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Abstract. This work deals with asymptotic periodicity and compactness for a class
of composite fractional relaxation equations. Some di�culties arise when the e�ect of
di�erent kinds of nonhomogeneous terms is taken into consideration. To overcome these,
we use methods resulting from regularized families and �xed point techniques, which are an
important tool to study nonlinear phenomena. We can cover a large class of nonlinearities.
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1. Statement of results

Fractional calculus is a �eld of mathematical analysis,
which deals with the investigation and applications of
integration and di�erentiation of any order, not neces-
sarily integer. This �eld has in recent years become a
powerful tool to investigate various concrete problems
of mathematical physics. For this reason, there is
much interest in developing the qualitative theory of
fractional evolution equation, i.e., evolution equations
where the integer derivative with respect to time is
replaced by a derivative of fractional order (see [1-3]).
We set up our problem and formulate the obtained
results precisely. Let X be an arbitrary Banach space.
In this work, we study asymptotic periodicity and
compactness properties of solutions for a composite
fractional relaxation equation in X. Let us start with
the linear case (when � = 1

2 corresponds to the Basset
problem a classical in 
uid dynamics)(see [4]).):
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u0(t)�AcD�
t u(t) + u(t) = f(t); t > 0; (1)

with the initial condition:

u(0) = x; (2)

where 0 < � < 1, cD�
t denotes Caputo's fractional

derivative. (We recall that the de�nition of Caputo's
fractional derivative of order � > 0 of a function f reads
as follows: cD�

t f(t) =
R t

0 gm��(t � s)f (m)(s)ds, t > 0,
where m = d�e, g�(t) = t��1=�(�), t > 0, � > 0 [4].)
and A is a closed linear operator, which is the generator
of an (a; k)-regularized family (in this setting, we
comment that the notion of (a; k)-regularized families
of operators, introduced in [5], includes k-convoluted
semigroups, r-times integrated cosine families, and in-
tegral resolvent [4,6]) R�(t) of bounded linear operators
from X into X (see De�nition 2.1), with k(t) = e�t
and a(t) = t�E1;1��(�t), where E�;�(�) denotes the
Mittag-Le�er function, which is de�ned as follows:

E�;�(z) =
1

2�i

Z
Ha

e�
����
�� � z d�;

�; � > 0; z 2 C;
where Ha is a Henkel path, i.e. a contour with starts
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and ends at �1, that encircles the disc j�j � jzj�1=�

counter-clockwise. The Mittag-Le�er function plays
the same role for fractional calculus as the exponential
function plays for conventional calculus (see [2]). For
many properties of Mittag-Le�er function, we refer to
Erd�elyi et al. [7]. Note that in case of non-integer �,
there is no analogue of the Abel semigroup property or
cosine functional equation, which plays a crucial role in
the developing of the corresponding theories (see [1]).

In [6], the aim of the authors is to obtain the
existence of solutions to the stochastic version of (1.1).
This was done by using a resolvent family associated
with the deterministic version of (1.1). We observe that
real systems usually exhibit internal variations or are
submitted to perturbations. One may convince oneself
that in many situations, we can assume that these
variations are approximately periodic in a broad sense
(see [8]). The notion of S-asymptotically !-periodic
functions has emerged in the literature, recently, which
has been shown to have interesting applications in
several branches of evolution equations. This concept
was introduced by Henr��quez et al. [9]. To date, the
research concerning asymptotic periodicity of Eq. (1)
is too incipient and should be developed. Due to the
rapid evolution of the notion of S-asymptotically !-
periodic functions, in this work, we place a particular
emphasis on recent developments of a new type of S-
asymptotically !-periodic functions. We believe that
this paper will help to speed up the development of this
subject. In [4], the authors studied the existence of an
S-asymptotically !-periodic solution to problems (1)
and (2). In [4], the authors also established a general
procedure to derive mild solutions to a wide class of
fractional equations. They presented how to obtain
variations of constant formulae for various classes of
fractional equations with Caputo derivative (see [3] for
background material). Speci�cally, they proved the
following result.

Theorem 1.1. If x 2 ker(A) and f is a ker(A)-
valued S-asymptotically !-periodic function, then every
mild solution to Eqs. (1) and (2) is S-asymptotically !-
periodic.

In [10], a new space of S-asymptotically !-
periodic functions was introduced. It was called the
space of pseudo S-asymptotically !-periodic functions
(see De�nition 2.4). Some applications of this new
type of functions were given in [11] for fractional
equations. In [12], the authors studied the existence of
pseudo S-asymptotically !-periodic solutions to mod-
els of 
exible structures possessing internal material
damping and external force. They used the technique
of regularized families as a substitute for semigroup.
By using this families and Duhamel's principle, they
de�ned mild solutions to such models.

As a starting point, we establish a version of
Theorem 1.1 for this new type of functions.

Theorem 1.2. If x 2 ker(A) and f is a ker(A)-
valued pseudo S-asymptotically !-periodic function,
then every mild solution of Eqs. (1) and (2) is pseudo
S-asymptotically !-periodic.

Now, we consider the semilinear abstract compos-
ite fractional relaxation equation:

u0(t)�AcD�
t u(t) + u(t) = f(t; u(t)); t > 0; (3)

where A is as above and ff(t; y) : t 2 R+; y 2
ker(A)g � ker(A). We have the following result proved
in [4].

Theorem 1.3. Let f : [0;1) � ker(A) ! ker(A)
be continuous function uniformly S-asymptotically !-
periodic on bounded sets of ker(A) (see De�nition 2.3)
that veri�es a Lipschitz condition in the second variable
uniformly with respect to the �rst variable, i.e., there
is L > 0 such that:

jjf(t; u)� f(t; v)jj � Ljju� vjj;
u; v 2 ker(A); t � 0: (4)

If x 2 ker(A) and L < 1, then Problems (2) and
(3) have a unique S-asymptotically !-periodic mild
solution.

Note that the preceding theorem is a consequence
of the contraction principle. The next result is a re�ne-
ment of Theorem 1.3 o�ering an interesting achieve-
ment. Indeed, we can get rid of the smallest condition
imposed on the constant L, which was instrumental in
its proof.

Theorem 1.4. Let f : [0;1) � ker(A) ! ker(A)
be continuous function uniformly S-asymptotically !-
periodic on bounded sets of ker(A) that veri�es the
Lip-schitz condition (1.4). In addition, the following
conditions are ful�lled.

(S!1): There is a continuous nondecreasing function
W : R+ ! R+ such that jjf(t; u)jj � W (jjujj)
for all t � 0 and u 2 ker(A);

(S!2): For each a a � 0 and � > 0, the set ff(s; y) :
0 � s � a, y 2 ker(A), jjyjj � �g is relatively
compact;

(S!3): There is r > 0 such that jjxjj+W (r) � r.
If x 2 ker(A), then Problems (2) and (3) have a unique
S-asymptotically !-periodic mild solution.

Remark 1.1. A result similar to Theorem 1.4 was
obtained in [13] for obtaining the existence and unique-
ness of S-asymptotically !-periodic mild solution to a
class of abstract di�erential equations.
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Next, we are going to focus our presentation in the
question of the existence and uniqueness of pseudo S-
asymptotically !-periodic mild solutions for the semi-
linear composite fractional relaxation equation (1.3)
under Lipschitz type hypothesis on the nonlinearity f .
We now describe three results, which are not known in
the literature.

Theorem 1.5. Let f : [0;1) � ker(A) ! ker(A)
be a continuous function asymptotically bounded on
bounded sets of ker(A) and uniformly pseudo S-
asymptotically !-periodic on bounded sets of ker(A)
that veri�es a Lipschitz condition (4). If x 2 ker(A)
and L < 1, then problems (2) and (3) have a unique
pseudo S-asymptotically !-periodic mild solution.

Theorem 1.6. Let f : [0;1) � ker(A) ! ker(A)
be a continuous function asymptotically bounded on
bounded sets of ker(A) and uniformly pseudo S-
asymptotically !-periodic on bounded sets of ker(A)
that satis�es a Lipschitz condition:

jjf(t; u)� f(t; v)jj � L(t)jju� vjj; t � 0; (5)

where u; v 2 ker(A), L : [0;1) ! R+ is an integrable
function so that it is bounded on [N;1) for some
constant N > 0. If x 2 ker(A), then Problems (2) and
(3) have a unique pseudo S-asymptotically !-periodic
mild solution.

Remark 1.2. A similar result can be established
when f satis�es a local Lipschitz condition. More
precisely, let f : [0;1) � ker(A) ! ker(A) be a con-
tinuous function asymptotically bounded on bounded
sets of ker(A) and uniformly pseudo S-asymptotically
!-periodic on bounded sets of ker(A) so that it satis�es
the following condition:

(Lloc): For each � 2 R+, for all t 2 R+ and all x; y 2
B�(ker(A)) we have jjf(t; x)� f(t; y)jj � L(�)jjx� yjj,
where L : [0;1) ! R+ is a continuous function.
Suppose that x 2 ker(A) and there is ~r > 0 so that
L(jjxjj + ~r) + (1=~r)(L(jjxjj)jjxjj + sups�0 jjf(s; 0)jj) <
1; then, Problems (2) and (3) have a pseudo S-
asymptotically !-periodic mild solution.

Theorem 1.7. Let f : [0;1) � ker(A) ! ker(A)
be a continuous function asymptotically bounded on
bounded sets of ker(A) and uniformly pseudo S-
asymptotically !-periodic on bounded sets of ker(A)
that satis�es the Lipschitz condition (5), where L :
[0;1) ! R+ is locally integrable. Suppose that the
following conditions hold:

(PS!1): supt�0
R t

0 e
�(t�s)L(s)ds < 1.

(PS!2): liml!1 1
l

R l
0

R t
0 e
�(t�s)L(s)ds = 0.

If x 2 ker(A), then Problem (2) and (3) have a
pseudo S-asymptotically !-periodic mild solution.

Remark 1.3 [11]. We observe that:

(i) If the function t! R t
0 e
�(t�s)L(s)ds is integrable,

then (PS!2) holds;
(ii) If L(�) is integrable with jjLjj1 < 1, then (PS!1)

and (PS!2) hold;
(iii) If L(�) is locally integrable and liml!1 1

l 2
tl0L(s)ds = 0, then (PS!2) holds.

We next denote the space Cexp = fu 2
C([0;1); ker(A)) : limt!1 u(t)

et = 0g, endowed with
the norm jjjujjj = supt�0 jju(t)jje�t by Cexp. Now,
our goal is to investigate Eq. (3) with more general
behaviors of the nonlinearities.

Theorem 1.8. Let f : [0;1) � ker(A) ! ker(A)
be a function asymptotically uniformly continuous on
bounded sets of ker(A), asymptotically bounded on
bounded sets of ker(A), and uniformly pseudo S-
asymptotically !-periodic on bounded sets of ker(A)
that satisfy (S!1) and (S!2). Assume further that the
following properties hold:

(PS!3): For each � > 0, limt!1 1
et
R t

0 e
�(t�s)W (�es)

ds = 0.

(PS!4): For each " > 0 there is � > 0 such that for
every u; v 2 Cexp, jjju� vjjj < � implies:

sup
t�0

tZ
0

e�(t�s)jjf(s; u(s))� f(s; v(s))jjds � ":

Set �(�) = supt�0
1
et
R t

0 e
�(t�s)W (�es)ds. If lim

inf�!1 �(�)
� < 1 and x 2 ker(A), then Problems (2)

and (3) have a pseudo S-asymptotically !-periodic mild
solution.

In contrast with Theorem 1.4, we have the follow-
ing result.

Theorem 1.9. Let f : [0;1) � ker(A) ! ker(A)
be a continuous function asymptotically bounded on
bounded sets of ker(A) and uniformly pseudo S-
asymptotically !-periodic on bounded sets of ker(A)
that satis�es the Lipschitz condition (4). Assume
that the conditions (S!1), (S!2), and (S!3) of The-
orem 1.4 are ful�lled. If x 2 ker(A), then Problems
(2) and (3) have a unique pseudo S-asymptotically !-
periodic mild solution.

Now, we study the existence of mild solutions to
Problems (2) and (3) in the space C0([0;1); ker(A)).
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In particular, it is scienti�cally relevant to know when
the set of mild solutions to Problems (2) and (3) enjoy
key topological properties. This type of information
has not been analyzed in [4]. The last result in this
section is the following compactness theorem.

Theorem 1.10. Let x be in ker(A) and assume that
f : [0;1)� ker(A)! ker(A) is a continuous function.
In addition, suppose that the following conditions hold:

(C01): For each R > 0, there is a positive function

R 2 C0(0;1) so that supfjjf(t; x)jj : jjxjj � Rg �

R(t), t � 0;
(C02): For each s � 0 and R > 0, the set ff(s; y) :
y 2 ker(A); jjyjj � Rg is relatively compact;

(C03): lim infR!1 1
R supt�0

R t
0 e
�(t�s)
R(s)ds < 1.

Then, there is a mild solution u 2 C0([0;1);
ker(A)) to Problems (2) and (3). Furthermore, if the
following condition is ful�lled, then the set S formed
by the mild solutions to Problems (2) and (3) are
compact in C0([0;1); ker(A)).

(C04): lim supR!1 1
R supt�0

R t
0 e
�(t�s)
R(s)ds < 1.

Before ending the section, we make a brief
comment on the framework of the proof of Theo-
rem 1.10. This uses two basic ingredients: The
Ascoli-Arzela characterization of compact subsets in
C0([0;1); ker(A)) and the Schauder's �xed point theo-
rem. (One may wonder about the connectedness of the
set of mild solutions. Unfortunately, we do not know
the answer.)

We will now present a summary of this work,
which is arranged in three sections and each of these is
divided into numbered subsections. Section 2 provides
the de�nitions and preliminary results to be used in
the theorems stated and proved in the subsequent
sections. In particular, we review some of the standard
de�nitions like (a; k)-regularized resolvent family, S-
asymptotically !-periodic function, and pseudo S-
asymptotically !-periodic function. In Section 3, we
will prove all our results. We have tried to make the
presentation almost self-contained, seeking to attract
the attention of nonspecialist researchers in the �eld.

2. Technical tools

In this section, our aim is to introduce notations, de�ni-
tions, and preliminary facts, which are used throughout
this work. Let X be a Banach space; we denote the
space of bounded linear operators from X into X,
endowed with the norm of operators, by B(X). In this
work, bR(�) denotes the Laplace transformation of the
function R(t). Let C0([0;1);X) be the subspace of all
continuous functions x(t) such that limt!1 jjx(t)jj =
0:: We denote the space of locally integrable functions

by L1
loc. Let A be a closed linear operator de�ned in

D(A) � X. We set B�(X) for the closed ball with
center at 0 and radius � in the space X.

2.1. Regularized families
In this subsection, we review the notion of (a; k)-
regularized families. The de�nition can be stated as
follows.

De�nition 2.1 [5]. Let X be a Banach space, k 2
C(R+), k 6= 0, and let a be in L1

loc(R+) with a 6=
0. Assume that A is a closed linear operator with
domain D(A). A strongly continuous family fR(t)gt�0
of bounded linear operators from X into X is called
an (a; k)-regularized resolvent family on X (or simply
(a; k)-regularized family) having A as a generator if the
following holds:

(RF1): R(0) = k(0)I;
(RF2): R(t)x 2 D(A) and R(t)Ax = AR(t)x for all
x 2 D(A) and t � 0;

(RF3): R(t)x = k(t)x+
R t

0 a(t� s)AR(s)xds; t � 0,
x 2 D(A).

Remark 2.1 [4]. Let A be closed linear operator
and let fR(t)gt�0 be an exponentially bounded and
strongly continuous operator family in B(X) such that
the Laplace transformation bR(�) exists for � > !. R(t)
is an (a; k)-regularized family with generator A if and
only if for every � > !, (I � â(�)A)�1 exists in B(X)
and:

k̂(�)
â(�)

�
1

â(�)
I �A

��1

x=
1Z

0

e��sR(s)xds; x 2 X:

2.2. S-asymptotically !-periodic functions
Let Y be an arbitrary Banach space. In this work,
Cb([0;1);Y ) denotes the space consisting of the con-
tinuous and bounded functions from [0;1) into Y ,
endowed with the norm of the uniform convergence.

De�nition 2.2 [9]. A function f 2 Cb([0;1);Y ) is
called S-asymptotically !-periodic if limt!1(f(t+!)�
f(t)) = 0.

The notation SAP!(Y ) stands for the space
formed by the Y -valued S-asymptotically !-periodic
functions endowed with the norm of the uniform
convergence. It is clear that SAP!(Y ) is a Banach
space.

De�nition 2.3 [9]. A continuous function f : [0;1)
�Y ! Y is said to be uniformly S-asymptotically !-
periodic on bounded sets if f(�; x) is bounded for each
x 2 Y , and for every " > 0 and all bounded set K � Y ,
there is �(K; ") � 0 such that jjf(t; y)�f(t+!; y)jj � "
for all t � �(K; ") and all y 2 K.
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Remark 2.2. We observe that AP!(Y ) ,! SAP!
(Y ). We use the notation AP!(Y ) to represent the
subspace of Cb([0;1);Y ) formed by all functions f ,
which are asymptotically !-periodic, that is f = g+h,
where g is an !-periodic function and h 2 C0([0;1);Y )
(see [11]).

2.3. Pseudo S-asymptotically !-periodic
functions

De�nition 2.4 [10]. A function f 2 Cb([0;1);Y )
is called pseudo S-asymptotically periodic if there is
! > 0 such that:

lim
h!1

1
h

hZ
0

jjf(s+ !)� f(s)jjds = 0: (6)

In this case, we say that f is S-asymptotically !-
periodic.

We use the notation PSAP!(Y ) to represent the
subspace of Cb([0;1);Y ) formed by all pseudo S-
asymptotically !-periodic functions. We note that
PSAP!(Y ) endowed with the norm of uniform conver-
gence is a Banach space. We observe that SAP!(Y ) ,!
PSAP!(Y ) and PSAP!(Y ) 6= SAP!(Y ) [12].

De�nition 2.5 [11]. We say that a continuous func-
tion f : [0;1) � Y ! Y is uniformly pseudo S-
asymptotically !-periodic on bounded sets of Y if for
every bounded subset K � Y ,

lim
t!1

1
t

tZ
0

sup
x2K
jjf(s+ !; x)� f(s; x)jjds = 0: (7)

De�nition 2.6 [11]. A continuous function f :
[0;1)� Y ! Y , is said to be asymptotically bounded
on bounded sets of Y if for every bounded subset
K � Y , there is TK > 0 so that the set ff(t; x) :
t � TK ; x 2 Kg is bounded.

De�nition 2.7 [9]. A function f : [0;1) � Y ! Y
is said to be asymptotically uniformly continuous on
bounded sets of Y if for every " > 0 and all bounded
set K � Y ; there are constants T = T�;K � 0 and
� = ��;K > 0 such that kf(t; x) � f(t; y)k � " for all
t � T and x; y 2 K with kx� yk � �.
3. Proofs of the results

3.1. Proof of Theorem 1.2
Let u(t) be a mild solution to Problems (1) and (2).
Taking into account that x 2 ker(A) and that f
is a ker(A)-valued function, we have u(t) = e�tx +R t

0 e
�(t�s)f(s)ds (see [4]). It is clear that the function

t ! e�tx is pseudo S-asymptotically !-periodic. We
can verify that the function v : t ! R t

0 e
�(t�s)f(s)ds

is pseudo S-asymptotically !-periodic. In fact, we

observe that jjvjj1 � jjf jj1 and we have the following
identity:

v(� + !)� v(�) =
!Z

0

e�(�+!�s)f(s)ds

+
�Z

0

e�(��s)(f(s+ !)� f(s))ds;

where:

1
t

tZ
0

jjv(� + !)� v(�)jjd�

� 1
t

tZ
0

�+!Z
�

e�sjjf(� + ! � s)jjdsd�

+
1
t

tZ
0

0@ t�sZ
0

e��d�

1A jjf(s+ !)� f(s)jjds

� jjf jj1
t

+
1
t

tZ
0

jjf(s+ !)� f(s)jjds;

which shows that v is pseudo S-asymptotically !-
periodic.

3.2. Proof of Theorem 1.4
We consider the Fr�echet space C([0;1); ker(A)) en-
dowed with the topology of uniform convergence on
compact sets �C . We de�ne the map � on the space
C([0;1); ker(A)) by the expression:

�(u)(t) = e�tx+
tZ

0

e�(t�s)f(s; u(s))ds: (8)

- Step 1. The map � is continuous from C([0;
1); ker(A)) into itself. If (un)n is a sequence in
C([0;1); ker(A)) that converges to u, then (�un)n
converges to �u. Indeed, for each a > 0 we get:

sup
t2[0;a]

jj�(un)(t)��(u)(t)jj

� L sup
t2[0;a]

jjun(t)� u(t)jj:
- Step 2. Put Br = fu 2 C([0;1); ker(A)) : jjujj1 �
rg, where r is given by (S!3). It is clear that
Br is a closed convex subset of C([0;1); ker(A)).
From conditions (S!1) and (S!3), we deduce that
Br is invariant under �. Note that �(Br) is a
relatively compact set in C([0;1); ker(A)). In fact,
we �rst note that �(Br)(t) � e�tx+ tco(Kr), where
Kr = fe�(t�s)f(s; x) : 0 � s � t; jjxjj � rg.
Taking (S!2) into account, we infer that �(Br)(t)
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is relatively compact. Let u be in Br and h � 0. We
have the following decomposition:

�(u)(t+ h)��(u)(t) = e�(t+h)x� e�tx

+
t+hZ
t

e�(t+h�s)f(s; u(s))ds

+
tZ

0

�
e�(t+h�s) � e�(t�s)� f(s; u(s))ds:

It follows that the set �(Br) is equicontinuous on
[0; a] for all a � 0. We get as consequence of the
Ascoli's theorem that �(Br) is a relatively compact
set in C([0;1); ker(A)). Applying [13, Lemma 2.4]
and [14, Lemma 3.1], we can a�rm that:

�(SAP!(ker(A))
�C ) � SAP!(ker(A))

�C :

We de�ne the �-invariant set C := Br \
SAP!(ker(A))

�C . From the Schauder-Tychono�
theorem, we infer that � has a �xed point ~u 2 C.

- Step 3. v(t) = ~u(t + !). A simple analysis shows
that:

�v � v 2 C0([0;1); ker(A)):

Indeed, since f is a continuous function uniformly S-
asymptotically !-periodic on bounded sets, for each
" > 0, there is T" > 0 such that jjf(t+!; ~u(t+!))�
f(t; ~u(t + !))jj � ", for all t � T". Using (S!1) we
get:

jj�v(t)� v(t)jj � e�t((1 + e�!)jjxjj+W (r)) + ":

Therefore, �v(t)� v(t)! 0 and t!1.

- Step 4. Set '(t) = k�v(t) � v(t)k, t � 0. We next
show that there is a positive continuous function � :
[0;1)! [0;1) that vanishes at in�nity such that:

�(t) = '(t) + L
tZ

0

e�(t�s)�(s)ds; t � 0: (9)

In fact, let r(t) be the solution to equation:

r(t) = �Le�t + L
tZ

0

e�(t�s)r(s)ds: (10)

By [15, Theorem IV.6.2], Eq. (10) has a solution
r(�) 2 L1(R+). Through de�ning �(t) = '(t) �R t

0 r(t� s)'(s)ds, we have:

L
tZ

0

e�(t�s)�(s)ds = L
tZ

0

e�(t�s)'(s)ds

� L
tZ

0

0@ tZ
�

e�(t�s)r(s� �)ds

1A'(�)d�

=�
tZ

0

r(t� �)'(�)d� = �(t)� '(t):

Therefore, the function �(�) is solution to Eq. (9).
On the other hand, since r(�) 2 L1(R+) and ' 2
C0([0;1)), we infer that the function t ! R t

0 r(t �
s)'(s)ds belongs to C0([0;1)), where � vanishes at
in�nity.

- Step 5. We consider the set C] = v + fu 2
C0([0;1); ker(A)) : ku(t)k � �(t), t 2 R+g, where
v(�) and �(�) are the functions given in Steps 3
and 4, respectively. Note that C] is a �C-closed
convex subset of Cb([0;1); ker(A)). Let u be in
C0([0;1); ker(A)). We observe that �(v + u) �
�(v) 2 C0([0;1); ker(A)). In fact, we get:

jj�(v + u)(t)��(v)(t)jj

� L
tZ

0

e�(t�s)jju(s)jjds � L
tZ

0

e�(t�s)�(s)ds

= L(�(t)� '(t)):

Next, taking into account that � and ' vanish at
in�nity, we deduce that �(v+ u)��(v) vanishes at
in�nity. Now, using Step 3, we may conclude that
�(v+u)�v vanishes at in�nity. On the other hand,
we get:

jj�(v + u)(t)� v(t)jj � L
tZ

0

e�(t�s)�(s)ds

+ '(t) = �(t);

which implies that �(v + u) 2 C]; hence, we infer
that C] is invariant under the operator �.

- Step 6. Finally, proceeding as in Step 2, we get
that � has a �xed point ~u0 2 C]. Therefore, there
is u0 2 C0([0;1); ker(A)) such that ~u0 = v + u0.
Using the fact that � has a unique �xed point in
Cb([0;1); ker(A)), we conclude that ~u0 = ~u which
implies that ~u � v vanishes at in�nity. Therefore, ~u
is a function S-asymptotically !-periodic. �

3.3. Proof of Theorem 1.5
We de�ne the operator � on the space PSAP!(ker(A))
by the expression:
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�u(t)=e�tx+
tZ

0

e�(t�s)f(s; u(s))ds; t � 0: (11)

We initially show that �u is in PSAP!(ker(A)) for
u 2 PSAP!(ker(A)). It is easy to see that f(�; u(�))
is a bounded function. Hence, we obtain the fol-
lowing estimate: jj�ujj1 � jjxjj + jjf(�; u(�))jj1.
From [12, Lemma 2.1], we get that the function
s ! f(s; u(s)) is pseudo S-asymptotically !-periodic;
then, using the proof of Theorem 1.2, we infer that
s! R t

0 e
�(t�s)f(s; u(s))ds belongs to PSAP!(ker(A)).

Furthermore, � is an L-contraction on the space
PSAP!(ker(A)); from this, we conclude that � has
a unique �xed point u 2 PSAP!(ker(A)). �
3.4. Proof of Theorem 1.6
We use the same notations as those in the proof of
Theorem 1.5. Let u be in PSAP!(ker(A)); taking
into account that fL(t) : t � Ng is bounded, it
follows from [12, Lemma 2.2] that the function s !
f(s; u(s)) is pseudo S-asymptotically !-periodic; then,
�u 2 PSAP!(ker(A)). Hence, � is well de�ned. On
the other hand, for u; v 2 PSAP!(ker(A)), we get
jj�nu � �nvjj1 � jjLjjn1

n! jju � vjj1. Since jjLjj
n
1

n! < 1,
for a su�ciently large value of n, by the �xed point
iteration, method � has a unique �xed point u 2
PSAP!(ker(A)). �
3.5. Proof of Theorem 1.7
We de�ne the operator � on the space PSAP!(ker(A))
by Expression (11). We prove that � is well de�ned.
Let u be in PSAP!(ker(A)); we take " > 0; T =
T (Im(u)) 2 R+ is big enough so that ff(t; u(t)) :
t � Tg is bounded and 1

t

R t
0 supx2Im(u) jjf(s + !; x) �

f(s; x)jjds � "
2 for t > T . We observe that f(�; u(�))

is a bounded function in R+; hence, �u is bounded in
[0;1). It only remains to show that the function v(t) =R t

0 e
�(t�s)f(s; u(s))ds is pseudo S-asymptotically !-

periodic. For l > T , we get:

1
l

lZ
0

(�(t+ !)� �(t))dt

=
1
l

TZ
0

tZ
0

e�(t�s)(f(s+!; u(s+!))�f(s; u(s)))dsdt

+
1
l

lZ
T

TZ
0

e�(t�s)(f(s+!; u(s+!))�f(s; u(s+!)))dsdt

+
1
l

lZ
T

tZ
T

e�(t�s)(f(s+ !; u(s+ !))

�f(s; u(s+!)))dsdt+
1
l

lZ
T

tZ
0

e�(t�s)(f(s; u(s+!))

�f(s; u(s)))dsdt+
1
l

lZ
0

t+!Z
t

e�sf(t+!�s; u(t+!

�s))dsdt :=
5X
i=1

Ii(l):

We have the following estimates for the terms Ii, 1 �
i � 5.

jjI1(l)jj� 2
l
(T+1) supfjjf(t; x)jj : t � 0; x2Im(u)g;

kI2(l)k � 1
l

lZ
T

te�(t�T )

 
1
t

tZ
0

sup
x2Im(u)

kf(s+ !; x)

� f(s; x)kds
!
dt � �

2
;

jjI3(l)jj� 1
l

lZ
0

sup
x2Im(u)

kf(s+!; x)�f(s; x)kds� �
2
;

kI4(l)k� 1
l

lZ
T

tZ
0

e�(t�s)L(s)jju(s+!)�u(s)jjdsdt

� 2
l
jjujj

lZ
T

tZ
0

e�(t�s)L(s)dsdt;

jjI5(l)jj � !
l

supfjjf(t; x)jj : t � 0; x 2 Im(u)g:
From the above estimates, we get that v is pseudo

S-asymptotically !-periodic. Finally, we observe that
� is a supt�0

R t
0 e
�(t�s)L(s)ds-contraction on the space

PSAP!(ker(A)). This completes the proof of Theo-
rem 1.7. �
3.6. Proof of Theorem 1.8
Let C0

exp be the subspace of Cexp consisting of the
functions u such that u(0) = 0. We de�ne the operator
�0 on C0

exp by:

�0u(t) =
Z t

0
e�(t�s)f(s; e�sx+ u(s))ds: (12)

It follows from condition (PS!3) that the operator
�0 is well de�ned. We observe that the map �0 is
continuous from Cexp into itself. This assertion is a
direct consequence of the condition (PS!4). We claim
that �0 is a completely continuous map. We take r > 0
and de�ne the sets:
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V = �0(Br(C0
exp));

and:

V (t) = f�0u(t) : u 2 Br(C0
exp)g:

Taking into account the mean value theorem for the
Bochner's integral and condition (S!2), we infer that
V (t) is relatively compact. On the other hand, follow-
ing a similar argument to the proof of Theorem 1.4,
one can easily conclude that V is equicontinuous on
[0; a] for all a � 0. For u 2 C0

exp, with jjjujjj � r,
we observe that jj�

0u(t)jj
et � 1

et
R t

0 e
�(t�s)W (es(jjxjj +

r))ds. From (PS!3), we infer that jj�0u(t)jj
et ! 0

as t ! 1 which is independent of u 2 Br(C0
exp).

Using [16, Lemma 2.8], we get that V is a relatively
compact set. This proves that �0 is completely
continuous. We next observe that the operator �0

maps B�(C0
exp) into itself for some � > 0. In fact,

if we assume that the assertion is false, then for all
� > 0, we can choose u� 2 B�(C0

exp) such that
jjj�0u�jjj > �; this fact implies that � < �(jjxjj + �);
hence, lim inf�!1 1

��(�) � 1 is absurd. The closed
vector subspace of all u 2 PSAP!(ker(A)) can be
denoted with u(0) = 0 by PSAP0

!. Taking into
account [12, Lemma 2.1] and the proof of Theorem
1.2, we obtain that the space PSAP0

! is invariant
under the map �0; hence, we infer that the closure
of B�(C0

exp) \ PSAP0
!, B�(C0

exp) \ PSAP0
! is invariant

under the map �0. Applying the Schauder �xed point
theorem, we deduce that the map �0 has a �xed
point u 2 B�(C0

exp) \ PSAP0
!. Therefore, there is a

sequence (un)n in B�(C0
exp) \ PSAP0

! that converges
to u in the norm of Cexp. From condition (PS!4),
we get �0un ! u as n ! 1 uniformly in [0;1):
Hence, u 2 PSAP0

!, which completes the proof of
Theorem 1.8.�
3.7. Proof of Theorem 1.9
In what follows, we consider the Frechet space
C([0;1);Ker(A)) endowed with the topology of uni-
form convergence on compact sets �C . We de�ne a
continuous map � on the space C([0;1);Ker(A)) by
Eq. (8). From Step 2 of the proof of Theorem 1.4,
we have Br, where r is given by (S!3), that is
invariant under �, and �(Br) is a relatively compact
set in C([0;1);Ker(A)). Let u be in PSAP!(ker(A))
applying [11, Lemma 2.3] and consider the fact that
the function s ! R t

0 e
�(t�s)f(s; u(s))ds is pseudo

S-asymptotically !-periodic (see the proof of Theo-
rem 1.2), we obtain �u 2 PSAP!(ker(A)), where
PSAP!(ker(A)) is invariant under �. Next, we de�ne
H = Br \ PSAP!(ker(A))

�C from the Schauder-
Tychono� theorem; we get that � has a �xed point
~u in H. Setting v(t) = ~u(t + !), t � 0. We claim

that �v � v is an ergodic function. In fact, this is a
consequence of the following estimate:

1
t

tZ
0

k�v(s)� v(s)kds � (2kxk+W (r))
1
t

+
1
t

tZ
0

sup
kxk�r

kf(� + !; x)� f(�; x)kd�:

Set '(t) = jj�v(t) � v(t)jj. We observe that there is
a unique positive ergodic function ~� : R+ ! R+ so
that ~�(t) = '(t) + L

R t
0 e
�(t�s)~�(s)ds. Indeed, by [15,

Theorem IV.6.2], the resolvent r(t) of Le�t exists as
an element of L1(R+) and is unique in this class, where
~�(t) is given by ~�(t) = '(t)�R t0 r(t��)'(�)d� . Since '
is an ergodic function, we obtain that the function t!R t

0 r(t � �)'(�)d� is an ergodic function. We consider
the ergodic. Therefore, ~� is an ergodic function. We
consider the set H] = v + fu 2 P0(R+; ker(A)) :
jju(t)jj � ~�(t); t � 0g. It is easy to check whether
H] is a �C-closed convex subset of Cb([0;1);Ker(A)).
We next show that H] is invariant under �. Let u be
in P0(R+; ker(A)), we observe that �(v+u)��v is an
ergodic function. In fact, we get:

1
t

tZ
0

k�(v + u)(s)� (�v)(s)kds � L
t

tZ
0

jju(s)jjds:

On the other hand, if jju(t)jj � ~�(t) for all t � 0, then:

jj�(v + u)(t)� v(t)jj � jj�(v + u)(t)� (�v)(t)jj
+ jj(�v)(t)� v(t)jj � ~�(t)� '(t) + '(t) = ~�(t);

which implies that �(v+u) 2 H]; hence, we prove that
H] is invariant under the operator �. Therefore, we can
a�rm that � has a �xed point ~u0 2 H]. Using the fact
that � has a unique �xed point in Cb([0;1);Ker(A)),
we conclude that ~u = ~u0, which implies ~u � v is an
ergodic function. Hence, we infer that ~u is pseudo S-
asymptotically !-periodic.

3.8. Proof of Theorem 1.10
We de�ne the operator � on the space C0([0;
1); ker(A)) by Eq. (8). Let u be in C0([0;1); ker(A)),
since kf(t; u(t))kX � 
R(t)! 0, t!1 for R > 0 such
that ku(t)kX � R. Then,

R t
0 e
�(t�s)f(s; u(s))ds ! 0,

t ! 1. Indeed, we �x a > 0; our assertion follows
from the next inequality:







tZ
0

e�(t�s)f(s; u(s))ds








� e�t

aZ
0

es
R(s)ds+ sup
��a


R(�): (13)
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Hence, we conclude that �u 2 C0([0;1); ker(A)).
Now, let (un)n be a sequence in C0([0;1); ker(A)) that
converges to u 2 C0([0;1); ker(A)). Then, R > 0 such
that kun(t)k; ku(t)k � R for all t � 0 and all n 2 N.
We �x a > 0, then:







tZ
a

e�(t�s)[f(s; un(s))�f(s; u(s))]ds







�2 sup
��a


R(�):
(14)

Furthermore, there is a compact set K � ker(A) such
that un(t); u(t) 2 K for all n 2 N and all 0 � t �
a. The function f : [0; a] � K ! ker(A) is uniformly
continuous. Hence, kf(s; un(s))�f(s; u(s))k ! 0, n!
1, uniformly for 0 � s � a. This implies that:

tZ
0

e�(t�s)kf(s; un(s))� f(s; u(s))kds! 0;

n!1; (15)

uniformly for 0 � t � a. Combining Eqs. (14) and (15),
we deduce that � is continuous.

Next, we show that there is � > 0, such that
B�(C0([0;1); ker(A))) is invariant under �. Indeed,
assuming the opposite, for each R > 0, there is a
function uR such that kuRk � R and k�(uR)k >
R. Hence, 1 � kxk

R + 1
R supt�0

R t
0 e
�(t�s)
R(s)ds,

which contradicts the condition (C03). To prove
that � is a completely continuous map, we apply
the Ascoli-Arzel�a characterization of compact sub-
sets in C0([0;1); ker(A)). We consider R > 0
using [17, Corollary 2.10] and (C02); we can a�rm
that �(BR(C0([0;1); ker(A)))) is relatively compact
in C([0; a]; ker(A)) for all a > 0. Moreover, using
(C01) and Eq. (13), we obtain jj�(u)(t)jj � e�tjjxjj +
e�t

R a
0 e

s
R(s)ds + sup��a 
R(�), where �(u)(t) ! 0
as t ! 1 uniformly for u 2 BR(C0([0;1); ker(A))).
Combining these assertions, we deduce that � is
completely continuous. Applying the Schauder's �xed
point theorem, we infer that � has a �xed point in
B�(C0([0;1); ker(A))). Moreover, the continuity of �
implies that the set S consisting of mild solutions of
Eqs. (2) and (3) is closed. On the other hand, if condi-
tion (C04) holds, then S is bounded. In fact, if we as-
sume that S is not bounded, then there is a sequence of
functions uk 2 S such that Rk = jjukjj � k. Hence, one
gets jjuk(t)jj � jjxjj + supt�0

R t
0 e
�(t�s)
Rk(s)ds; this

yields 1 � lim supk!1 1
Rk supt�0

R t
0 e
�(t�s)
Rk(s)ds,

which is contrary to (C04). Finally, taking into
account that � is completely continuous, we deduce
that S is compact.

4. Conclusions

In this work, we studied the existence and uniqueness of
S-asymptotically pseudo S-asymptotically !-periodic

mild solutions for a class of fractional relaxation
equations. We also considered compactness properties
for the set of mild solutions. The main ingredients
to achieve our results were the regularized families
and �xed point techniques. Our results are new
and contribute to the development of the asymptotic
periodicity of fractional equations.
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