waves of a
ow of power-law uid on an inclined plate using long
wave approximation and showed that there were ex-
actly seventeen di�erent kinds of solutions. Balmforth
et al. [12] investigated surface-tension-driven �ngering
of a thin layer of viscoplastic uid. They obtained
traveling wave solutions and applied a linear stability
analysis to model �nger growth. They demonstrated
qualitative agreement between their numerical results
and experiment. Miladinova et al. [13] studied slow
ow of power-law non-Newtonian uid on an inclined
plate in a periodic domain. They illustrated that
the free surface evolution of non-Newtonian uids was
similar to that of Newtonian uids while the shape
and amplitude of the permanent wave were inuenced
by non-Newtonian behavior. Myers [14] compared the
results of three models of non-Newtonian uid (Ellis,
power-law, and Carreau) for free surface ow and ow
in a channel. Perazzo and Gratton [15] presented
exact solutions for two-dimensional steady ows on an
inclined plate using power-law model. Their analysis
did not include surface tension e�ect. Heining and
Aksel [16] studied a power-law uid owing down
an inclined wall with sinusoidal topography. They
showed that increasing the steepness of the wall would
increase the importance of non-linear e�ects. They also
illustrated that shear thickening and shear thinning
ows had di�erent behaviors. Hu and Kieweg [17]
studied the e�ect of surface tension force on thin
�lm ows of a power-law liquid on an inclined plate.
They found that the surface tension force a�ected both
the spreading speed and the shape of two-dimensional
spreading pro�le.

In this work, the analytical relation for thin
non-Newtonian liquid �lms is investigated. At �rst,
assuming long-wave approximation, the momentum
and continuity equations for thin liquid �lms of power-
law uids are simpli�ed. Then, considering appropriate
boundary conditions, the system of equations is ana-
lytically solved in order to derive the evolution equa-
tion of thin liquid �lms for power-law non-Newtonian
uids. This evolution equation is highly non-linear
and is derived for two- and three-dimensional cases.
Considering the simplest case in which the �lm is
under a solid surface and subjected to the inuence
of gravity and constant surface tension forces, the
evolution of thin �lms is investigated. The stability
properties of a uniform �lm perturbed by small periodic
disturbances are studied and the evolution equation of
the thin �lm is numerically solved in order to compare
the behavior of Newtonian and non-Newtonian liquid
�lms for di�erent Bond numbers. The Rayleigh-
Taylor instability is another subject that is studied
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in this work. Here, the gravity force acts as a
source of instability in the liquid �lms' motion. This
phenomenon is investigated by numerically solving the
derived evolution equation for di�erent Bond numbers
and the pseudo plastic, dilatant, and Newtonian uid
ows have been investigated and discussed.

2. Evolution equation

Long-wave approximation is considered and applied to
slow motion of non-Newtonian incompressible viscous
liquid �lm on a plate. The continuity and momentum
equations are:

r:V = 0; (1)

�
DV
Dt

= �rp+ �(s)r2V + 2D:r� �r'; (2)

where, V = (u; v; w) is the velocity �eld in the liquid
�lm; t is time; p is pressure; r � (@=@x; @=@y; @=@z);
r2 � (@2=@x2; @2=@y2; @2=@z2); D=Dt is the sub-
stantial derivatives; ' is potential function, which
determines the conservative forces, such as gravity,
centrifugal, or van der Waals; and �(s) is the uid
viscosity, which is a function of the strain rate, s. The
function �(s) varies depending on the non-Newtonian
models. In this work, only the power-law model is
considered. Therefore, �(s) is:

�(s) = Ks(n�1)=2; (3)

where, K is a constant, n is the power-law index, and
s is obtained as:

s = �4IID = 2tr(D2); (4)

where, D = 1=2(rV +rV T ) is the strain rate tensor.
Assuming no-penetration and no-slip boundary

conditions on the solid surface, we have:

w = 0; u = 0; v = 0: (5)

At the uid free surface z = h(x; y; t), the boundary
conditions in the vector form are:

ht + V:rh � w = 0; (6)

and:

�:n = �2 eH�n+rs� + �; (7)

where, � is the stress tensor of the liquid; n is the
normal unit vector of the �lm surface; rs is the
surface gradient with respect to the interface; � is the
external force on the �lm surface with the components
(�3; �1; �2) in the normal and tangential directions to
the �lm surface; and eH is the mean curvature of the
interface determined by:

2 eH = r:n

= �hxx(1 + h2
y) + hyy(1 + h2

x)� 2hxhyhxy
(1 + h2

x + h2
y)3=2 ; (8)

where, subscripts denote partial di�erentiation with
respect to x and y. Eq. (6) is the kinematic boundary
condition in the absence of interface mass transfer and
represents the balance between the normal component
of the liquid velocity at the interface and the velocity
of the interface itself. Eq. (7) constitutes the balance of
the stresses in the absence of interfacial mass transfer
at the interface.

By projecting Eq. (7) on the normal and tangen-
tial directions with respect to the �lm surface, we have
Eq. (9) as shown in Box I.

Assuming a �lm with mean thickness, d, we
introduce an appropriate scale for thin �lms. The
length scales in lateral directions x and y are de�ned
by wavelength � of disturbance on the �lm surface, as
it is seen in Figure 1. Therefore, thin �lms refer to the
�lms where � is much larger than d, that is:

" =
d
�
� 1: (10)

Figure 1. Flow con�guration and coordinate system.

2�(sjz=h)[ux(h2
x � 1) + vy(h2

y � 1) + hxhy(uy + vx)� hx(uz + wx)� hy(vz + wy)]
(1 + h2

x + h2
y)

= p+ (2 eH� + �3); (9a)

�(sjz=h)[(uz + wx)(1� h2
x)� hxhy(vz + wy)� hy(uy + vx)� 2hx(ux � wz)] = (�1 + �x)(1 + h2

x + h2
y)1=2; (9b)

�(sjz=h)[�(uz + wx)hxhy + (vz + wy)(1� h2
y)� hx(uy + vx)� 2hy(vy � wz)] = (�2 + �y)(1 + h2

x + h2
y)1=2:

(9c)

Box I
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By normalizing the z-coordinate (normal to the solid
surface) with d and x-, y-coordinates with �, no rapid
variations occur as "! 0. The dimensionless velocities
in the x-, y-, and z-directions are de�ned as:

U =
u
U0
; V =

v
U0
; W =

w
"U0

; (11)

where, V = (U; V;W ) is the dimensionless velocity �eld
in the liquid �lm and U0 is the characteristic velocity.
One of the choices is U0 = �0=�d, which is known
as `viscous velocity', where �0 is the characteristic
viscosity. Based on power-law model, we have:

�0 = N:K
�
U0

d

�n�1

; (12)

where, N is a constant.
If �=U0 is considered as a time scale, the normal-

ized time will be:

T =
"U0t
d

: (13)

The dimensionless interfacial stresses, body-force po-
tential, pressure, and strain rate are de�ned as:

(�1;�2; "�3) =
d

�0U0
(�1; �2; �3);

(�; P ) =
"d
�0U0

('; p); S =
�
d
U0

�2

s: (14)

� denotes the dimensionless viscosity and is de�ned as:

� =
�(s)
�0

: (15)

Substituting the dimensionless variables into the gov-
erning equations (1) and (2) and Eqs. (5)-(8), we have:

"Re(UT + UUX + V UY +WUZ) = �PX
+ �["2(UXX + UY Y ) + UZZ ]

+
�
@�
@S

�
[2"2UXSX + "2(UY + VX)SY

+ (UZ + "2WX)SZ ]� �X ; (16a)

"Re(VT + UVX + V VY +WVZ) = �PY
+ �["2(VXX + VY Y ) + VZZ ]

+
�
@�
@S

�
["2(UY + VX)SX + 2"2VY SY

+ (VZ + "2WY )SZ ]� �Y ; (16b)

"3Re(WT + UWX + VWY +WWZ) = �PZ
+ "2�["2(WXX +WY Y ) +WZZ ]

+ "2
�
@�
@S

�
[(UZ + "2WX)SX

+ (VZ + "2WY )SY + 2WZSZ ]� �Z ; (16c)

The boundary conditions are as shown in Box II,
where, H = h=d is normalized �lm thickness, � =
"�=�0U0 is dimensionless surface tension, Re =
�U0d=�0 is the Reynolds number, and Ca�1 = �=�0U0
is inverse of the capillary number.

It should be mentioned that the inertia terms in
the momentum equations, measured by "Re, are one
order of magnitude smaller than the viscous terms.
Also, the e�ect of surface tension, measured by "3Ca�1,
is two orders of magnitude smaller than the inertia
terms and can be neglected. Since the e�ects of surface
tension on the revolution of thin �lm are retained, it is
essential to assume that the capillary e�ects are strong
compared with the viscosity e�ects and:

Ca�1 = �"�3: (18)

Under this assumption, Re and Ca�1 = O(1) as "! 0.
In order to solve the system of equations, the per-

turbation theory is used. Therefore, the perturbation
series of dependent variables in terms of " are as follows:

U = U (0) + "U (1) + "2U (2) + � � � ;
V = V (0) + "V (1) + "2V (2) + � � � ; (19a)

W = W (0) + "W (1) + "2W (2) + � � � ;
P = P (0) + "P (1) + "2P 2 + � � � : (19b)

Substituting Eqs. (18) and (19) into system of equa-
tions and sorting them with respect to parameter ", we
obtain the governing system in terms of ". We consider
initial solution of thin �lm evolution; therefore, the
governing equations become:

UX + VY +WZ = 0; (20)

�PX + �UZZ +
�
@�
@S

�
UZSZ � �X = 0; (21a)

�PY + �VZZ +
�
@�
@S

�
VZSZ � �Y = 0; (21b)

PZ + �Z = 0: (21c)

The boundary conditions at Z = 0 are:

W = 0; U = 0; V = 0; (22)
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at Z = 0: W = 0, U = 0, V = 0.
at Z = H:

W = HT + UHX + V HY ; (17a)

2"2[UX("2H2
X � 1) + VY ("2H2

Y � 1) + "2HXHY (UY + VX)�HX(UZ +WX)�HY (VZ +WY )]
1 + "2(H2

X +H2
Y )

=
�0

�(sjz=h)

�
P + �3 +

Ca�1"3[HXX(1 + "2H2
Y ) +HY Y (1 + "2H2

X)� 2"2HXHYHXY ]
[1 + "2(H2

X +H2
Y )]3=2

�
; (17b)

(UZ + "2WX)(1� "2H2
X)� "2(VZ + "2WY )HXHY � "2(UY + VX)HY � 2"2(UX �WZ)HX

=
�0

�(sjz=h)
(�1 + �X)[1 + "2(H2

X +H2
Y )]1=2; (17c)

(VZ + "2WY )(1� "2H2
Y )� "2(UZ + "2WX)HXHY � "2(UY + VX)HX � 2"2(VY �WZ)HY

=
�0

�(sjz=h)
(�2 + �Y )[1 + "2(H2

X +H2
Y )]1=2: (17d)

Box II

and at Z = H are:

HT + UHX + V HY �W = 0; (23a)

P = ��3 � �(HXX +HY Y ); (23b)

UZ =
1

�(SjZ=H)
(�1 + �X); (23c)

VZ =
1

�(SjZ=H)
(�2 + �Y ): (23d)

The continuity equation, Eq. (20), is integrated along
Z-direction from 0 to H(X;Y; T ) and Eqs. (22)
and (23a) are used along with it; the result of the inte-
gration is in a convenient form of kinematic condition
and warrants the conservation of mass in the domain:

HT +
@
@X

HZ
0

UdZ +
@
@Y

HZ
0

V dZ = 0: (24)

In order to achieve the evolution equation for a power-
law liquid �lm, the governing equations are solved
to obtain U and V . Then, integrating over the �lm
thickness and substituting them into Eq. (24), we will
achieve our goal to obtain the evolution equation of the
thin �lm.

In order to �nd U and V , Eqs. (21a) to (21c) are
solved with appropriate boundary conditions expressed

in Eqs. (23). � is determined based on the power-law
model, which is a function of the strain rate. Using the
dimensionless parameters, the perturbation series, and
Eqs. (3), (4), and (15), we have:

� =
�
U2
Z + V 2

Z
�(n�1)=2 : (25)

By substituting Eq. (25) into the system of equations
and after performing some mathematical steps, which
are described in the Appendix, we have:

U(Z) =
AX

(AX)2 + (AY )2
n

n+ 1�h�
AXZ +B

�2 +
�
AY Z +B0

�2i(n+1)=2n

�[(B)2 + (B0)2](n+1)=2n
o

� AY
���AXB0 �AYB���(n+1)=nh

(AX)2 + (AY )2
i(3n+1)=2n

�
R(Z) 2F1

�
1
2
;
�1 + n

2n
;

3
2

;�R(Z)2
�

�R0 2F1

�
1
2
;
�1 + n

2n
;

3
2

;�R2
0

��
; (26a)
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V (Z) =
AY

(AX)2 + (AY )2
n

n+ 1n�
(AXZ +B)2 + (AY Z +B0)2�(n+1)=2n

� �(B)2 + (B0)2�(n+1)=2n
o

+
AX(jAXB0 �AYBj)(n+1)=n

[(AX)2 + (AY )2](3n+1)=2n�
R(Z) 2F1

�
1
2
;
�1 + n

2n
;

3
2

;�R(Z)2
�

�R0 2F1

�
1
2
;
�1 + n

2n
;

3
2

;�R2
0

��
; (26b)

W = �
ZZ

0

(UX + VY )dZ;

P = ��3 � �(HXX +HY Y ); (26c)

where AX , BX , AY , BY , B, B0, R(Z), and R0 are used
to abbreviate the equations and are de�ned as:

AX = (P + �)X ; BX = (�1 + �X); (27a)

AY = (P + �)Y ; BY = (�2 + �Y ); (27b)

B = �AXH +BX ; B0 = �AYH +BY ; (27c)

R(Z) =
�
AX
�2 + (AY )2

AXB0 �AYB Z +
AXB +AYB0
AXB0 �AYB ;

R0 =
AXB +AYB0
AXB0 �AYB : (27d)

Also, 2F1 stands for hypergeometric function and is
de�ned by power series as:

2F1(a; b; c; z) =
1X
j=0

(a)j(b)j
(c)j

zj

j!
: (28)

By integrating Eqs. (26a) and (26b) over the �lm
thickness, and substituting the results into Eq. (24),
the evolution equation in three-dimensional form is
achieved. Integrating the velocity components, U
and V over the �lm thickness can be problematic
and mathematically di�cult to perform. Therefore,
in order to simplify Eqs. (26a) and (26b) and make
them easier to integrate, �rst, the power-law index
based on the liquid rheology is determined. Then, by
substituting the results into Eq. (24), the governing
evolution equation is obtained. For example, for n =
1=3, the evolution equation for a three-dimensional case
is:

HT +
@
@X

�
AX

20

��
AX
�2 +

�
AY
�2�H5

+
1
4

�
2
3
AY
�
AYB�AXB0�+B��AX�2+�AY �2��H4

+
1
3

�
1
2
AX
�
(B0)2+B2

�
+B

�
AYB0+AXB

��
H3

+
1
2
B
�
B2 + (B0)2

�
H2
�

+
@
@Y

�
AY

20

��
AX
�2 +

�
AY
�2�H5

+
1
4

�
2
3
AX
�
AYB�AXB0�+B0��AX�2+

�
AY
�2��H4

+
1
3

�
1
2
AY
�
(B0)2+B2

�
+B0

�
AYB0+AXB

��
H3

+
1
2
B0
�

(B0)2 +B2
�
H2
�

= 0: (29)

Similarly, for two-dimensional cases, we have Eq. (30)
as shown in Box III. Eq. (30) expresses the evolution of
thin �lms for a non-Newtonian uid. In this equation,
external forces, conservative body forces, and surface
tension e�ects are considered. This equation and that

P = ��3 � �HXX ; (30a)

U(Z) =
n
����(Z �H)AX +BX

���1+1=n � ����AXH +BX
���1+1=n

�
AX(n+ 1)

; (30b)

HT +
n2

(n+ 1)(2n+ 1)
@
@X

"
BX

���BX ���1+1=n

(AX)2 �
�
BX + n+1

n AXH
�

(AX)2

���BX �AXH���1+1=n
#

= 0: (30c)

Box III
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of the Newtonian one will converge if the power-law
index is equal to 1. n > 1 refers to dilatant behavior
and n < 1 refers to pseudo plastic behavior.

2.1. E�ects of gravity and constant surface
tension forces on thin �lms

As a very simple case, a thin �lm of uid, which is
on the top of a horizontal solid surface and under
the inuence of gravity and surface tension forces,
is considered. Then, parameters AX and BX are
determined by:

AX = (P + �)X = (��3 � �HXX +G(H � Z))X

= GHX � �HXXX ; (31a)

BX = (�1 + �X) = 0; (31b)

where, G = �gd2=�0U0 is the gravity number. Substi-
tuting the above equations into Eq. (30c), we have:

HT� n
(2n+ 1)

h
H2 (GHHX � �HHXXX)

(jGHHX � �HHXXX j) 1�n
n

i
X

= 0: (32)

The dimensional version of Eq. (32) is:

K1=nht� n
(2n+ 1)

h
h2 (�ghhx � �hhxxx)

(j�ghhx � �hhxxxj) 1�n
n

i
x

= 0: (33)

To investigate instability properties of a �lm perturbed
by a small disturbance, the linear-stability of Eq. (32)
is studied. A uniform �lm, H = �H, perturbed by a
small disturbance, H 0(H 0 � 1), is considered. Since
the coe�cients in the equations are independent of
time and X, the separable solution to the form H 0 =
H 00e(ikX+!T ), H 00 = cost. is sought, where k is the
wave number in X-direction. Substituting them into
Eq. (32) and linearizing it with respect to H 0, ! is
obtained as:

! =
�nk2 �H
2n+ 1

�
G �H2 + �H2k2�

�
: (34)

The sign Re(!) corresponds to the variation of the
perturbation amplitude and pure imaginary value of
! corresponds to wave translation along X-axis. If the
real part of ! is negative, the amplitude of perturbation
will decay while it will grow if Re(!) is positive.

In the cases that liquid �lm is positioned under
a plate, the sign of G in Eq. (34) changes and it is
replaced by �G. This case is known in the literature as
the Rayleigh-Taylor instability of a thin viscous layer.
In such situation, the Bond number, which is de�ned

Figure 2. Variation of ! versus non-dimensional
wavenumber k for various values of �.

as the ratio of gravitational to surface tension forces,
is:

Bond number =
�gd2

�
; (35)

which is proportional to B = G=� and plays an
important role in stability of the �lm. Figure 2 shows
variation of ! versus the dimensionless wavenumber
k for B = 1; 3; 5, and 10. It is seen that the cuto�
wavenumber for neutral stability increases with the
Bond number. Also, there is a maximum point in
each graph, indicating the wavenumber at which the
perturbation leads to the most unstable �lm.

2.2. Numerical solution
It is showed that the evolution of a thin �lm for
power-law liquid under the act of gravity and constant
surface tension forces is governed by Eq. (32). Here,
this equation is solved numerically for some sample
cases including a uniform thin �lm perturbed by a
disturbance on its surface in presence of the Rayleigh-
Taylor instability.

2.2.1. Numerical method
Eq. (32) is �rst order in time and fourth order in space
and is a highly non-linear di�erential equation. In order
to numerically solve this equation, the fourth order
Runge-Kutta method for time derivative and second
order central di�erence for space derivatives have been
used.

2.2.2. Grid study
In order to show the independence of the solutions
from the time step and grid size, Eq. (32) is solved
numerically for G = �1, � = 1, n = 1:0, and initial
condition of Hini. = 1:0 + 0:1 cos(X=

p
2). First, the

time step for grid size of 100 is examined. Figure 3(a)
shows that for �T � 2:0 � 10�6, the results are
independent of �T .

The numerical solution is repeated for grid sizes
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Figure 3. (a) Variation of H(0) as a function of time for
grid size of 100 and di�erent time steps. (b) Variation of
H(0) as a function of time for �T = 2:0� 10�6 and
di�erent grid sizes.

associated with 75, 100, and 150 cells along one wave-
length for �T = 2:0� 10�6. According to Figure 3(b),
the grid size associated with 100 cells (�X �= 0:18) and
time step �T = 2:0� 10�6 is appropriate and chosen.

2.2.3. Validation
In order to validate the results, the result of the
Rayleigh-Taylor instability of a thin �lm for Newto-
nian liquid obtained by Yiantsios and Higgins [3] is
reproduced. The initial disturbance on the �lm surface
is Hini. = 1:0 + 0:1 cos(X=

p
2). Eq. (32) is numerically

solved by considering n = 1. Figure 4 shows the present
numerical solution result and that of [3]. As can be
seen, these results are in very good agreement.

3. Results and discussion

Considering an element of uid positioned on the �lm
surface with mean depth of d, its gravitational force is

Figure 4. Free surface of a thin �lm for G = �1, � = 1,
and n = 1:0 at di�erent times, time intervals �t = 4 s and
maximum time tmax = 100 s: (a) Present results and (b)
Yiantsios and Higgins [3].

�gd. Let us consider L as the length scale parallel to
the �lm surface; then, �d=L2 is a measure of interfacial
force. When the �lm is on a solid plate, these two forces
act to stabilize the �lm. On the other hand, if the �lm is
positioned under the solid plate, the gravitational force
acts as a source of instability, while interfacial force
stabilizes the ow. In such system, the balance of these
two forces gives a cuto� wavelength. The disturbed
�lms remain stable if the wavelength is smaller than
the cuto� value. For thin �lms, d � L, this analysis
requires Bond number � d2=L2 = "2 � 1. Therefore,
small Bond number refers to the situation in which the
surface tension force is balanced by the gravity force.

3.1. Evolution of thin �lms perturbed by a
periodic disturbance for G > 0

The initial condition is taken to be Hini. = 1:0 + A
cos(X=

p
2), where A is the wave amplitude and is

constant. Figure 5 presents free surface pro�les of
the thin �lms at T = 10 for pseudo plastic, dilatant,
and Newtonian uids. Since small Bond number is
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Figure 5. Free surface pro�le at T = 10 for G = 1, � = 1,
and A = 0:2.

considered, the parameters G, �, and A are chosen
to be 1, 1, and 0.2, respectively. As it is seen, the
gravitational and interfacial forces damp the distur-
bance. The point is that in the pseudo plastic, the
required time for damping the disturbance is much
larger than that in the Newtonian and dilatant uids;
and dilatant behavior is damped faster than in the
Newtonian uids. It is due to the fact that the uid
velocity and its viscosity coe�cient are obtained from
Eqs. (30b) and (25), respectively, and, based on those
equations, for the same free surface pro�le, the pseudo
plastic uid has lower velocity engaged with much
larger viscosity. Therefore, pseudo plastic uid needs
more time to damp the perturbation.

Figure 6 shows the free surface evolution for a
larger Bond number. These results are obtained for
G = 500, � = 1, and A = 0:5. It is shown that in those
cases, the disturbance is damped faster due to increase
in the gravity force. It should be mentioned that
the invalidity of power-law model for low strain rate

causes inaccurate prediction of free surface evolution
for pseudo plastic uids, as it is shown in Figure 6(a).
Unphysical sharp changes of the curves at low and high
X's are due to the behavior of the power-law model for
pseudo plastic uids (n < 1).

The evolution of the free surface for di�erent
wave amplitudes, A = 0:5, 0.2, and 0.1, and di�erent
wavenumbers, k =

p
2=2,

p
2, and 3

p
2=2, is studied.

In all these cases, the results show similar trends in
free surface evolutions. The only di�erence here is the
damping time. As it can be concluded from linear-
stability of the problem (Eq. (34)), the perturbing
waves with larger wavenumbers change the �lm free
surface shape much faster.

3.2. Rayleigh-Taylor instability
The Rayleigh-Taylor instability for power-law non-
Newtonian uids is investigated and the results are
compared with those for Newtonian uids. For this
purpose, the initial perturbing disturbance on the �lm
surface is assumed Hini. = 1:0+0:1 cos(kX), where the
wavenumber k is

p
2=2. The reason for choosing

p
2=2

is that for this value of k, the sinusoidal disturbances
have maximum growth rate according to the linear
stability theory, as it can be veri�ed by Eq. (34).
Figure 7 illustrates the evolutions of four di�erent uids
for G = �1, � = 1, and k =

p
2=2. It is seen that

for all the four cases, the �lm evolutions experience
three di�erent stages. First, for a very short time, the
evolution follows the linear stability prediction. Then,
the non-linearity causes generation of higher harmonics
and one drop per wavelength is formed. Furthermore,
as it can be seen from Eq. (32), where the driving force
is multiplied by H3, the crests of the waves become
more noticeable than their troughs. In other words,
where the �lm is thinner, it is harder to ow due to no
slip boundary condition at the solid surface. Finally,
as time progresses, the �lm evolution slows down and
eventually reaches the steady-state form. From the

Figure 6. Evolution of free surface for G = 500, � = 1, and A = 0:5: (a) n = 0:8, time interval, �T , is 0.1, maximum
time, Tmax is 2; (b) n = 1:0, time interval, �T , is 0.01, maximum time, Tmax, is 0.1, and (c) n = 1:2, time interval, �T , is
0.01, maximum time, Tmax, is 0.1.
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Figure 7. Evolution of free surface for G = �1, � = 1, and k = 22: (a) n = 0:8, time interval, �T , is 16, maximum time,
Tmax, is 640, (b) n = 0:9, time interval, �T , is 8, maximum time, Tmax, is 132, (c) n = 1:0, time interval, �T , is 4,
maximum time, Tmax, is 100, and (d) n = 1:2, time interval, �T , is 4, maximum time, Tmax, is 100.

numerical results, it is concluded that rheology of the
uid does not a�ect the trend of evolution of the �lm; it
only inuences the required time to progress and a�ects
the amplitude of the �nal shape. As it is demonstrated
in Figure 7, the pseudo plastic uids ow is slower
than Newtonian and dilatant uids ows. This agrees
with the results obtained by Houseman and Molnar [8]
that the growth of instability strongly depends on the
constitutive law relating stress and strain rate such that
instability grows exponentially for Newtonian uids
and super exponentially for non-Newtonian ones. Also,
the form of the free surface shape in their evolution is
similar to those in the results of [6,8].

In order to understand the e�ect of wavenumber
on evolution of �lm surface,

p
2 and 3

p
2=2 are taken

as initial perturbing disturbance wavenumbers, too.
From the results, it is observed that for all pseudo
plastic, Newtonian, and dilatant uids, two and three
drops per wavelength have been formed for k =

p
2

and 3
p

2=2, respectively. This has been also shown by
Yiantsios and Higgins [3] for Newtonian uids. Here,
similar trends for pseudo plastic and dilatant uids are
observed. Thus, the uid rheology does not have e�ect
on this trend.

In Figure 8, the Bond number increases by in-

crease in the value of gravity number, G. These
results, which are achieved for G = �10, � = 1,
and k =

p
2=2, show the evolution of pseudo plastic,

Newtonian, and dilatant uids, respectively. Here,
again, the thin �lms experience the same three stages
during their development. As it is shown in Figure 8,
the numbers of drops formed per wavelength for pseudo
plastic, Newtonian, and dilatant uids are two, three,
and three, respectively. Moreover, the trend of pseudo
plastic uids evolution toward the �nal shape di�ers
from those of Newtonian and dilatant uids. Since
the increase in the value of Bond number causes more
instability, which also transfers the problem to a higher
non-linear one, the transition near the inection points
is more pronounced in this case for the smaller Bond
numbers (Figure 7).

The Rayleigh-Taylor instability is studied for
larger values of Bond number. From the results, it
can be seen that at �rst the �lm evolves gradually
with time; then, higher harmonics start to grow and
this speeds up. In these cases, the gravity force is
much stronger than the interfacial force and the �lm
becomes unstable. Therefore, in the �rst iterations,
the �lm evolution is captured; but, after a short
time, its transition speeds up and the value of the
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Figure 8. Evolution of free surface for G = �10, � = 1, and k = 22: (a) n = 0:8, time interval, �T , is 0.1, maximum
time, Tmax, is 4, (b) n = 0:9, time interval, �T , is 0.1, maximum time, Tmax, is 4, (c) n = 1:0, time interval, �T , is 0.05,
maximum time, Tmax, is 2.5, and (d) n = 1:2, time interval, �T , is 0.1, maximum time, Tmax, is 4.

�lm dimensionless thickness, H, tends to in�nity. As
Fermigier et al. [6] have shown, this is the time when
a drop separates from the �lm. Their results showed
that there was a critical Bond number above which
the drops spontaneously fell and below which the �lm
remained stable. Our method for solving the problem
does not have the ability to capture the drop and its
trend of creation.

4. Conclusion

The governing equations of a power law non-Newtonian
liquid �lm on a solid plane have been derived within
the lubrication approximation. The possibility of the
inclusion of interfacial forces as well as presence of
conservative forces, such as gravity, centrifugal, or van
der Waals, and surface tension has been considered.
The governing system of equations is solved and highly
non-linear di�erential equations for two- and three-
dimensional cases, which describe the evolution of the
thin �lms well, are presented. These equations can be
used as a starting point to investigate the inuence
of rheology on the evolution of thin �lm for non-
Newtonian uids.

The evolution of thin �lms is studied when the

�lm is below a solid surface and subjected to the
inuence of gravity and constant surface tension forces.
The stability properties of a uniform �lm perturbed by
a small periodic disturbance are studied and the evolu-
tion equation of thin �lm has been solved numerically
in order to compare the behavior of Newtonian and
non-Newtonian liquid �lms for di�erent Bond numbers.
It is shown that due to the invalidity of power-law
model at low and high strain rates, the results do
not have a reasonable and physical meaning. Also,
it is concluded that dilatant uids respond to the
disturbance more quickly than Newtonian and pseudo
plastic uids do. The Rayleigh-Taylor instability is also
studied and the behaviors of pseudo plastic, dilatant,
and Newtonian uids are compared. The results show
that the trend of evolution of free surface for pseudo
plastic uids is di�erent from that for Newtonian and
dilatant uids. For small Bond numbers, the thin �lm
experiences three stages as it evolves:

1. Within a very short time, it follows the linear
stability prediction;

2. The non-linearity e�ects cause generation of higher
harmonics and drops are formed;
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3. The transition slows down and a steady-state shape
forms the �lm surface.

It is shown that by increasing the Bond number,
the non-linearity e�ect would be more pronounced. In
this situation, the imbalance between the gravitational
and surface tension forces makes the �lm unstable and
drops are created. The method used here is not capable
of capturing the separated drops and the trend of their
formation.

Nomenclature

A Wave amplitude

AX ; AY Coe�cient in Eq. (28)
B;B0 Coe�cient in Eq. (28)

BX ; By Coe�cient in Eq. (28)

Ca�1 Inverse of the capillary number
d Mean �lm thickness
D Strain rate tensor
g Gravitational acceleration
G Gravity number
h Dimensional �lm thickness
H Dimensionless �lm thicknesseH Mean curvature of the �lm surface
k Wave number
K Constant in Eq. (5)
L Length scale
n Power-law index
p Pressure
P Dimensionless pressure
Re Reynolds number
s Strain rate
S Dimensionless strain rate
T Dimensionless time
u Velocity in x-direction
U Dimensionless velocity in X-direction
v Velocity in y-direction
V Dimensionless velocity in Y -direction
w Velocity in z-direction
W Dimensionless velocity in Z-direction
2F1 Hyper geometric function
� Approximately

Greek symbols

� Dimensionless interfacial stress
� Dimensionless surface tension
� Dimensionless body force potential
� Dimensionless viscosity

� Inverse capillary number
" Small number
� Power-law uid viscosity
� Wave length
� Newtonian uid viscosity
� Dimensional interfacial stress
� Density
� Surface tension coe�cient
� Stress tensor
! Growth rate
' Dimensional body force potential

Subscripts

T; t Derivatives on T and t
X; x Derivatives on X and x
Y; y Derivatives on Y and y
Z; z Derivatives on Z and z
0 Characteristic values
1 Normal to the �lm surface
2 Tangential to the �lm surface
3 Tangential to the �lm surface
max Maximum
ini: Initial value
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Appendix

By solving Eqs. (23) for UZ and VZ and substituting
Eq. (27) into its results, we will have a system of two
non-linear equations as:

UZ =
(Z �H)AX +BX

[U2
Z + V 2

Z ](n�1)=2 ; (A.1)

VZ =
(Z �H)AY +BY

[U2
Z + V 2

Z ](n�1)=2 : (A.2)

By solving Eqs. (A.1) and (A.2), UZ and VZ are
obtained:
UZ(Z)

=
(Z �H)AX +BX

[((Z�H)AX+BX)2+((Z�H)AY+BY )2](n�1)=2n ;
(A.3)

VZ(Z)

=
(Z �H)AY +BY

[((Z�H)AX+BX)2+((Z�H)AY+BY )2](n�1)=2n :
(A.4)

To obtain U(Z) and V (Z), Eqs. (A.3) and (A.4) are
integrated over the �lm thickness from 0 to Z. Here,

the results are shown for U(Z); Similar procedure can
be followed to obtain V (Z):

U(Z) =
ZZ

0

U�(�)d�

=
ZZ

0

(��H)AX+BX

[((��H)AX+BX)2+((��H)AY+BY )2](n�1)=2n d�:
(A.5)

Using G(Z) and L(Z) to rewrite Eq. (A.5) in a way
that U(Z) = Q(Z) + E(Z), we have:

Q(Z) =
AX

2[(AX)2 + (AY )2]

ZZ
0

2[(AX)2+(AY )2]�+2(AXB+AYB0)
[(AX�+B)2+(AY �+B0)2](n�1)=2n d�;

(A.6)

E(Z) =
�
B � AX(AXB +AYB0)

(AX)2 + (AY )2

�
ZZ

0

1
[(AX�+B)2+(AY �+B0)2](n�1)=2n d�;

(A.7)

where Q(Z) is the integral of a function, which is easily
calculated by the general rule; for f(x) = xq with
q 6= �1, the anti-derivative is F (x) = xq+1=(q + 1).
Therefore, we have:

Q(Z) =
AX

(AX)2 + (AY )2
n

n+ 1�h�
AXZ +B

�2 +
�
AY Z +B0

�2i(n+1)=2n

� h(B)2 + (B0)2
i(n+1)=2n

�
: (A.8)

To calculate the integral part of Eq. (A.7), R(�) is
de�ned as:

R(�) =
(AX)2 + (AY )2

AXB0 �AYB � +
AXB +AYB0
AXB0 �AYB ;

dR =
(AX)2 + (AY )2

AXB0 �AYB d�: (A.9)

Substituting Eq. (A9) into Eq. (A7), we have:

E(Z) =
�AY ���AXB0 �AYB���(n+1)=n

[(AX)2 + (AY )2](3n+1)=2n

R(Z)Z
R0

1
(R2 + 1)(n�1)=2n dR; (A.10)

where, R0 = (AXB+AYB0)=(AXB0�AYB). The hy-
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pergeometric function 2F1(a; b; c; �) =
P1
j=0

(a)j(b)j
(c)j

�j
j!

is used to calculate the integral part of Eq. (A.10).
Therefore, E(Z) is:

E(Z) =
�AY ���AXB0 �AYB���(n+1)=nh

(AX)2 + (AY )2
i(3n+1)=2n

�
R(Z) 2F1

�
1
2
;
�1 + n

2n
;

3
2

;�R(Z)2
�

�R0 2F1

�
1
2
;
�1 + n

2n
;

3
2

;�R2
0

��
:

(A.11)

Substituting Eqs. (A.11) and (A.8) into U(Z) =
Q(Z) + E(Z), we have:

U(Z) =�(s)
AX

(AX)2 + (AY )2
n

n+ 1n�
(AXZ +B)2 + (AY Z +B0)2�(n+1)=2n

� �(B)2 + (B0)2�(n+1)=2n
o

� AY (jAXB0 �AYBj)(n+1)=n

[(AX)2 + (AY )2](3n+1)=2n�
R(Z) 2F1

�
1
2
;
�1 + n

2n
;

3
2

;�R(Z)2
�

�R0 2F1

�
1
2
;
�1 + n

2n
;

3
2

;�R2
0

��
:
(A.12)

Similarly, for V (Z), we have:

V (Z) =
AY

(AX)2 + (AY )2
n

n+ 1n�
(AXZ +B)2 + (AY Z +B0)2�(n+1)=2n

� �(B)2 + (B0)2�(n+1)=2n
o

+
AX(jAXB0 �AYBj)(n+1)=n

[(AX)2 + (AY )2](3n+1)=2n�
R(Z) 2F1

�
1
2
;
�1 + n

2n
;

3
2

;�R(Z)2
�

�R0 2F1

�
1
2
;
�1 + n

2n
;

3
2

;�R2
0

��
: (A.13)
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