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Abstract. In this study, a homotopy analysis method was used to obtain analytic
solutions to predict dynamic pull-in instability of an electrostatically-actuated microbeam.
The nonlinear describing equation of a microbeam a�ected by an electric �eld, including
the fringing �eld e�ect, was obtained based on strain gradient elasticity, couple stress,
and classical theory. In
uences of di�erent parameters on dynamic pull-in instability were
investigated. The equation of motion of a double-clamped microbeam was discretized
and solved by using Galerkin's method via mode summation. The resulting non-linear
di�erential equation was also solved by using the Homotopy Analysis Method (HAM). The
in
uence of HAM parameters on accuracy was studied speci�cally in the vicinity of the
pull-in voltage. Comparison of the results of pull-in voltage indicated that low-voltage
good agreement exists between numerical and semi-analytical methods, while HAM results
deviated from those of numerical methods at high voltages. Findings indicate that strain
gradient and couple stress e�ects result in a sti�er microbeam than with classical theory.
E�ects of an auxiliary parameter on convergence were also studied. Convergence domains
were determined at di�erent voltages and orders of HAM approximation.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

A microbeam, actuated by electrostatic distributed
force, is a 
exible beam-shaped element attached
to a rigid substrate, as illustrated in Figure 1.
Electrostatically-actuated microbeams are extensively
used in di�erent applications such as signal �ltering
and mass sensing [1]. When the input voltage exceeds
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a critical value, called the pull-in voltage (Vpi), the

exible microbeam spontaneously de
ects towards the
rigid plate. Pull-in instability is a basic phenomenon
considered in the design of the micro actuators. Pull-in
instability was observed experimentally by Taylor [2]
and Nathanson et al. [3]. Osterberg studied Micro
Electro Mechanical Systems (MEMS) with circular and
rectangular shapes and achieved several closed-form
models for pull-in instability in these systems [4].

When the rate of voltage variation is low and,
consequently, inertia has almost no in
uence on the
microsystem behavior, the critical value of voltage is
called the static pull-in voltage (Vpi). However, when
the rate of voltage variation is not negligible, the e�ect
of inertia has to be considered and the critical voltage
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value is called the dynamic pull-in voltage (Vpid). The
pull-in instability related to this situation is called the
dynamic pull-in instability [5,6].

Studying vibrational behavior of MEMS is quite
useful in determining design parameters of these
systems. Vibrational characteristics of microbeams
have been generally studied assuming small vibrations
around a de
ected position. In [7], oscillatory behavior
of microbeams considering mid-plane stretching has
been studied. In [1], vibrations of double-clamped
microbeams, under an electric �eld, have been in-
vestigated. Vibrations of electrostatically actuated
microstructures have also been studied in [8-10].

Since the classical continuum theory can neither
capture the size-dependency observed in micro-scale
components nor accurately predict the mechanical
behavior of such components, non-classical continuum
theory has been developed. The couple stress theory,
a powerful non-classical continuum theory, was intro-
duced and elaborated by Koiter [11] and by Mindlin
and Tiersten [12] in the early 1960s. The additional
material parameters appearing in this theory (in ad-
dition to the two classical Lam�e parameters, elastic
modulus, and Poisson's ratio) enable the theory not
only to capture the size-dependency, but also to bring
about higher accuracy in modeling of the micro-scale
structures. A Timoshenko beam model was developed
based on this theory by Asghari et al. [13]. The
size-dependent static behavior of this new beam model
has been investigated, and it is observed that the
bending sti�ness of the new model is greater than that
of the classical Timoshenko beam model. Yang et
al. [14] introduced the modi�ed couple stress theory
by modifying the couple stress continuum theory. He
utilized the equilibrium equation of moments of couple
in addition to the two conventional equilibrium equa-
tions, i.e. equilibrium equation of forces and moment of
forces. Soon after that, the modi�ed couple stress the-
ory became a popular non-classical theory to develop
microbeam and microplate models as well as to deal
with the size-dependent problems in MEMS [15-19].

The strain gradient elasticity theory was origi-
nally developed by Mindlin [20-22]. Wang et al. [23]
used the strain gradient theory and took the Tim-
oshenko beam model to study dynamic microbeams.
Sedighi [24] also used this theory and took the Euler-
Bernoulli beam to study dynamical characteristics of
microbeams.

Di�erent techniques have been proposed for �nd-
ing solutions to nonlinear equations of MEMS: the
di�erential quadrature method [25], the �nite-element
method [9,10], and homotopy methods [26]. Al-
though it is di�cult to get an analytic approximation
for di�erent phenomena in MEMS, there are some
analytic methods for nonlinear problems of micro-
electromechanical systems such as perturbation tech-

niques [27,28]. In general, perturbation approximations
are valid only for weakly nonlinear problems [29].
Based on the homotopy method in topology, Liao
proposed the Homotopy Analysis Method (HAM) to
present analytic solutions to strongly nonlinear prob-
lems [29]. This method can also be e�ective in �nding
solutions to the vibrations of microbeams. In numerical
analysis, the Runge-Kutta methods are a family of
implicit and explicit iterative methods used in temporal
discretization for the approximate solutions to ordinary
di�erential equations [30].

2. Modeling and formulation

A clamped-clamped microbeam with a rigid substrate
under electrostatic actuated voltage, V, is represented
in Figure 1.

The microbeam is of length, L, thickness, h,
width, b, density, �, moment of inertia, I, modulus
of elasticity, E, and initial air gap, d. The equation
of motion for a microactuated beam based on strain
gradient elasticity theory and considering the Euler-
Bernoulli beam is [24,31]:
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� Fes = 0: (1)

Here �, A0, and N represent shear modulus, cross-
section area of microbeam, and initial axial load,
respectively, with l0, l1, and l2 denoting the addi-
tional independent material length scale parameters
associated with dilatation gradients, deviatoric stretch
gradients, and symmetric rotation gradients, respec-
tively [32]. N is positive in tension and negative in
compression.

Figure 1. The con�guration of an electrostatically
actuated microbeam [24].
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The second term in Eq. (1) represents the e�ect
of damping force of the 
uid that exists in the air gap.
�̂ is the viscosity of the 
uid and �0 is the average
distance between the molecules of the 
uid.

A uniform electric �eld does not drop suddenly
to zero at edges. Actually, a fringing �eld always
exists, and a more realistic situation, including the
\fringing-�eld", should be taken into consideration.
The electrostatic force per unit length can be written
as follows [1,33]:

Fes =
1
2
b"V 2(1 + ff )
(d� w(x; t))2 ; (2)

" = 8:854187817620 � 10�12(F=m) is the vacuum
permittivity. The �rst term in parentheses in the
numerator of Eq. (2) describes the parallel-plate ap-
proximation; the second one, ff , accounts for the
fringing �elds e�ect due to the �nite width where:

ff =
�(d� w(x; t))

b
: (3)

For a double clamped beam, � is set to 0.65 [34,35].
The use of the following non-dimensional parameters:
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recasts Eq. (1) into the non-dimensional form as fol-
lows:
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Here, W (�; �), @
@�W (�; �), @2

@�2W (�; �), and � are
normalized de
ection, normalized velocity, normalized

acceleration, and normalized time, respectively. Usu-
ally, microbeams work in vacuum because the damping
causes energy loses. So, by considering a Taylor
expansion for electrostatic force and in the absence of
damping, Eq. (5) can be written as follows:
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In general, one can assume that:

W (�; �) =
nX
r=1

ur(�)�r(�); (7)

where r is the number of modes included in the simu-
lation, n is the number of degrees of freedom, m is the
number of the electrostatic force Taylor approximation,
and �r (�) represents the mode shapes of clamped-
clamped microbeam. Assuming a �rst approximation
for �1 (�) we have:

�1(�) = cosh(�1�)� cos(�1�)

� cosh(�1)� cos(�1)
sinh(�1)� sin(�1)

(sinh(�1�)� sin(�1�));
(8)

where �1 = 4:730040745 is the �rst root of charac-
teristic equation of clamped-clamped beam. Using
Galerkin's decomposition method [30], the nonlinear
governing equation of motion according to dimension-
less time can be written as follows:

d2

d�2u(�) +M0 +M1u(�) +M2u(�)2 +M3u(�)3

+M4u(�)4 +M5u(�)5 +M6u(�)6 = 0; (9)

in which M0 to M6 are constants (see Appendix A).
Eq. (9) is an Ordinary Di�erential Equation

(ODE) with sixth degrees (m = 6) of Taylor approxi-
mation for the electrostatic force solvable by HAM.

When l0 = l1 = 0, results approach those of
couple stress theory; when l0 = l1 = l2 = 0, results
approach those of classical theory. Also, Eq. (9) was
solved by a Runge-Kutta numerical method whose
results were used to validate results obtained by the
HAM method.
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3. Application of homotopy analysis method
to microbeam dynamic characteristics

The Homotopy Analysis Method (HAM) is an e�ective
analytic method for solving nonlinear equations. This
method transforms a general nonlinear problem into
an in�nite number of linear problems by embedding an
auxiliary parameter, q [36]. As q increases from 0 to 1,
the solution varies from the initial approximation to the
exact solution. Homotopy function, H (�; q; };H (�)),
is constructed as [29,36-43]:

H (�; q; };H (�)) = (1� q)L [� (� ; q)� u0 (�)]

� q}H (�)N [� (� ; q) ;� (q)] ; (10)

where }, u0(�), H(�), L, and N are a nonzero aux-
iliary parameter, an initial guess, a nonzero auxiliary
function, an auxiliary linear operator, and a nonlinear
operator, respectively. Values of } and H(�) adjust the
convergence region of the solution. For the microbeam
problem, the auxiliary function can be chosen in the
form of H(�) = 1.

From Eq. (9), the nonlinear operator can be
expressed as follows:

N(�(� ; q);�(q)) =
@2

@�2 �(� ; q) + �(q)�(� ; q) +M0

+M2�(� ; q)2 +M3�(� ; q)3 +M4�(� ; q)4

+M5�(� ; q)5 +M6�(� ; q)6; (11)

subject to initial conditions of zero and with �(1) =
M1.

Moreover, the auxiliary linear operator can be
de�ned as follows:

L(�(� ; q)) =
@2

@�2 �(� ; q) + !2�(� ; q); (12)

function �(� ; q) can be expanded in a power series
of embedding parameter q using Taylor's theorem as
follows:

�(� ; q) =
1X
i=0

qiui(�): (13)

Also:

�(q) = !2 +
1X
i=0

qi!i(!): (14)

By equating to zero the homotopy function, the zero-
order deformation equation is constructed as follows:

(1� q)L [�(� ; q)� u0(�)] = q}N [�(� : q); (�q)] ;
(15)

�(0; q) = 0;

d�(0; q)
d�

= 0: (16)

When q = 0, Eq. (15) becomes:

L [�(� ; 0)� u0(�)] = 0; (17)

which gives the zero-order approximation of u(�). It
is straightforward to set the initial guess u0(�) to
zero. Di�erentiating Eq. (15) with respect to q and
then setting q = 0 yields the �rst-order deformation
equation, which gives the �rst-order approximation of
u(�) by solving:

L [ul(�)] = }N [�(0; q);�(q)] : (18)

Subject to zero initial conditions, the higher-order
approximations of solution u(t) can be found by solving
high-order deformation equations. After di�erentiating
Eq. (15) j times with respect to q, then setting q = 0,
and �nally dividing each side by j!, one can obtain the
jth-order deformation equation:

Lhuj(�)� �juj�1(�)
i

=

1
(j � 1)!

}@
j�1N [�(� ; q);�(q)]

@qj�1 jq=0; (19)

where,

�j =

(
0 when j � 1
1 otherwise

(20)

It is noteworthy that the vibrations of an undamped
microbeam under the actuation of the electrostatic
force can be expressed by the base functions:

cos(k!�); k = 1; 2; 3; ::: (21)

Therefore, to eliminate the secular terms in the jth-
order approximation, one can set the coe�cient of
cos(!�) in the (j � 1)th-order deformation equation
to zero.

After this operation, an algebraic equation is
obtained from which !j�2 versus ! is obtained. After
�nding an adequate approximation, by setting q = 1,
Eqs. (22) and (23) are obtained as follows:

�(1) = !2 + !1(!) + !2(!) + : : :+ !p(!) = M1;
(22)

u(�) = u1(�) + u2(�) + : : :+ up+2(�); (23)

where p is the order of the electrostatic force Taylor
approximation.
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The normalized frequency (!) is only an unknown
parameter in Eq. (22) and is determined by this
equation.

The value of normalized frequency is determined
by Eq. (22). The actual frequency (!a) can be obtained
by the equation:

!a =

s
IE

�bhL4 !: (24)

4. Results and discussions

To discuss the results, the Young's modulus for the
microbeams is assumed to be Ey = 166 GPa. Fur-
thermore, it is assumed that the residual axial load,
thickness, width, air initial gap, and density are: N =
9� 10�4 N, h = 1:5� 10�6 m, b = 100� 10�6 m, d =
1:18� 10�6 m and � = 2329 kg/m3, respectively. The
residual stress may be induced during the fabrication
process. The length scales are l0 = l1 = l2 = 0:32 �
10�6 m.

A comparison of natural frequency for two mi-
crobeams between the present study and previous
studies is shown in Table 1. It can be seen that there
is good agreement between the results.

The midpoint de
ection of the double-clamped
microbeam with length L = 210 �m for input voltage of
25 V is shown in Figure 2(a). The midpoint de
ection
for input voltage of 30 V is depicted in Figure 2(b). It
can be observed at low voltages that small orders of
approximation (p) in homotopy scale are su�cient to
�nd the de
ections accurately. Nevertheless, for high
voltages, higher orders of approximations are required
as discussed later.

The midpoint de
ection time history of a mi-
crobeam with length L = 510 �m for input voltages
of 5.5 and 6.2 V is shown in Figure 3(a) and 3(b),
respectively.

It can be observed from Figures 2 and 3 that there
is excellent agreement between results of the Runge-
Kutta method and those of the semi-analytic method
(particularly, for low voltages).

When input voltage is chosen to be close to the
pull-in value, the di�erence between the numerical
and semi-analytical approaches for low approximation
increases drastically. The midpoint de
ection time
history of a microbeam with length L = 510 �m by
considering strain gradient theory, using Runge-Kutta

Figure 2. Midpoint-de
ection-time history for the
double-clamped microbeam with length L = 210 �m by
applying strain gradient theory: (a) Input voltage of 25 V,
and (b) input voltage of 30 V (Vpid = 32:08V ),
N = 9� 10�4 N.

and semi-analytical methods for voltages close to pull-
in values, is shown in Figure 4. It should be noted
that the Runge-Kutta method is very sensitive to input
voltage, while HAM cannot recognize the small voltage
variation.

Comparisons made between Figures 3 and 4 show
that the nonlinear electrical force is low for low input
voltages. But, by increasing input voltage to be close
to pull-in value, the nonlinear force is larger and the
oscillation has a non-sinusoidal shape.

Variations of normalized nonlinear frequency with
applied step voltage (V) for the double-clamped mi-
crobeam with length L = 510 �m for di�erent values of
p, using strain gradient theory, are shown in Figure 5.
This diagram signi�es that by increasing the voltage
close to pull-in voltage, the di�erence between results
grows. In some voltages, there are several answers for
frequency in some approximations (p); the true one is
determined by comparing numerical results.

Variations of nonlinear frequency versus applied
voltage obtained by using semi-analytic method for
p = 5 and 6 for di�erent theories are shown in Figure 6.
As input voltage increases, the nonlinear frequency of
vibrations decreases. This diagram suggests that for

Table 1. A comparison of natural frequency (kHz) between di�erent methods.

Length
(�m)

Measured
[43]

Calculated
[44]

Calculated
[45]

Calculated
[46]

Present study
(HAM)

210 322.05 324.70 324.70 324.78 325.01
510 73.79 74.80 73.46 74.38 74.74
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Figure 3. Midpoint de
ection time history for the
double-clamped microbeam with length L = 510 �m by
applying strain gradient theory: (a) Input voltage of
5.5 V, and (b) input voltage of 6.2 V (Vpid = 6:585 V),
N = 9� 10�4 N.

Figure 4. Midpoint-de
ection-time history for the
double-clamped microbeam with length L = 510 �m
(p = 6, m = 6, Vp = 6:58491485).

a large range of applied voltages, there exists good
agreement between the results calculated by assuming
p = 5 and 6 in di�erent theories. Also, the higher
approximations of p = 5 and 6 are required for
accuracy.

The phase diagram of a microbeam with length
L = 510 �m obtained by using two methods and
the strain gradient theory with zero initial conditions
are shown in Figure 7. At lower voltages, there is
good agreement between the two methods in various
theories.

Variations of nonlinear frequency versus applied
voltage using semi-analytic (p = 5; 6) and numerical
methods implementing strain gradient theory for mi-

Figure 5. Variations of normalized nonlinear frequency
with applied step voltage (V) for the double-clamped
microbeam with length L = 510 �m and di�erent values of
p with strain gradient theory.

Figure 6. Variations of normalized nonlinear frequency
with applied step voltage (V) for the double-clamped
microbeam with length L = 510 �m and di�erent theories.

Figure 7. Phase portrait of actuated microbeam with
L = 510 �m based on the strain gradient elasticity theory
for zero initial condition and di�erent suddenly applied
step voltages.

crobeams with length L = 510 �m and 210 �m are
shown in Figure 8.

Midpoint-de
ection-time histories of the mi-
crobeam with length 210 �m for di�erent axial loads
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are shown in Figure 9. As expected, increasing
compression force enhances the de
ection of the beam.

The midpoint-de
ection-time history of the mi-
crobeam with length L = 210 �m under step voltages
of 15 and 25 V is shown in Figure 10. Results indicate

Figure 8. Variations of the normalized nonlinear
frequency with applied step voltage (V) for the
double-clamped microbeam with length L = 210 �m and
L = 510 �m in di�erent values of p.

Figure 9. Midpoint-de
ection-time history for the
double-clamped microbeam with length L = 210 �m and
di�erent residual axial loads actuated by input voltage of
25 V.

Figure 10. Midpoint de
ection time history for the
double-clamped microbeam with length L = 210 �m
(p = 6, m = 6) for a step change of voltage.

that the nonlinear e�ect of mid-plane stretching is
larger at higher applied voltages.

Variations of frequency versus applied voltage
using semi-analytic (p = 6) and numerical methods,
including strain gradient theory for microbeams with
length L = 510 �m and at di�erent axial loads, are
presented in Figure 11. As can be seen, with increasing
axial load, frequency and pull-in voltage increase

In the homotopy analysis method, it is easy to
�nd a proper value of } from the }-frequency curves
to ensure that the solution series converge [36]. These
curves (}-curves) depict variations of solutions with }.
The convergence region and rate of the solution series
can be adjusted by means of auxiliary parameter }. In
this way, } should be selected from the area where the
slope of }-curves is zero. A proper solution series has
to be independent of auxiliary parameter }. The }-
curve of normalized frequency for the microbeam with
length L = 510 �m is depicted in Figures 12 and 13.
The microbeam is actuated by step voltages of 5.5 and
6.2 V.

Figure 11. Variations of the normalized nonlinear
frequency with applied step voltage (V) for the
double-clamped microbeam with length L = 510 �m in
di�erent axial loads.

Figure 12. The }-curve of normalized frequency for the
microbeam with length L = 510 �m actuated by a 5.5 V
step-input voltage.
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Figure 13. The }-curve of normalized frequency for the
microbeam with length L = 510 �m actuated by a 6.2 V
step-input voltage.

Figure 14. The }-curve of normalized frequency for the
microbeam with length L = 510 �m actuated by di�erent
voltages (p = 6).

In Figure 12, it is shown that at voltages lower
than the pull-in voltage, good agreement results. It is
clear that at low voltage with di�erent p approxima-
tions, one } value can be achieved.

In Figure 13, it is shown that at voltages close to
the pull-in voltage (Vp = 6:58491485), the convergence
regions become smaller, and a particular } value is
needed for each value of approximation p.

From Figures 12 and 13, it can be concluded that
using the higher orders of approximation (p) enlarges
the convergence regions of the solution series.

In Figures 14 and 15, normalized }-frequency
curves at di�erent voltages for p = 6 are presented.
From Figures 14 and 15, it is evident that at voltages
smaller than the pull-in voltage, an equivalent } value
is achieved. At voltages close to pull-in voltage,
the convergence domain tends to be smaller; for all
approximations, } must be calculated separately for
each voltage.

The }-curve of normalized frequency for the mi-
crobeam with length L = 510 �m that is actuated by a
step voltage of 5.5 V with p = 6 is shown in Figure 16.

Figure 15. The }-curve of normalized frequency for the
microbeam with length L = 510 �m actuated by di�erent
voltages (p = 6).

Figure 16. The }-curve of normalized frequency for the
microbeam with length L = 510 �m actuated by a 5.5 V
step-input voltage (p = 6).

5. Conclusion

Comparing the results of the semi-analytic method
with those of numerical technique shows that excellent
agreement exists between the �gures at voltages smaller
than pull-in voltage, while at voltages close to pull-
in voltage, higher-order approximations are required
to �nd de
ections accurately. E�ect of auxiliary
parameter of HAM is considered to determine conver-
gence criteria. In
uence of input voltage and order
of HAM approximation on convergence regions is also
investigated. Results show that a large convergence
region of the solution series exists at low voltages with
respect to pull-in voltage, and one } value can be
used for various approximations and voltages. When
input voltage is chosen to be close to pull-in voltage,
convergence regions becomes smaller, so that }must be
calculated separately for each order of approximation
in any certain input voltage. Also, with increasing
order of approximation, convergence regions are larger
at certain input voltages.
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Appendix B
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