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Abstract. Two new techniques are proposed to enhance the estimation abilities of
the conventional Neural Network (NN) method in its application to the �tness function
estimation of aerodynamic shape optimization with the Genetic Algorithm (GA). The �rst
technique is pre-processing the training data in order to increase the training accuracy of
the Multi-Layer Perceptron (MLP) approach. The second technique is a new structure
for the network to improve its quality through a modi�ed growing and pruning method.
Using the proposed techniques, one can obtain the best estimations from the NN with
less computational time. The new methods are applied for optimum design of a transonic
airfoil and the results are compared with those obtained from the accurate Computational
Fluid Dynamics (CFD) �tness evaluator and with the conventional MLP NN approach.
The numerical experiments show that using the new method can reduce the computational
time signi�cantly while achieving improved accuracy.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Among di�erent methods for aerodynamic shape op-
timization, the Genetic Algorithm (GA) is a popular
method that has been widely used by researchers [1,2].
The speci�cations of GA cause its superiority to other
optimization methods. The most important charac-
teristic of GA is that it does not need computing the
sensitivity of the derivatives, because calculating the
gradient information especially for non-linear functions
is very complicated. GA also works well when the
design parameters are increased. Another important
feature of GA is searching the design space in a
population of points, not one special point, which
results in a greater likelihood of �nding the global
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optimum point [3]. In addition, GA is an attractive
method for �nding the optimum value in the non-
smooth spaces.

The other important key of these algorithms is us-
ing a combination of exploitation of the positive charac-
teristics of the existing set of solutions and exploration
of other areas of the design space to �nd the optimum
solution [3,4]. The applications of this method to
the airfoil shape optimization are presented in [1,2,5-
7]. However, the unfavorable key about GA is the
computational time consumed in aerodynamic shape
optimization problems when Computational Fluid Dy-
namic (CFD) methods are used for �tness function
calculation. For example, the computational time
required for optimization with GA where a viscous ow
solver is considered for the �tness function calculation
would be about several days on a traditional instrument
(PC) for 70-80 generations including 20 members.
Therefore, several approaches, such as adaptive range
GA [8] or parallel processing [9], are presented in order
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to decrease the required computational time. These
methods try to decrease the overall time by modifying
the GA or with the help of advanced hardware.

Another method to decrease the GA optimization
time is to reduce the number of expensive �tness
evaluations by CFD solver. One of these techniques
is known as Neural Network (NN) that is suitable for
estimation of the objective functions in the optimiza-
tion problems. Actually, these methods are capable
of approximating the �tness function by the help of
available information from the sequential generations
during the optimization.

Di�erent research studies have been carried out
using NN in aerodynamic optimizations [10-12]. How-
ever, before full application of these methods in the
�eld of optimization, there are two important problems
that need to be resolved. First, the model should be
strong enough to map the inputs to the outputs in
an accurate manner. Second, the number of training
data should be as low as possible. Due to these two
constraints, even some new NNs are not appropriate
for airfoil shape optimization. For example, deep
neural networks cannot be trained conveniently. Thus,
these networks have problems in the training process
and fall in the local minimum [13]. The other new
neural networks are convolution ones. These networks
have good estimation ability and a good generalization.
However, due to their large structure, these networks
require many training data, which is in contrast with
the second constraint [14]. Some works have been
carried out in order to increase the e�ciency of the
neural networks for airfoil shape optimization, such as
Inexact Pre-Evaluation (IPE) by Karakasis and Gian-
nakoglou [15] or applying normal function distribution
by Shahrokhi and Jahangirian [16].

In the present work, a pre-processing method
is initially proposed that normalizes the MLP input
data in a special manner. This helps the MLP
training process to become smoother while increasing
the training accuracy. Then, in order to upgrade the
e�ciency of the NN, a new structure for the network
is presented so that the required learning data will be
reduced while higher accuracy will be achieved. The
methods will be explained in detail and the results are
presented for a transonic airfoil design problem.

2. Aerodynamic optimization with GA

In the present study, a simple GA is applied for
optimum design of a transonic airfoil. Actually, GA is
a collection of generations that contain several chromo-
somes. In airfoil shape optimization, each chromosome
indicates an airfoil and the genes of each chromosome
are the airfoil parameters that are obtained from PAR-
SEC parameterization, which contains the leading edge
radius (rLE), upper and lower crest locations (XUP,

YUP, XLO , YLO) and curvatures YxxUP, YxxLO) trailing
edge coordinate YTE, direction �TE), and trailing edge
wedge angle �TE). According to PARSEC, by solving
a system of linear equations as follows one can obtain
the shapes of the airfoil:

Yk =
6X

n=1

an;kX
n�1

2
k ; k = 1; 2; (1)

where k = 1 is considered for the upper surface and
k = 2 is related to the lower surface of the airfoil.
The coe�cient `an' is related to the de�ned geometric
parameters. The PARSEC parameters are bounded in
order to avoid impractical shapes. The boundaries are
introduced in Section 6 for airfoil shape optimization.
More information about PARSEC parameterization
can be found in reference [6].

Thus, the genetic algorithm starts with a collec-
tion of chromosomes and generates new chromosomes
from previously generated members using GA oper-
ators. In this work, selection of the chromosomes
for the next generation is done by the tournament
operator [3] with an elitist strategy, where the �rst
and the second best chromosomes in each generation
are directly transferred into the next generation. Also,
one-point crossover operator with an 80% probability of
combination is used [17] and the mutation probability
is set 10%. The aerodynamic e�ciency factor (CL=CD)
is determined as the objective function. A restriction
is applied to limit the airfoil maximum thickness not to
be less than a prescribed value (i.e. 11%) in order to
avoid very thin shapes. The total population of each
generation is set to be 20.

3. Numerical ow solver

The airfoil shapes (chromosomes) that are generated
by the GA should be evaluated by a proper �tness
function. As mentioned in Section 2, the objective
function assumed in this paper is (CL=CD), which
is supplied from a CFD ow solver. This solver
is based on the numerical simulation of turbulent
viscous ow governed by Reynolds averaged Navier-
Stokes equations. Triangular unstructured grids are
utilized for discretization of the computational �eld.
Since most of the computational time in such an
optimization problem is consumed by the CFD solver,
it must have a high e�ciency and convergence rate. In
order to achieve this goal, a dual-time implicit method
proposed by Jahangirian and Hadidolabi [18] is used
for unstructured grids.

Due to the high necessity for running the CFD,
generating high-quality grids is of outmost signi�cance.
Therefore, a successive re�nement method presented by
Jahangirian and Johnston [19] is used for unstructured
grid generation. This method produces high-quality
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stretched cells inside the boundary and shear layers as
well as isotropic cells outside these regions.

4. Fitness approximation with a neural
network

As previously mentioned, NN is an alternative ap-
proach to CFD in order to reduce the computational
time required for the �tness function evaluation. How-
ever, the accuracy of the available NNs is highly
dependent on the number of training data, which are
in turn supplied from accurate CFD calculations and,
hence, require extra computational e�ort. Thus, more
sophisticated NN methods are required for full applica-
tion of evolutionary algorithms in aerodynamic shape
optimization, which requires lower training data for the
NN, having the higher estimation ability. Two new
approaches are presented in this work to enhance the
estimation ability of the conventional Neural Network
(NN) method.

4.1. Pre-processing the training data
In the case of the present work, the inputs of the NN are
the PARSEC parameters and, as mentioned before, we
expect the network to predict the value of (CL=CD) for
each airfoil. According to PARSEC parameterization,
input layer of the network contains 10 components
that can change within their own boundary values.
Actually, the boundary values of the input parameters
have widespread orders. For example, the domain
of changes for the �rst PARSEC parameter (rLE) is
[0.006-0.0115] where the domain of the �fth parameter
(�TE) is [0-10]. This causes the e�ects of the higher-
order parameters to be much more than those of the
lower-order parameters during the training process.
This means that when an NN faces parameters with
di�erent orders, while mapping these inputs to their
own �tness function, it will give more weight to the
parameters with higher orders; thus, it is not a smooth
training. During the training process of the NN, the
di�erences in weight matrices of the �rst hidden layer
are calculated by the delta rule with the following
relation:

�V = �XT � �y; (2)

where, XT is the transpose of the input matrix, �y is
the back propagated error signal matrix of the hidden
layer, and � is the learning step (learning rate). Thus,
the edition weight matrix has a direct relationship with
the inputs (�V � X). Therefore, the network will give
more weight to the bigger inputs. For instance, the
relative importance of the PARSEC parameters in the
NN for the mentioned database is as follows:
�TE ; �TE >>> XUP ; XLO > YxxUP ; YxxLO

>> rLE ; YUP ; YLO; YTE :

However, it is obvious that all of these parameters
have an important role in determining the (CL=CD)
factor for an airfoil. This serious challenge causes two
problems in the results: �rst, training does not cor-
rectly occur; second, estimating the results of the test
data has large error and is not acceptable. Therefore,
it is very important to modify the inputs by a pre-
processing operation in order for each parameter to be
seen equivalently. To achieve this aim, the following
formula is used to modify each input \Xi" as:

Xi �Xs
1
N

NP
i=1

�
Xi �X�2 ; (3)

where X = 1
N

NP
i=1

Xi and it is important to note that

the average of the new data is `zero', i.e.
�
Xi �X� = 0.

Therefore, by this modi�cation, the entire training data
of the NN will be of the same order and will be seen
equivalently.

4.2. The new neural network structure
The most common structure for neural network is the
feed forward Multi-Layer Perceptron (MLP) and the
most popular method for training the network is the
back propagation method (BP) [20]. In general, the
structure of a network contains the input, output, and
hidden layers. Dimensions of the input space and
dimensions of the �tness function space determine the
number of neurons in the input and the output layers.
But, what about the number of neurons in the hidden
layers? In the MLP structures, the number of hidden
neurons is usually set to be constant at �rst; but, it
continuously changes to reach a better output. In fact,
it is a trial and error approach that does not guarantee
the best e�ciency for the MLP networks. Minsky
and Papert [21] showed that MLP networks were not
e�cient enough to cover all problems.

In summary, small networks with inadequate
hidden neurons cannot work e�ciently as it is expected.
On the other hand, large networks with too many
neurons can cause over-�tting, which can decrease
the estimation ability [22]. Thus, the e�ciency of
the network in both situations is weak. Recently,
researchers have investigated two di�erent ways for
choosing the network topology:

1. Pruning algorithms which start with a large net-
work and optimize it;

2. Constructive algorithms which start with a small
network and try to optimize it by adding neurons
to the hidden layers [23].

One can see the examples of these methods, which
are applied in biomedical engineering problems, in [24].
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In this paper, a new structure related to \growing and
pruning method" is presented. In the present work,
the pruning stage method is extended in order to have
more accurate estimations in less computational time.
This new idea is based on the independence of the
hidden neurons, which signi�cantly helps the network
to increase the accuracy and estimation ability.

4.2.1. Growing approach
In the �rst stage, the network starts with only one hid-
den neuron and, then, develops the network structure
by neurons growing based on the network errors during
the training epochs and splitting the algorithm based
on maximum error of the hidden neurons. This means
that in each step, the neuron with the maximum error
is found and, then, it is split in two neurons in order
to share the task of the previous neuron between the
two new ones. The growing algorithm starts with one
neuron in the hidden layer and, then, during the NN
training, if the number of hidden layers cannot reduce
the network error, the neuron in the hidden layer with
the maximum back propagated error signal over all
training data is found by the following calculation:

���y� �� =max

8<:NpX
i=1

j�y1 ji;
NpX
i=1

j�y2 ji; :::;
NpX
i=1

j�yN2 ji
9=; ; (4)

where �y is the signal error vector of the hidden layer
and is calculated as follows:

�y = [�y1 �y2 � � � �yN2 ]T : (5)

Now, according to the fact that the neuron in \�"
position has a high error, we spilt it in two neurons
in order to share the tasks of the \� " neuron between
two new neurons, which are labeled by \�1" and\�2".
It is obvious that in this case, two neurons are more
capable of doing the tasks of one neuron.

As it is obvious in Figure 1, the second step is
�nding the input/output weight vectors for the two new
neurons. Note that in Figure 1 and Eq. (6), " is a small
number.

As the weight vector for each neuron determines a
hyper plane in the input space, the input weight vector

Figure 1. The process of splitting the neurons.

must be as follows:8<:V (�1) = V (�)

V (�2) = V (�) + "
(6)

For determining the output layer weights, one should
notice that the desired outputs must not be changed.
Thus, the new neurons must also generate the previous
output. Therefore, the output weights are discrete
between two new neurons, i.e.:8<:W (�1) = 1

2W (�)

W (�2) = 1
2W (�)

(7)

4.2.2. The new pruning approach
Generally, the pruning method summarizes the hidden
neurons with di�erent ideas; but, in the present work,
we carry out the second stage (summarizing the hidden
layers) based on the linear dependency of the neurons
of the hidden layers. To have a brief explanation, it
should be noted that in comparison to the conventional
pruning approach, for each hidden layer, we add a
virtual layer too and, then, we train each virtual layer
in a special manner in order to �nd the neurons that
have a linear correlation with the other ones. This
structure is shown in Figure 2. By the help of this
idea, the input weights are edited in a way that the
hidden neurons have the least linear correlation and if
a neuron has a high correlation with the other ones, it
will be omitted. Pruning in the proposed way causes
the decision region to have higher generalization ability
and have better estimation for the output.

As mentioned before, this layer does not belong
to the neural network but is a virtual layer. We
call this layer the \linear dependent detector" because
the task of this layer is to determine how much
a neuron in the hidden layer is dependent on the
other neurons. Thus, this connection determines
the dependence/independence of hidden neurons. It
is important to notice that if a neuron is linearly
dependent, the other neurons can do its task. Thus,
the existence of this dependent neuron only needs
additional computations and causes the network to be
large, hence, decreasing the e�ciency of the network.
Subsequently, the dependent neuron is omitted from

Figure 2. The structure of extended pruning process.
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Figure 3. Neurons connection in the recurrent layer.

the list of the hidden neurons and its task is divided
between the other neurons in the hidden layer. As
mentioned before, the training of this virtual layer is
carried out in a special manner that is explained in the
following:

In Figure 3, it is obvious that each neuron has
only one connection with the others and not to itself.
Thus, in the weight matrix, the diagonal components
are zero.

U =

2666664
0 u12 u13 � � � u1;N2
u21 0 u23 � � � u2;N2
u31 u32 0 � � � u3;N2

...
. . .

...
uN2;1 uN2;2 uN2;3 � � � 0

3777775
N2�N2

Now, for each neuron in the\linear dependent detector",
the error is calculated by:

ejw = yj �XN2

i=1
yiuij

i 6=j
j = 1; 2; � � � ; N2: (8)

Then, among the hidden neurons, a neuron with the
minimum feg is found because:

if ejw ! 0; then yj !XN2

i=1
yiuij

i 6=j
;

this means that yj is linearly dependent.
Then, yi is a linear combination of other neurons.

In other words, it is dependent. Thus, this neuron is a
candidate for pruning:

je�wj = min
j=1;2;��� ;N2

fjejwjg : (9)

Eq. (8) means that y� goes to the elimination list.
Therefore, this neuron and all its connections are
eliminated from the network. After eliminating a
neuron, the weighted matrix is updated by the new
dimension of networks.

According to the structure of the network in the
second stage, updating the weights requires three steps,
which are demonstrated in the following Eq. (10)-
(17). The purpose of the following relations is to
mathematically show the e�ects of the recurrent layer.
It is obvious that removing the dependent neurons
develops the network in terms of generalization. Note
that, in the following equations, � is the momen-
tum coe�cient and the others have been de�ned be-
fore.

1. Weight edition of the output layer:

�wjk=�yj�zk+��wjk k = 1; 2; � � � ; N3; (10)

wjk = wjk + �wjk j = 1; 2; � � � ; N2: (11)

2. Weight edition of the hidden layer:

�S="� (y � yW ) ; (12)

�ujt=� yj�S t+��ujt j = 1; 2; � � � ; N2; (13)

ujt = ujt + �ujt t = 1; 2; � � � ; N2: (14)

3. Weight edition of the input layer:

�y = �y � �S ; (15)

�vij=� xi�yj+��vij j = 1; 2; � � � ; N2; (16)

vij = vij + �vij j = 1; 2; � � � ; N1: (17)

Finally, it is crucial to state that this virtual
connection decreases the components that explain the
model (map each airfoil to its aerodynamic e�ciency
factor (CL=CD)). This means that by omitting the
dependence hidden neuron, the network becomes brief
enough and the additional tasks are omitted. There-
fore, the output of the model is the best. This is the
\optimum" concept that is put forth in the title of
the paper. Despite all these reasons, by omitting the
additional tasks, the computational time of the training
process is also decreased.

5. Validation

In this section, the capability and e�ciency of the
proposed methods are investigated in comparison to
the basic neural network (MLP) through the exact
solution of a well-known explicit function. The selected
function here is the \3-D Sinc" function as used in [25]
with the formulation:

z(x1; x2) =

8<: sin(�x1) sin(�x2)
�2x1x2

x1; x2 6= 0

1 x1; x2 = 0
(18)

It is noted that in the 3-D Sinc function if x1 = 0
and x2 6= 0, then z = sin(�x2)

�x2
and if x2 = 0 and

x1 6= 0, then z = sin(�x1)
�x2

. Now, we apply the proposed
methods for the NN and the basic NN on this exact
function. Figure 4 shows the average error of the
training process for each method. The average error
is de�ned as:

Average error =

nP
i=1

��Youtputi � Yexacti
��

n
: (19)

Figure 5 shows the results of applying both
networks to this function. It is obvious in the dia-
grams that the proposed method has estimated the
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Figure 4. Neural network training error history for the
3-D Sinc function.

Table 1. Comparison of basic NN and proposed NN for
the 3-D Sinc function.

Error Computational
time (s)

MLP NN 0.0108 583
Proposed NN 1:351� 106 207

exact function better than the MLP network. The
e�ectiveness and accuracy of the proposed method
compared with the conventional NN are also tabulated
in Table 1. It is obvious in this table that the new
approach improves the results for both accuracy and
computational time.

6. Airfoil shape optimization results

To demonstrate the e�ects of the proposed methods
above in the airfoil shape optimization problems and
their inuence on the accuracy and convergence time,
a numerical implementation is carried out. RAE2822
airfoil is considered as the initial airfoil with the
ow conditions of Re = 6.5 million, Mach number
of 0.75, and the incidence angle of 2.79 degrees.
Additionally, in all cases, the objective function is set
as CL=CD. A widespread domain of change for the
airfoil parameters is considered in this work that needs

Figure 6. Unstructured grid around (a) RAE2822 airfoil
and (b) the optimum airfoil.

additional constraint in order to avoid the creation of
thin and impractical airfoils. The geometry constraints
are as follows:

0:006 � rLE � 0:0115 0:35 � XUP � 0:69
0:035 � YUP � 0:095 � 0:9 � YxxUP � �0:1

0 � �TE � 10 0 � �TE � 20
0:2 � XLO � 0:45 � 0:09 � YLO � �0:035

0:1 � YxxLO � 0:9 0 � YTE � 0:03

The additional constraint is that the maximum thick-
ness of the generated airfoil is at least equivalent to
95% of the thickness of the initial airfoil, because the
initial airfoil is RAE2822 and can be seen as a reference
in aerodynamic design problems. Triangular unstruc-
tured grids are used for discretizing the computational
�eld. Figure 6(a) shows the grid generated around the
initial airfoil. The �nal grid for the optimum airfoil is
illustrated in Figure 6(b).

The airfoil shapes and surface pressure coe�cient
distributions are shown in Figure 7. It can be seen
that the suggested new NN structure can successfully
estimate the objective function in comparison with the
CFD results. However, the conventional MLP NN has
failed to accurately predict the �tness function. The
Mach number contours for the initial RAE2822 airfoil
are compared with the optimized ones in Figure 8. As
illustrated, the shock wave on the upper surface of the
initial airfoil is weakened in the new method, which in
turn increases the aerodynamic e�ciency of the airfoil.
The MLP NN results are presented in Figure 8(c)
that show only small improvements compared with the
initial airfoil.

Figure 5. (a) The exact 3-D Sinc function. (b) Output of MLP network. (c) Output of the proposed methods.
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Figure 7. Comparison of (a) design airfoils and (b) surface pressure coe�cient distributions.

Figure 8. Mach number contours for (a) initial airfoil, (b) simple GA, (c) GA and MLP neural network, and (d) GA and
proposed neural network.

Figure 9 illustrates the history of the maximum
objective functions for the simple GA (with CFD
�tness evaluator) and the application of GA with
both conventional MLP and proposed NN methods.
According to this �gure, using the MLP method for
all chromosomes of generations leads the network to
the attractor points whose occurrence is usual and is

one of the expected problems for the MLP methods.
However, Figure 9 con�rms that the new method is
very desirable and its estimation ability is equivalent
to the results obtained from the so called timely exact
CFD method.

Table 2 shows, CL; CD, and CL=CD values for
the initial and optimum airfoils obtained from conven-
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Table 2. The aerodynamic coe�cients for the initial and optimum airfoils.

CL CD CL=CD
No. of generations
calculated by CFD

Initial airfoil 0.822 0.0278 29.54 {

Design airfoil using GA & CFD 0.786 0.0128 61.27 87

Design airfoil using GA with MLP NN 0.75 0.016 46.98 38

Design airfoil using GA & proposed NN 0.785 0.0128 61.08 38

Figure 9. Convergence history of the maximum objective
value.

tional GA and the new network o�ered in this paper.
Table 2 shows that after applying the optimization
process with simple GA and CFD ow solution, the
value of CL=CD increases by about 107% compared
with the initial airfoil. While the new optimiza-
tion method by the help of the proposed network
gives similar e�ciency in terms of the accuracy of
the results, it reduces the required number of CFD
solutions by more than 56%. As expressed before,
in the aerodynamic optimization process, saving the
computational time is a desirable goal. The com-
putational time required for optimization using the
simple GA and the new hybrid method on a PC
Core i7 with the speed of 3.7 GHz is about 51
hours, while the corresponding time for the simple GA
with CFD takes more than 132 hours on the same
computer. It can be seen that about 62% reduction
in computational time is achieved when using the new
method.

The parametric coe�cients of PARSEC for the
optimum results obtained from simple GA and the
new hybrid method are tabulated in Table 3. It is
clear that two optimum airfoils have approximately
equal parameters. As mentioned before, in this paper,
a high quality NN is proposed with the purpose of

Table 3. The optimum values of PARSEC parameters for
simple GA and the new method.

Simple
GA

Proposed
method

rLE 0.0110 0.0110

XUP 0.5654 0.5652

YUP 0.0710 0.0710

YxxUP { 0.3625 {0.3690

�TE 10 10

�TE 9.7194 9.7180

XLO 0.2827 0.2826

YLO {0.0490 {0.0490

YxxLO 0.8662 0.8662

YTE 0.0207 0.0207

Figure 10. The pattern of applying NN methods.

estimating the results of the ow solver. Actually,
this network plays a replacement role for the CFD
solver. The pattern of the NN and CFD solvers
employment is shown in Figure 10. As illustrated
in Figure 10, during the process of optimization for
the �rst 16 generations, the CFD ow solver is used
as the �tness function evaluator. The outputs of
these 16 generations, which are equivalent to 320
CFD outputs, will then be given to the network for
training. The rest of the optimization generations
are implemented by the help of both NN and CFD
ow solvers in a manner that is shown in Figure 10.
In order to show the quality of the proposed NN
methods, the following investigations are presented for
this case. An accuracy study is initially carried out
by comparing the accuracy of the trained data by NNs
with the corresponding CFD evaluations. Figure 11
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Figure 11. Network capability of the training data.

compares the results of the network evaluation for
the �rst 16 generations with the accurate results of
CFD. These diagrams are plotted for all NN methods
that have been mentioned in this paper. Figure 11(a)
illustrates that the conventional MLP network has
not correctly calculated the results and there are
considerable di�erences between the outputs of the

Figure 12. Neural network training error history.

neural network and the results of CFD. The amount
of error is reduced by applying the �rst proposed
method, so called input data modi�cation in Fig-
ure 11(b). Finally, as shown in Figure 11(c), using
the new approach for the network structure, the error
is substantially eliminated. The training e�ciency
of the proposed methods can be demonstrated in
Figure 12 in comparison with the MLP network. It
is obvious from Figure 12 that the training error for
the proposed methods is less than that of the MLP
network.

Finally, the estimation ability of the methods
is evaluated by comparing the results that are not
included in the training data. Figure 13(a) shows that
the MLP network can only estimate the results in some
chromosomes. This ability is improved by applying
the modi�cation to the input data in Figure 13(b).
However, in Figure 13(c), it is obvious that the new
structure is very strong in estimating the results for
all the test data and the related error in this case can
be neglected. Note that the test data in Figure 13 are
related to the generation number 17.

7. Conclusions

Two new methods were proposed for the NN for airfoil
shape optimization to enhance the estimation abilities
of the conventional Neural Network (NN) method: a
normalized training input data method with the aim
of improving the MLP results and a new structure for
the neural network. These methods were then applied
to the aerodynamic shape optimization and the results
were compared with the conventional MLP method.
The results indicated that the proposed method was
capable of increasing the accuracy of the network and
reducing the computational e�ort by more than 60%
compared with the simple GA.
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Figure 13. Generalizing capability of the network.
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