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Abstract. The paper aims to develop a harmonic identi�cation scheme for a hydraulic
shaking table's sinusoidal acceleration response. Nonlinearities are inherent in a hydraulic
shaking table. Some of them are dead zone of servo valve, backlash and friction between
joints, and friction in actuator. Nonlinearities cause harmonic distortion of the system
shaking response when it corresponds to a sinusoidal excitation. This lowers the system
control performance. An e�cient, time-domain acceleration harmonic identi�cation is
developed by using Hop�eld neural network. Due to the introduction of energy function
used to optimize the computation for the identi�cation harmonic method, the fully
connected, single-layer feedback neural network does not require training in advance and
is able to identify harmonic amplitudes and phase angles. Each harmonic, as well as the
fundamental response, can be directly obtained. Simulations and experiments show very
promising results that the proposed scheme is really applicable to identify harmonics with
high precision and good convergence. Comparisons between the presented method and
another method are carried out to further demonstrate its e�ciency.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

A shaking table, sometimes called shaking exciter
or shaking generator, can be driven by pneumatics,
electricity, hydraulics, piezoelectricity, etc. As a type
of shaking tables, electro-hydraulic shaking tables are
important test equipment for engineering research. It
takes advantage of hydraulic control system and has
been widely used in aerospace, automotive, construc-
tion, and many other important industrial �elds, where
generating strong force is needed [1]. Parallel mech-
anism is widely applied to hydraulic shaking tables.
Take the world's largest shaking table, E-Defense in
Japan, as an example. It has 5 and 14 hydraulic
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actuators installed in parallel in each horizontal and
vertical direction, respectively [2].

Hydraulic shaking tables are widely utilized to
measure the response of scaled model structures sub-
jected to base excitation to test their performances,
such as reliability, fatigue, and lifetime. The specimen
is �xed on the shaking table's platform, and desired
signals are excited to the shaking table as the reference,
usually in the form of acceleration. The shaking table
is desired to reproduce the excitation signals with
speci�ed precision to simulate the mechanical condition
encountered by the specimen. This is an e�ective way
to measure the specimen's dynamic behavior by using
feedback data.

A hydraulic shaking table is generally comprised
of electrical and mechanical components, which have
nonlinearities [3], such as dead zone in servo valve,
backlash and friction between joints, friction in hy-
draulic cylinder, and saturation in electrical compo-
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nents. Sinusoidal vibration tests are usually employed
to simulate periodic vibration. However, the shaking
table's sinusoidal response is always inevitably dis-
torted by harmonics, due to the system nonlinearities.
THD (Total Harmonic Distortion) is usually applied as
an index to determine the harmonic distortion. For a
sinusoidal response with n-order harmonics, the THD
can be expressed by:

THD =
p
C2

2 + C2
3 + C2

4 + � � �+ C2
n

C1
; (1)

where C1 is amplitude of the fundamental response and
Ci is amplitude of the ith harmonic, i = 2; 3; :::; n. It is
discernible from Eq. (1) that the harmonic distortion
can be considered as a relative measure of the har-
monics' amplitudes as compared to the fundamental
amplitude.

The harmonic distortion lowers the control per-
formance in a hydraulic shaking table. It is an e�cient
way to reduce the THD by canceling harmonics, but
requires the knowledge of the harmonic information.
Thus, the prior knowledge about harmonics is essential
to attain. The mostly used way to analyze harmonics is
the FFT method, which transforms time-domain sam-
ples into the frequency-domain ones, but the phenom-
ena such as aliasing, leakage, and picket fence e�ects,
may result in inaccurate harmonic information. The
estimated results are also averaged when using FFT.
To overcome the shortages of employing FFT method
for analyzing harmonics, researchers have developed
new approaches and schemes to apply as an alternative
method for harmonic identi�cation to replace Fourier
Transform based traditional techniques, especially in
power systems.

Neural networks are utilized for harmonic analy-
sis. Lin [4] used Back Propagation (BP) neural network
algorithm to analyze dynamic harmonic distortion for
a power system in noisy environments. Wang et
al. [5] proposed a method by using BP network for
accurate frequencies, amplitudes, and phases estima-
tion for periodic signals of a power system, where the
sampling frequency could not be locked on the actual
fundamental frequency. Hamad et al. [6] introduced
two multilayer feedforward neural networks to mitigate
speci�c harmonic orders and, consequently, achieved
low harmonic factor and reduced current THD for an
active power �lter. Abdeslam et al. [7] proposed a
method based on Adaline networks for harmonic iden-
ti�cation and compensation. Almaita and Asumadu [8]
employed a radial basis function neural network to
detect the fundamental, �fth, and seventh harmonic
components in converter waveforms. Arabaci [9] stud-
ied a sensorless speed estimation method based on
an arti�cial neural network for squirrel cage induction
motors. Nascimento et al. [10] used arti�cial neural

networks to estimate harmonics in load currents of
single-phase systems.

Optimization algorithm is for �nding an optimum
for an objective function, which is de�ned over a given
searching space; thus, many optimization algorithms
have been applied for harmonic identi�cation. Ulinuha
et al. [11] proposed a hybrid genetic-fuzzy algorithm
for optimal harmonic distortion control in distorted
distribution systems with non-linear loads. Zamanan et
al. [12] investigated a method using real coded genetic
algorithm for identifying and tracking of harmonics in
a power system. Xue et al. [13] developed a hyper
spectral image classi�cation approach by integrating
the harmonic analysis, Particle Swarm Optimization
(PSO), and support vector machine. Yin et al. [14]
used PSO to estimate amplitude and phase of a
harmonic. Yang and Wang [15] developed an analysis
method based on improved Prony algorithm and PSO
to improve the analysis precision for harmonic, inter-
harmonic, and decaying DC component. Vasumathi
and Moorthi [16] presented a hybrid adaptive neural
network PSO algorithm for harmonic identi�cation to
improve its convergence rate and processing speed, and
reduce the estimation error.

Adaptive signal processing technology has also
been applied to identify harmonics. Ray and Sub-
udhi [17] designed a nonlinear state estimation method
by using ensemble Kalman �ltering for estimating
harmonics, inter-harmonics, and sub-harmonics. Singh
et al. [18] used Kalman �lter based on local ensemble
transform to estimate the harmonic parameters of a
power signal with harmonics, sub-harmonics, and inter-
harmonics with white Gaussian noise. Jatoth and
Reddy [19] studied a hybrid GA-adaptive PSO aided
unscented Kalman �lter for harmonic estimation of
power system voltage/current waveforms. Ren and
Kezunovic [20] studied a recursive wavelet transform
based method to estimate frequency and harmonic
parameters in a power system. Jain et al. [21]
discussed a harmonics estimation method based on
adaptive wavelet neural network for single-phase sys-
tems. Yang and Cheng [22] made use of wavelet
transform to obtain a harmonic model, which was used
to estimate the harmonic amplitudes and phase angles
by solving the wavelet's coe�cients and the scaling
functions, and an on-line harmonic tracking method
was also developed by combining Kalman �ltering
technique.

The above methods can get harmonic informa-
tion, including amplitude and phase, but cannot di-
rectly obtain harmonic itself, which has to be synthe-
sized by the identi�ed harmonic's parameters, and they
are generally focused on power systems. In this paper,
we try to utilize Hop�eld neural network to develop
a harmonic identi�cation scheme with good real-time
performance to estimate acceleration harmonics in the
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shaking response for a hydraulic shaking table. This
method can not only estimate harmonic's amplitude
and phase, but also directly obtain the harmonic itself.

2. The hydraulic shaking table

The block diagram of the shaking table system is
shown in Figure 1. It is a uniaxial shaking table with
supply pressure of 8 MPa. A hydraulic cylinder is
controlled by a two-stage servo valve with a natural
frequency of 100 Hz. The stroke of the cylinder
is 50 mm, and the diameters of its rod and piston
are �35 mm and �40 mm, respectively. The sys-
tem is under acceleration control with a frequency
bandwidth of 30 Hz to reproduce the desired shaking
response.

The digital control system is based on an Advan-
tech industrial computer, which includes I/O boards
and is used as a real-time controller. The signal
conditioner contains AD and DA conditioners for ana-
log transducer and servo valve control, respectively.
The accelerometer is stuck on the shaking table's
platform to obtain the acceleration response, while
the displacement feedback is measured by a linear
variable di�erential transformer, which is connected to
the hydraulic cylinder.

The system controller is mainly composed of an
input �lter and a three-variable controller (TVC, shown
in Figure 2) [23]. The input �lter is used to transform
the acceleration input into displacement command.
TVC is commonly used as a basic controller to generate
motion for hydraulic shaking tables [24]. The three
variables of TVC refer to displacement, velocity, and
acceleration of the electro-hydraulic shaking table. The
feedback velocity is synthesized from the feedback
displacement and acceleration. The TVC scheme can

Figure 1. The hydraulic shaking table system.

Figure 2. The block diagram of TVC.

Table 1. THD analysis results.

Item Amplitude (m/s2)
Fundamental response 2.630

2nd harmonic 0.381
3rd harmonic 0.802
4th harmonic 0.320
5th harmonic 0.111
6th harmonic 0.019

be divided into three parts: the feed-forward part, the
feedback part, and the P controller. Kdr, Kvr, and
Kar are the feed-forward gains; and Kdf , Kvf , and
Kaf are the gains of the feedback part. The gains
of the P controller are Kd, Kv, and Ka. Kc is the
total gain. All of the gains are adjustable. TVC is an
important controller for a hydraulic shaking table, since
it can adjust the system robustness and disturbance
suppression performance, and improve the reference
tracking performance. The whole control program is
achieved by using xPC Target, which is a real-time
workshop in Matlab [25].

The system shaking response is shown in Figure 3
for the case when the acceleration input is 3 sin(2��8t)
m/s2. It can be seen that the shaking response is seri-
ously distorted by higher harmonics, whose frequencies
are integer multiples of the excitation frequency. The
THD analysis (up to the sixth harmonic) is shown in
Table 1. It can be clearly seen that the third harmonic
is in dominance among higher harmonics. The value of
THD is 36.21% calculated by Eq. (1).

3. Harmonic identi�cation scheme based on
Hop�eld neural network

The Hop�eld network, which is inspired by the brain
neural network, is a well-known type of arti�cial
neural network. It can be regarded as a model in
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Figure 3. The system sinusoidal shaking response.

abstract neuron networks for memory and collective
processing [26]. A Hop�eld network needs to minimize
an energy function. For an optimization problem,
if its cost function can be mapped to the energy
function, the network will approach a solution of the
optimization. As a nonlinear dynamic system with
fully connected recurrent arti�cial network, it has been
extensively studied due to its wide applications in
optimization, image reconstruction, signal processing,
control, associative memories, information retrieval,
and so on.

3.1. Harmonic model
The general model of a signal with unknown harmonics
can be written as:

x(t) =
nX
l=1

Xl sin(l!t+ �l); (2)

where Xl and �l are the amplitude and phase of the lth
harmonic, respectively. ! is the fundamental frequency.
Using notations Akl = Xl cos�l and Bkl = Xl sin�l, Xl

and �l can be computed by:(
Xl =

p
A2
kl +B2

kl

�l = arctan Bkl
Akl

(3)

For a digital control system, let T be the sampling time;
Eq. (2) can be rewritten as:

x(tk) =
nX
l=1

[Akl sin(l!tk) +Bkl cos(l!tk)]; (4)

where tk = kT , k = 0; 1; 2; :::.

3.2. Harmonic identi�cation scheme
The Hop�eld network (illustrated in Figure 4) consists
of a set of neurons and a corresponding set of unit-time
delays, forming a multiple-loop system. The number of
feedback loops is equal to the number of neurons. The
output of each neuron is basically fed back via a unit-
time delay element to each of the other neurons in the
network.

The Hop�eld network iteratively determines the
harmonics as well as the fundamental response by mini-
mizing the error between the output of the network and
the desired signal. The objective function is de�ned as:

�k = e2=2 =
[x(tk)� dk]2

2
; (5)

where dk is the desired signal at time tk. Substituting
Eq. (4) into Eq. (5) yields:

�k =

(
nX
l=1

[Akl sin(l!tk) +Bkl cos(l!tk)]� dk
)2

=2:
(6)

To combine with the Hop�eld network, let the
objective function, �k, be the energy function; thus,
E = �k. It is known that the energy function
monotonously decreases and approaches a minimum
value. If and only if dE=dt = 0, E is minimized, and
an optimum solution can then be obtained.

Figure 4. The Hop�eld neural network.
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Figure 5. Block diagram of the proposed harmonic identi�cation scheme.

The fundamental frequency, !, is usually known.
For the lth harmonic at time tk, Akl, and Bkl
are unknown and their coe�cients are sin(l!tk)
and cos(l!tk). De�ning a vector as Xk =
[Ak1; Bk1; :::; Akn; Bkn]T , and an input vector as Yk =
[sin!tk; cos!tk; :::; sin(n!tk); cos(n!tk)]T , Eq. (6) can
be written in a matrix form as:

�k =
�
XT
kYk � dk�2=2 =

�
d2
k � 2dkYT

k Xk

+ XT
kYkYT

k Xk

�
=2:

According to the energy function theory (Martin,
2007), there is:

dXk

dt
= �� @E

@Xk
= �� @�k

@Xk
; (7)

where � is the gain. Taking partial derivative of �k with
respect to Xk gives:

@�k
@Xk

=
�
@�k
@Ak1

;
@�k
@Bk1

;
@�k
@Ak2

;
@�k
@Bk2

; � � � ;

@�k
@Akn

;
@�k
@Bkn

�
: (8)

Di�erentiating �k with respect to Akl results in:

@�k
@Akl

=
� nX
j=1

�
Akj sin(j!tk) +Bkj cos(j!tk)

� dk
�

sin(l!tk)
�
: (9)

Combining Eqs. (7)-(9) gives:

dAkl
dt

=� �
� nX
j=1

�
Akj sin(j!tk) +Bkj cos(j!tk)

� dk
�

sin(l!tk)
�
:

The unknown parameter, Akl, can then be computed

from:

Akl =� �
Z � nX

j=1

�
Akj sin(j!tk) +Bkj cos(j!tk)

� dk
�

sin(l!tk)
�
dt: (10)

Applying similar procedure to Bkl, its value can then
be solved by using:

Bkl =� �
Z � nX

j=1

�
Akj sin(j!tk) +Bkj cos(j!tk)

� dk
�

cos(l!tk)
�

dt: (11)

The above harmonic estimation can be represented by
Figure 5. The Hop�eld network is an adaptive feedback
network. The weights of the Hop�eld network are
Ak1, Bk1, ..., Akn, and Bkn, which also denote the
unknown harmonic parameters, including amplitudes
and phases. The signal x(tk) can be treated as the
estimated signal. The network's outputs, Ak1, Bk1,
..., Akn, and Bkn, are fed back to the network and
used as the weights to minimize the error such that
the network can converge on its steady state. The
algorithm does not need o�ine gradient estimations or
data repetitions. The desired weight vector approaches
an optimal solution when adapting to the adaptive
algorithm.

4. Simulation results

Simulations are carried out to verify the proposed
harmonic identi�cation scheme. The input signal is
y = 2 sin(!t+1)+0:5 sin(2!t+0:8)+0:4 sin(3!t+0:5)+
0:2 sin(4!t+0:2)+0:1 sin(5!t+0:1)+0:06 sin(6!t+0:3).
It contains 6 harmonics from the fundamental with
frequency of 5 Hz to the sixth harmonic; thus n = 6.
During simulations, its sampling time is 1 ms and
all initial values are set to zero, and � = 4. The
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Figure 6. The identi�ed acceleration plotted with the
actual signal.

Figure 7. The estimation error between identi�ed signal
and actual signal.

identi�ed acceleration is plotted with the input signal
in Figure 6, from which it can be clearly seen that the
identi�ed signal asymptotically approaches the input
signal within 1.5 s.

Figure 7 shows the estimation error, which
demonstrates that there is identi�cation error at the
beginning of the estimation, but the error is rapidly
decreased and remains within a very small range after
1.5 s. Figure 8 shows each harmonic, which is directly
obtained from the method, while each harmonic's
amplitude and phase are shown in Figure 9. The steady
state values of the identi�ed amplitudes and phases are
nearly same as their nominal values. The simulation
results indicate that the developed harmonic identi�-
cation has good estimation accuracy and convergence.

5. Experimental results

The developed identi�cation scheme is embedded in the
real-time controller shown in Figure 1. The harmonic

Figure 8. Each identi�ed harmonic including the
fundamental response.
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Figure 9. Amplitude and phase of each harmonic.

identi�cation algorithm, as well as the original con-
troller, runs in the control system. When sinusoidal
shaking tests are performed on the shaking table
in Figure 1, the shaking response can be measured.
The developed identi�cation scheme is applied to the
hydraulic shaking table to identify the harmonics in
the sinusoidal shaking response. When the input
acceleration is 3 sin(2� � 8t) m/s2, based on Figure 3,
six harmonics, including the fundamental, occur in the
shaking response, so n = 6. All of the initial values
of the scheme are set to zero, and � = 5. The system
sampling time is 1 ms, and the desired signal is the
actual shaking response shown in Figure 3(a).

The estimated acceleration and the actual accel-
eration are plotted together in Figure 10. It can be seen
that the estimated signal asymptotically approaches
the actual signal within 1.5 s with high precision. This
means that high estimation precision can be obtained
both in amplitude and in phase.

The identi�cation error is shown in Figure 11.
At the beginning of the identi�cation, there is large
estimation error. As the Hop�eld network begins to
train its weights, the error is decreased rapidly. When
the weights converge, the error becomes very small and,
�nally, stays around the ideal error of e = 0.

Each harmonic can be directly estimated; the
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Figure 10. The estimated signal and the actual signal.

Figure 11. The experimental identi�cation error between
the identi�ed signal and the actual signal.

results are shown in Figure 12. It can be seen
that harmonics are all well estimated and they con-
verge. The amplitude and phase of each harmonic
can be computed by Eq. (3); the results are shown
in Figure 13. Compared with the amplitude values
in Table I, which are calculated o�-line by FFT, the
estimated amplitudes well match the FFT-computed
amplitudes. Though the sixth harmonic is smaller than
any other harmonic, that is it is dominated by other
harmonics, good estimation is also achieved for the
smallest harmonic.

6. Comparison results

It is more convincing to give comparison with an-
other method. The Recursive-Least-Squares (RLS) is
an adaptive �lter, which recursively �nds the coe�-
cients by minimizing a weighted linear least squares
cost function. RLS-based estimation approaches have
been successfully developed for accurate estimation
of harmonics in power system signals [27-30]. This
section compares the proposed method with RLS-based
method. Figures 14 to 16 show the comparison results.

In Figures 14 to 16, it can be seen that RLS-
based estimation method has large estimation error
and is very oscillatory at the beginning of the es-
timation, though it exhibits faster convergence than
the developed harmonic identi�cation does; however,
the latter has better estimation accuracy, and it can
asymptotically track the harmonic parameters with
smaller oscillation.

Figure 12. The identi�ed harmonics.
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Figure 13. The identi�ed amplitude and phase of each harmonic.

Figure 14. Waveform comparison results with RLS and
Hop�eld methods.

7. Conclusions

To e�ectively estimate harmonics, a harmonic identi-
�cation method is developed for a hydraulic shaking
table by using Hop�eld neural network, whose weights
represent harmonics' amplitudes and phases. As the
weights of the network are time-varying, the estimator
is able to adaptively track the harmonics with ampli-
tudes and phases. The Hop�eld network is a �nite
dimensional system with a recursive structure, which
makes a digital control system suitable for the imple-
mentation of the developed harmonic identi�cation.

Experiments are performed on the shaking table
to verify the proposed harmonic identi�cation. The
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Figure 15. Comparison of identi�ed amplitudes.

Figure 16. Comparison of identi�ed phases.

estimation results show that identi�cation of amplitude
is better than that of phase, and the convergence
performance is kept well even for the harmonics which
are in the lowest dominance among all harmonics. The
estimated results are compared with the THD analysis

results, and the estimation error is used to demonstrate
the estimation accuracy. The accuracy and real-time
performance of the acceleration harmonic identi�cation
are then testi�ed.

Compared to DFT or FFT, the proposed identi�-
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cation method operates in time domain and has better
real-time performance, so the algorithm can be easily
used for real-time harmonic identi�cation. Further
comparison studies with RLS-based method are also
made to show its good identi�cation performance.
The identi�cation algorithm has advantages, such as
simple structure, good learning ability, high real-time
performance, and high speed recognition. It can
decompose each harmonic and detect the amplitude
and phase of any order of harmonic, including fun-
damental response. The online estimated harmonic
information can be provided as a basis for further
harmonic cancellation.

In particular, the developed identi�cation scheme
does not require the system's a priori knowledge. Since
higher harmonics are in less dominance among all
harmonics, the harmonic estimation is usually up to
the 6th harmonic in practical applications. In the
experiment, if n > 6, the identi�cation performance
(such as accuracy) cannot be greatly improved with
the increase in n; however, the increase can lead to
high computational burden. It should be noted that
the performance of the identi�cation scheme depends
critically on the parameter �. If a small value for � is
chosen, the adaptation will be slow. On the other side,
too large � will lead to very oscillatory weights, even
divergence.
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