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Abstract. In this paper, integrated optimization of the guidance and control parameters
of a dual-spin 
ying vehicle is presented. The vehicle is composed of two parts: a free-
rolling aft body, including the engine and the stabilizing �ns, and a roll-isolated front body,
including all necessary guidance and control equipment, such as onboard computer, control
�ns, and an inertial navigation system. After developing the governing equations of motion,
control loops and the guidance algorithm are constructed. Controllers are designed for two
operating points and the guidance algorithm consists of a midcourse and a terminal phase.
In midcourse phase, a virtual target, located on the nominal trajectory, is followed using
proportional navigation law; while, in the terminal phase, the vehicle is guided toward
the real target. A new nonlinear saturation function is de�ned in order to saturate the
maximum lateral acceleration command as a function of dynamic pressure. Finally, the
integrated tuning of 23 guidance and control parameters is formulated as an optimization
problem. The optimization problem is solved using a metaheuristic algorithm, called tabu
continuous ant colony system. The performance of the optimized guidance and control
system is evaluated using Monte Carlo simulations based on the complete nonlinear model.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Accuracy is one of the main challenges in design and
manufacture of projectiles. Several factors deteriorate
the accuracy of projectiles, the examples of which are
thrust misalignment, inertial and geometrical asymme-
tries, atmospheric disturbances, etc. Axial rotation is
one of the most common ways to reduce the errors
caused by factors such as thrust misalignment and
inertial asymmetries. However, the errors, caused by
factors such as atmospheric turbulence and fuel mass
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tolerances, cannot be eliminated by axial rotation.
Hence, �nal error of unguided 
ying vehicles remains
signi�cant and these errors increase as the range in-
creases. In the past two decades, the use of low-cost
guidance and control modules has been considered in
such 
ying vehicles. However, these systems cannot
work accurately when the vehicle has a high roll rate.
One method to overcome this problem is to place a
bearing mechanism between the nose and the main
body. Then, while the aft body is rotating, rotation
of the nose can be controlled by a canard set and,
therefore, the guidance system can work properly if it
is placed in the nose part.

To investigate and enhance the performance of
dual-spin atmospheric projectiles, several works have
been done [1-10]. In these works, several issues such
as dynamic, stability, control, and guidance have been



2474 H. Nobahari and M. Arab Kermani/Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 2473{2489

studied. Smith et al. [1] considered a spin-stabilized
artillery projectile, modi�ed to accommodate control-
lable canards, mounted on a non-rotating nose. They
developed a dynamic model and employed this model
to simulate the increase in accuracy. Both the forward
and aft bodies were assumed to be mass balanced and
a hydrodynamic bearing was used to couple the rolling
motion of the bodies.

Costello and Peterson [2] reported a more general
dynamic model for a �nless dual-spin projectile con-
sidering inertially asymmetric forward and aft bodies.
They considered a combination of hydrodynamic and
roller bearing roll coupling between the forward and
aft bodies. Then, by application of the linear theory
for a rigid atmospheric projectile, the gyroscopic and
dynamic stability factors were developed and compared
with those of the single-body case. Also, the stability
problem for a canard guided dual spin stabilized pro-
jectile was investigated by Wernert [3]. It was assumed
that the projectile had a diagonal inertia matrix; the
bearing applied only rolling moment to each body and
the total center of mass was located on the longitudinal
axis.

The work reported by Burchett et al. [4] modi�es
linear equations of [2] to predict swerving motion of a
two-body 
ying vehicle in the presence of lateral pulse
jets, exerted on front body. The swerving dynamic is
solved in closed form, resulting in computationally sim-
ple algebraic expressions for the projectile trajectory
under the in
uence of lateral pulse jets.

In references [5,6], the dynamic modeling, control,
and guidance of a two-body air to surface vehicle are
reported. In these references, the same assumptions
as those in [3] have been used to derive the equations
of motion. The equations are linearized and, then,
the roll and transversal autopilots are designed using
the pole placement technique. In these references,
the Proportional Navigation (PN) guidance, the linear
homing guidance, and a parabolic homing guidance
have been used.

Salman et al. [7] have used H1 control to design
the roll axis autopilot for the front body of a spinning

ying vehicle. A coaxial motor has been used to
position the nose at a desired angle with respect to
the inertial frame.

Theodoulis et al. [8-10] have studied some guid-
ance, control, and dynamic issues in a class of �n guided
spin stabilized vehicles. In these works, the nose roll
angle is controlled by a coaxial servomotor, whereas
the lateral guidance and control are performed by two
pairs of rotating canards placed on the nose [9,10]. The
complete nonlinear equations of motion are stated in
a non-rolling body frame [8-10]. Also, these works
report equilibrium manifold computation [8,10], Linear
Parameter Varying (LPV) modeling, and stability
analysis [8-10]. In [9], a linear quadratic regulator

has been designed and analyzed in order to construct
the lateral autopilot. Gains have been scheduled and
the e�ectiveness of the proposed algorithm has been
investigated using nonlinear simulations. Also, in
reference [10], local controllers are designed for several
operating points of the 
ight envelope. The controllers
are based on H1 pole placement technique.

More recently, Yi Wang et al. [11,12] investigated
a class of spin-stabilized projectiles with �xed canards.
Formulae for the dynamic equilibrium angle and drift
were derived. Then, the analytic solution to the devi-
ation motion was obtained and it was shown that the
control strategy could be developed through studying
the in
uence of the dynamic equilibrium angle and
the angle of attack. In [12], impact point deviation
based on perturbation has been proposed. It has been
shown that the proposed technique is suitable for the
trajectory correction fuse.

Qing-Wei et al. [13] has proposed a guidance law
for a class of dual-spin mortars that only use GPS
receiver and geomagnetic measurements. Authors have
divided trajectory to the ascending and descending
segments and guidance law is designed for each segment
separately.

In this paper, dynamic modeling, control, and
guidance of a dual-spin canard guided 
ying vehicle
are studied. A hydrodynamic bearing connects front
and aft bodies. An Inertial Navigation System (INS),
located in front body, is utilized for the positioning.
The canard, embedded on the nose, is used to con-
trol roll angle of the nose part and to execute the
lateral acceleration commands, issued by the guidance
law. Dynamic model of the vehicle is derived in
seven Degrees of Freedom (DoF). In all of the above
works, the guidance and control modules are designed
separately. To achieve more synergism between control
and guidance loops, the parameters of the control and
guidance loops are optimized in an integrated manner.
For this purpose, the authors utilize a metaheuristic
algorithm, called Tabu Continuous Ant Colony System
(TCACS) [14], to simultaneously optimize the guidance
and control parameters in order to minimize the �nal
miss distance and the total control e�ort. The perfor-
mance of the optimized guidance and control system
is evaluated using Monte Carlo simulations based on
the complete nonlinear model. For this purpose, errors
in Speci�c Impulse (Isp) and launch elevation angle, as
well as the existence of cross wind during the initial
parts of 
ight, are considered.

The rest of this paper is organized as follows: in
Section 2, a brief description of the dynamic model
is given. The structure of control loops is explained
in Section 3. Guidance laws of the midcourse and
terminal phases are introduced in Section 4. Section 5
is devoted to the de�nition of the optimization prob-
lem, the optimization algorithm, and the optimization
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results. Finally, concluding remarks are given in
Section 6. A tensor derivation of the translational
and rotational equations of motion is also made in
Appendices A and B, respectively.

2. Dynamic model of the dual-spin 
ying
vehicle

A general dynamic model for a dual-spin 
ying vehicle
is developed in [2]. This reference uses a non-rotating
body reference frame to develop the equations of mo-
tion. In the current study, since the front body, denoted
by B1, is controlled, a body reference frame, �xed to
B1, is taken to develop the equations of motion. It is
assumed that the center of mass lies on the longitudinal
symmetry axis of the vehicle and the inertia matrices
of front and aft bodies are diagonal. The translational
dynamic behavior of a dual-spin projectile is presented
in B1 as follows [5,6]:

_u = rv � qw + (1=m)(X1 +X2 +XT2)� g sin �; (1)

_v=pw�ru+(1=m)(Y1+Y 02 +Y 0T2
)+g cos � sin�; (2)

_w=qu�pv+(1=m)(Z1+Z 02+Z 0T2
)+g cos � cos�; (3)

where u, v, and w are components of the velocity
vector; p, q, and r are components of the angular
velocity of B1; � and � are roll and pitch angles;
X1, Y1, and Z1 are components of the aerodynamic
forces applied to the front body; X2, Y 02 , and Z 02 are
components of the aerodynamic forces applied to the
aft body; XT2 , Y 0T2

, and Z 0T2
are components of the

thrust force applied to the aft body; m is total mass
of the 
ying vehicle; and g is magnitude of the gravity
vector. The derivation of Eqs. (1)-(3) is provided in
Appendix A. Also, the following equations represent
the angular dynamic behavior of a dual-spin projectile
in B1:

_p =
1
Ix1

(L1 + bt _�r); (4)

_p2 =
1
Ix2

(L2 + LT2 � bt _�r); (5)

_q =pr(1� �)� p2r
 +
1
Iy

(M1 +M 02 � x1Z1

+ x2Z 02 +M 0T2
+ x2Z 0T2

); (6)

_r =� pq(1� �) + p2q
 +
1
Iy

(N1 +N 02 + x1Y1

� x2Y 02 +N 0T2
� x2Y 0T2

); (7)

where Ix1 and Ix2 are axial moments of inertia for
front and aft bodies, respectively; bt is the viscous

friction coe�cient of the bearing; �r is the relative roll
angle of aft body with respect to the front body; p2
is the 1st component of angular velocity of aft body;
L1, M1, and N1 are components of the aerodynamic
moments applied to front body; L2, M 02, and N 02 are
components of the aerodynamic moments applied to
aft body; LT2 , M 0T2

, and N 0T2
are components of the

thrust moment applied to aft body; and x1 and x2 are
distances between the total center of mass and centers
of masses of front and aft bodies, respectively. also �,

, and Iy are de�ned as follows:

� =
Ix1

Iy
; (8)


 =
Ix2

Iy
; (9)

Iy = Iy1 + Iy2 +
�m1m2

m

�
d2

12; (10)

where Iy1 and Iy2 are transverse moments of inertia
for front and aft bodies, respectively; m1 and m2 are
masses of front and aft bodies, respectively; and d12
is the distance between mass centers of front and aft
bodies. Eqs. (4)-(7) are derived in Appendix B. Also,
the aerodynamic forces and moments of the dual-spin
vehicle are de�ned as:
X = �qSCx = X1 +X2; (11)

Y = �qSCy = Y1 + Y 02 ; (12)

Z = �qSCz = Z1 + Z 02; (13)

L1 = �qSdCl1 ; (14)

L2 = �qSdCl2 ; (15)

M = �qSdCm = M1 +M 02 � x1Z1 + x2Z 02; (16)

N = �qSdCn = N1 +N 02 + x1Y1 � x2Y 02 ; (17)

where �q is the dynamic pressure, S is the reference area,
d is the reference length, and Ci(i = x; y; z; l1; l2;m; n)
are the aerodynamic coe�cients. In this paper, the
aerodynamic coe�cients are modeled as follows:

Cx = Cx0 ; (18)

Cy =Cy�� + Cy�r �r + Cyr
rd

2vM
+ Cy�(p)�

+ Cyp2

p2d
2vM

; (19)

Cz =Cz��+ Cz�e �e + Czq
qd

2vM
+ Cz� (p)�

+ Czp2

p2d
2vM

; (20)



2476 H. Nobahari and M. Arab Kermani/Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 2473{2489

Figure 1. Roll control architecture.

Cl1 = Cl�a1
�a1 + Clp

pd
2vM

; (21)

Cl2 = Cl�a2
�a2 + Clp2

p2d
2vM

; (22)

Cm =Cm��+ Cm�e �e + Cmq
qd

2vM
+ Cm� (p)�

+ Cmp2

p2d
2vM

; (23)

Cn =Cn�� + Cn�r �r + Cnr
rd

2vM
+ Cn�(p)�

+ Cnp2

p2d
2vM

; (24)

where Cij (j = �; �; �a1 ; �a2 ; �e; �r; p; p2; q; r) are aero-
dynamic derivatives and vM is the magnitude of the
velocity vector with respect to the Earth frame. Aft
�ns have a constant de
ection angle of �a2 to apply the
desired roll rate to aft body. Control �ns are placed in
the front body and their de
ection angle (�1; � � � ; �4) is
related to �a1 , �e, and �r as [15]:8>>><>>>:

�e = �2��4
2

�r = �1��3
2

�a1 = �1+�2+�3+�4
4

(25)

8>>><>>>:
�1 = �a1 + �r
�2 = �a1 + �e
�3 = �a1 � �r
�4 = �a1 � �e

(26)

In this work, the permitted range of de
ection angles
is de�ned as j�ij < 10 deg (i = 1; � � � ; 4).

3. Control loops

In this section, the control loops of the front body
are described. Since during the 
ight, the aerody-
namic forces and moments vary with the change in
dynamic pressure, �q, the controllers must be adapted,
too. Therefore, the transfer functions are obtained at
two operating points and the controllers are designed
accordingly. The �rst set of controllers is used from

the start time to time t1 and from t2 to the end of

ight. The second set is used from time t1 to t2.
The parameters t1 and t2 are optimized using the
optimization algorithm. In the following, the structure
of the control loops is introduced.

3.1. Roll control
Since the performance of INS, located in the front body,
deteriorates in high angular rates, the roll motion of the
front body must be controlled. Spin of the aft body
can disturb the roll control of the front body. In this
work, a roll control system is utilized to regulate the
roll angle of the front body. For this purpose, a dual
feedback control architecture is utilized, as shown in
Figure 1. The roll rate is fed back from the INS gyro
and roll position is calculated by INS. It is assumed
that INS is ideal. The inner rate loop augments
the aerodynamic damping, Zipfel [15], and the outer
position loop executes the roll command. The inner
loop uses a proportional controller with proportional
gain, kp, and the outer loop uses a proportional integral
controller with a proportional gain, k�, and an integral
time constant, T�. These parameters are obtained for
each operating point using the optimization algorithm.

The servo transfer function is taken as:

Gs(s) =
!2
n

s2 + 2�s!ns+ !2
n
; (27)

where !n and �s are natural frequency and damping
ratio of servo, respectively. In this work, !n = 200 rad

sec
and �s is obtained in Section 5 using the optimization
algorithm.

3.2. Lateral acceleration control
In order to convert the accelerations commands pro-
duced by the guidance law into physical motion of
the control surfaces, an acceleration control system is
needed. In this section, the acceleration control loop
of pitch channel is described. Since the 
ying vehicle
is axisymmetric, the yaw control system works in the
same manner. Dual feedback control architecture is
utilized, as shown in Figure 2. The pitch rate and
acceleration are fed back from the INS gyro and the
INS accelerometer, respectively. The inner rate loop
augments the aerodynamic damping [15] and the outer
acceleration loop executes the desired acceleration com-
mand. The inner loop uses a proportional controller
with proportional gain, kq, and the outer loop uses
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Figure 2. Lateral control architecture.

a proportional integral controller with a proportional
gain, ka , and an integral time constant, Ta. These
parameters are obtained for each operating point using
the optimization algorithm.

4. Guidance algorithm

In this section, details of the guidance algorithm
are presented. The time sequence of the guidance
algorithm is shown in Figure 3. The midcourse
guidance algorithm is engaged at time, tG, a little time
after engine burnout, and gives the commands to the
autopilot in order for the 
ying vehicle to follow a
nominal ballistic trajectory. In this phase, the vehicle
follows a virtual target using PPN. The virtual target is
located on the nominal trajectory and has a time lead,
tL, with respect to the instantaneous position of the
guided vehicle. The terminal guidance phase begins at
time tTG. In this phase, the vehicle is guided toward
the real target using PPN. In Section 5, the parameters
tG, tTG, and tL are optimized using the optimization
algorithm.

In this study, gravity compensated PPN is used
as guidance law. The acceleration commands in body
coordinate system are calculated as follows:

aC = N!? � vB � g; (28)

where N is the proportional navigation constant, g is
the gravity vector, vB is the velocity vector, and !?
is the vector of line of sight rate perpendicular to the
line of sight de�ned as [15]:

!? =
sBT � vBT
ksBT k2 ; (29)

where sBT and vBT are relative position and velocity
of the 
ying vehicle with respect to the virtual target.

During the 
ight, the maximum lateral accelera-
tion of the 
ying vehicle is a function of the dynamic
pressure. Hence, the maximum lateral acceleration
command, produced by the guidance law, is limited
according to the current dynamic pressure. In this

Figure 3. Time sequence of the guidance algorithm.

paper, a nonlinear saturation function is de�ned as
follows:

ac;max =

8>>><>>>:
amax if �q � �qmax�

�q��qmin
�qmax��qmin

�p
amax if �qmin � �q < �qmax

0 if �q < �qmin

(30)

where �qmin is the minimum dynamic pressure over
which the guidance algorithm issues commands, �qmax
is the smallest dynamic pressure that can produce
maximum lateral acceleration, amax is the maximum
lateral acceleration that can be applied during the

ight, and p is a constant. In the following section, the
parameters N , �qmax, �qmin, amax, and p are optimized
using the optimization algorithm.

5. Integrated optimization of the guidance and
control parameters

In this section, the integrated tuning of guidance and
autopilot parameters is de�ned as an optimization
problem. Then, a metaheuristic algorithm, called
TCACS [14], is used to optimize the parameters.
A nonlinear seven DoF 
ight simulation is used to
calculate the cost function for each set of the guidance
and control parameters generated by the optimization
algorithm. Finally, a Monte Carlo simulation is per-
formed to demonstrate the robustness of the proposed
approach with respect to the gust and some other
sources of error.

5.1. De�nition of the optimization problem
In this section, the tuning of guidance and control
parameters is de�ned as an optimization problem. The
problem is to �nd the optimal values of t1, t2, kp,� � � , Ta, �s, tG, tTG, � � � , amax. Table 1 represents
a complete list of these parameters with their search
domains. The proportional navigation constant is usu-
ally selected between 2 and 4 [15]. The minimum and
maximum limits of �qmax and �qmin are selected consider-
ing a typical dynamic pressure trend during the 
ight.
Search domains of the controller gains and the time
constants are determined based on a manual design of
the control loops using root locus and bode diagram.
Damping ratio of a second-order system is usually
taken between 0.4 and 0.8 [16]. Finally, search domains
of time parameters such as t1, t2, tG, tTG, and tL are
set by considering the time of 
ight, burning time, etc.
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Table 1. Optimization parameters with their upper and lower bounds.

Parameter (unit) Lower limit Upper limit Parameter (unit) Lower Limit Upper limit
amax

�m
s2
�

10 50 �qmin
�qmax

0 0.1
ka2 {0.005 0 tG (sec) 4 10
ka1
ka2

0.3 0.6 tTG (sec) 80 100

kp2 {0.5 0 t1 (sec) 5 20
kp1
kp2

0.1 0.2 t2 (sec) 80 110

kq2 0.5 1.5 Ta2 (sec) 0 0.1
kq1
kq2

0.2 0.5 Ta1
Ta2

0.5 1

k�2 5 15 T�2 (sec) 0 0.5
k�1
k�2

0.5 1 T�1
T�2

0 1

p 0 2 �s 0.4 0.8
N 2 4 tL (sec) 0 10

�qmax (Pa) 500000 600000

In this work, miss distance and control e�ort
are minimized to optimize the integrated performance
of the guidance and control systems. Moreover, to
obtain an acceptable roll control for the front body,
the integral of absolute roll angle of the front body is
added to the cost function as a penalty and the cost
function is de�ned as follows:

Cost = 20�Miss + E�ort + 0:01�
Z
j�1jdt; (31)

where Miss is the �nal miss distance and E�ort is the
control e�ort de�ned as:

E�ort =
q
a2
yC + a2

zC : (32)

This paper engages application of TCACS [14] to
optimize the guidance and control parameters in order
to minimize the cost function. Figure 4 shows the
iterative optimization process. TCACS continually
guesses the optimal values of the parameters. After
generation of any new guess, a complete nonlinear
seven DoF simulation of the 
ying vehicle is performed
and the cost function is calculated. The measured cost

Figure 4. Optimization procedure using TCACS
algorithm .

is fed back to TCACS to help it converge on the optimal
set of parameters.

5.2. TCACS algorithm
TCACS is a hybrid optimization algorithm for min-
imization of continuous multi-minima functions [14].
It is a combination of the well-known Ant Colony
Optimization (ACO) [17], and Tabu Search (TS) [18],
approaches. TCACS incorporates the concepts of
promising list, tabu list, and tabu balls from TS
into the framework of Continuous Ant Colony System
(CACS) [19].

In a continuous optimization problem, it is desired
to �nd the global minimum of a function, f , within a
given interval [a; b], in which the minimum occurs at a
point xs. In general, f can be a multivariable function
de�ned on a subset Rn delimited by n intervals [ai; bi],
i = 1; � � � ; n.

Figure 5 shows the general iterative structure of
TCACS. A continuous pheromone model is used to
gradually guide the ants toward the global minimum
point. This pheromone model is in fact a strategy

Figure 5. Flowchart of TCACS algorithm.
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Table 2. Optimal values of the guidance and control parameters.

Parameter (unit) Value Parameter (unit) Value Parameter (unit) Value

amax
�m

s2
�

19.56 k�1
k�2

0.726 t2 (sec) 97.02

ka2 {0.0012 p 0.57 Ta2 (sec) 0.0097
ka1
ka2

0.397 N 2.04 Ta1
Ta2

0.616

kp2 {0.158 �qmax (Pa) 571073.2 T�2 (sec) 0.468
kp1
kp2

0.148 �qmin
�qmax

0.0828 T�1
T�2

0.77

kq2 0.78 tG (sec) 5.01 �s 0.626
kq1
kq2

0.43 tTG (sec) 95.35 tL (sec) 3.66

k�2 7.33 t1 (sec) 16.21

to assign a continuous probability distribution to the
whole search space and to update it as the algorithm
progresses. During any iteration, ants move from their
current positions to the new destinations according to
the current pheromone distribution. The destinations
are chosen using a random generator with normal
probability distribution function. The values of the
objective function are calculated in these new points
and some knowledge about the problem is acquired,
which is used to update the pheromone distribution.

For each dimension of the search space, a normal
probability distribution function is used to model
the pheromone aggregation around the current best
point. Therefore, for x = (x1; x2; � � � ; xk) being
an arbitrary point within the solution space, and
x� = (x�1; x�2; � � � ; x�k) being the current best point, the
pheromone intensities are given by n normal distribu-
tion functions in the following form:

�(xi) = e
� (xi�x�i )2

2�2
i ; (33)

where �i is the variance of the normal distribution
corresponding to the ith dimension of the search space.
The algorithm updates x�i and �i as it proceeds and the
pheromone distribution over the search space gradually
changes.

TCACS uses the concept of tabu and promising
lists. Simply, a speci�ed number of the best points,
found from the beginning of the algorithm up to the
current iteration, form the promising list. Likewise,
a speci�ed number of the worst points, found so far,
constitute the tabu list. Each member of the tabu list
is the center of a tabu ball, the size of which is updated
during iterations. Tabu balls specify circular, spherical,
and, in general, hyper spherical regions within the
search space. Ants are not allowed to select any point
inside the tabu balls while they are choosing their new
destinations.

5.3. Optimization results
After 200 iterations of the optimization process, the
optimal values of guidance and control parameters are

Table 3. Initial conditions of the nominal trajectory.

Parameter (unit) Value

Altitude (m) 0
Latitude (deg) 34
Launch azimuth angle (deg) 0
Launch elevation angle (deg) 56.6+1
Longitude (deg) 54

obtained as represented in Table 2. The value of
cost function corresponding to these optimal values is
173.07.

In order to evaluate the performance of the
optimized guidance and control system, a nonlinear
seven DoF numerical simulation is performed. Table 3
represents the initial conditions by which the nominal
trajectory of unguided vehicle is generated. The launch
elevation angle of the guided vehicle is taken to be one
degree higher than that of the nominal trajectory.

Figures 6 to 15 demonstrate the simulation re-
sults. Figure 6 shows the trajectory of 
ying vehicle
in vertical and horizontal planes. Figure 7 shows the

Figure 6. Flight trajectory: (a) Vertical plane and (b)
horizontal plane.
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Figure 7. Distance between the real and nominal
trajectories.

Figure 8. Euler angles of the front body versus time.

Figure 10. Roll rate of the aft body versus time.

instantaneous error between the nominal and guided
trajectories. It shows that the guided vehicle has a little
error in following the nominal trajectory. This error
�rst grows since there is no guidance in the �rst seconds
of 
ight. After the midcourse guidance algorithm is
engaged at time tG = 5:01 sec, the trajectory tracking
error is controlled. This error increases with increasing
the altitude, which reduces the control power. But,
by approaching the surface of Earth, it is reduced
again. Finally, when the terminal guidance of the 
ying
vehicle is started at time tTG = 95:35 sec, trajectory
tracking is stopped.

Figure 8 shows the time history of Euler angles of
the front body. The good regulation of the roll angle
with zero steady state error with respect to the initial
�0 = 45 deg can be found in this �gure. Figure 9
shows roll rate of the front body in di�erent time
slots. It again shows the good performance of the roll

Figure 9. Roll rate of the front body versus time: (a) All times, (b) from t =0 to t = 10 sec, (c) from t = 10 to t = 20 sec
and (d) from t = 90 to t = 100.
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Figure 11. Acceleration commands versus time: (a) All times, (b) from t = 0 to t = 20 sec, (c) from t = 85 to t = 95 sec,
and (d) from t = 95 to t = 105 sec.

Figure 12. Lateral accelerations versus time: (a) All times, (b) from t = 0 to t = 20 sec, (c) from t = 85 to t = 95 sec,
and (d) from t = 95 to t = 105 sec.

controller. Figure 10 shows the roll rate of the aft
body. It should be noted that the aft body freely rolls
due to the incidence angle of the aft �ns. Therefore,
the trend of roll rate is similar to that of the vehicle
velocity. It increases up to the engine burnout. Then,
it decreases up to the trajectory peak. In the second
part of the trajectory, the velocity �rst increases due

to the gravitational acceleration and, �nally, decreases
due to the increase in air density.

Figure 11 shows the acceleration commands pro-
duced by the guidance law and Figure 12 represents the
total aerodynamic and gravity accelerations exerted
on the front body. Comparing Figures 11 and 12
shows that the tracking of the acceleration commands
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Figure 13. Maximum lateral acceleration command
versus time .

Figure 14. Fins de
ection angle versus time.

is satisfactory. At the beginning of the guidance phase,
the acceleration commands are about 1.8 g. Then,
increasing the altitude reduces the control power and,
consequently, the acceleration commands. Figure 13
shows the permitted maximum acceleration command,
calculated using Eq. (30). In the terminal phase, the
acceleration commands are less than 0.5 g in order
to hit the real target. Figure 14 represents the time
history of �ns de
ection angle and shows that de
ection
angles are within the permitted range of [{10, 10] deg.
Finally, incidence angles of the front body are shown
in Figure 15. In this simulation, the �nal miss distance
and control e�ort are 0.49 m and 93.36 m/s.

5.4. Error analysis
In order to investigate the robustness of the proposed
method in the presence of error sources, a Monte Carlo
simulation is performed. The simulation could be
utilized for the 
ying vehicle and the environmental
uncertainties. In this paper, errors in speci�c impulse
and launch elevation angle are considered as the 
ying
vehicle uncertainties and the cross wind is considered
as an environmental uncertainty. These errors are gen-
erated by random numbers with Gaussian distribution.
These random numbers and how they are applied to the
simulation are shown in Table 4. The lateral wind is
applied from the start time of simulation to t = 10 sec.

Figures 16-18 respectively show the Circular Error
Probability (CEP) of the unguided and guided 
ying
vehicle for 100 iterations the of Monte Carlo simulation.
The radius of circle, centered about the nominal target,

Figure 15. Incidence angles versus time: (a) All times, (b) from t = 0 to t = 20 sec, (c) from t = 85 to t = 95 sec, and (d)
from t = 95 to t = 105 sec.
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Table 4. De�nition of the random numbers and the way they are applied.

Mean Standard deviation Unit Application

Random number 1 1 0.01 | Multiplied by the speci�c impulse
Random number 2 0 1 deg Added to the elevation launch angle
Random number 3 0 2 m/s Considered as a lateral wind

Figure 16. CEP of unguided 
ying vehicle.

Figure 17. CEP of guided vehicle for the non-optimal
design obtained after 50 evaluations.

is 1131 m for the unguided vehicle and 36.72 m for the
non-optimal design, obtained after 50 evaluations of the
cost function by the optimization algorithm; also, it is
0.58 m for the optimized guided vehicle. It should be
noted that the authors have avoided taking INS errors
into account in order to be able to investigate the pure
performance of the guidance and control algorithms.
Therefore, in a real application, the INS errors will
increase the CEP of guided vehicle.

6. Conclusion

In this study, an integrated optimal tuning of the
guidance and control parameters of a dual-spin 
y-

Figure 18. CEP of guided vehicle for the optimal design
obtained after 200 evaluations.

ing vehicle using an e�ective evolutionary algorithm
was investigated. The complete seven DoF nonlinear
equations of motion were derived in tensor form (Ap-
pendices A and B). The structure of the control loops,
utilized for the front body, was given. Since the aerody-
namic forces and moments changed as a function of the
dynamic pressure, the controllers were parameterized
in two operating points. The guidance algorithm
was designed in midcourse and terminal phases. A
trajectory tracking guidance algorithm, based on PN
was utilized in the midcourse phase. A new nonlinear
saturation function was de�ned in order to saturate the
maximum lateral acceleration commands as a function
of the dynamic pressure. Afterwards, integrated tuning
of the guidance and control parameters was de�ned
as an optimization problem. Then, using TCACS,
the optimal values of these parameters were obtained.
Simulation results showed good performance of the op-
timized guidance and control system both in trajectory
tracking in midcourse phase and in the terminal inter-
cept. Finally, Monte Carlo simulations were performed
in the presence of a lateral wind as an environmental
uncertainty and other error sources such as errors in
speci�c impulse and launch elevation angle. The results
of Monte Carlo simulations showed robustness of the
optimized guidance and control system.

Nomenclature

aC Vector of the acceleration commands
in body coordinate system
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ac;max Saturation limit of the maximum
lateral acceleration command

amax Maximum lateral acceleration
ayC ; azC Components of the acceleration

command in body coordinate system
az Acceleration component in z direction
B1; B2 Front and aft body frames
bt Viscous friction coe�cient of the

bearing
Cl1 Rolling moment coe�cient of the front

body
Cl2 Rolling moment coe�cient of the aft

body
Cm; Cn Pitching and yawing moment

coe�cients
Cx; Cy; Cz Components of the aerodynamic force

coe�cients
DB1 ; DB2 ; DE Rotational time derivatives with

respect to front body, aft body, and
Earth frames

d Vehicle diameter (reference length)
d1; d2 Distances between the mass centers of

front and aft bodies and the bearing
d12 Distance between the mass centers of

front and aft bodies
E�ort Control e�ort
fa1 ; fa2 Vectors of aerodynamic forces applied

to the front and aft bodies
fp Vector of the thrust force applied to

the aft body
f12; f21 Forces applied to the front body from

the aft body and vice versa
g; g Gravity vector and the magnitude of

the gravity

IB1
B1
; IB2
B2

Inertia tensors of front and aft bodies

Ix1 ; Ix2 Axial moments of inertia for front and
aft bodies

Isp Speci�c impulse
Iy1 ; Iy2 Transverse moments of inertia for front

and aft bodies
kp; k� Proportional gains of roll controller
ka; kq Proportional gains of the lateral

acceleration controller
L1; L2 Rolling moments applied to front and

aft bodies
LT2 Thrust rolling moment applied to aft

body
M1;M 02 Aerodynamic pitching moments

applied to front and aft bodies
M 0T2

Thrust pitching moment applied to aft
body

Miss Final miss distance
ma1 ;ma2 Vectors of aerodynamic moments

applied to front and aft bodies
mp Vector of thrust moment applied to aft

body
m12;m21 Moments applied to the front body

from the aft body and vice versa
m;m1;m2 Total, front body, and aft body masses
N Proportional navigation constant
N1; N 02 Aerodynamic yawing moments applied

to front and aft bodies
N 0T2

Thrust yawing moment applied to aft
body

p Power of the nonlinear function,
de�ned to saturate the maximum
lateral acceleration

p; q; r Roll, pitch, and yaw rates of the front
body

p2 Roll rate of the aft body
�q Dynamic pressure
�qmax Smallest dynamic pressure that can

produce maximum lateral acceleration
�qmin Minimum dynamic pressure over

which the guidance algorithm issues
commands

SCB1 ;SCB2 Skew symmetric form of sB1B and
sB2B

S Reference area
sB1B ; sB2B Vectors from the 
ying vehicle center

of mass to the mass centers of front
and aft bodies

sBE Displacement vector from the 
ying
vehicle center of mass to the center of
Earth

sBT Relative position of the 
ying vehicle
with respect to the target

s Laplace variable
T Transformation matrix
Ta; T� Integral time constants of the roll and

lateral acceleration controllers
t Time
tb Engine burnout time
tG Start time of the midcourse guidance
tL Time lead of the virtual target
tTG Start time of the terminal guidance

phase
tstop Simulation stop time
t1; t2 Controllers switching times
u; v; w Components of the vehicle velocity

vector in front body coordinate system
vB Velocity vector of the 
ying vehicle
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vB1
B1
;vB1
B2

Velocity vectors of the front and aft
bodies with respect to the front body
frame

vEB The vehicle velocity vector with respect
to Earth frame

vEB1
;vEB2

Velocity vectors of the front and aft
bodies with respect to Earth frame

vM Magnitude of the vehicle velocity
vector with respect to Earth frame

X1; X2 The �rst components of aerodynamic
forces applied to front and aft bodies

XT2 The �rst component of thrust force
applied to aft body

x1; x2 Distances between the total center of
mass and the mass centers of front and
aft bodies

Y1; Y 02 The second components of aerodynamic
forces applied to front and aft bodies

Y 0T2
The second component of thrust force
applied to aft body

Z1; Z 02 The third components of aerodynamic
forces applied to front and aft bodies

Z 0T2
The third component of thrust force
applied to aft body

�; � Angle of attack and side slip angle
�a1 ; �e; �r Control de
ections of front �ns
�a2 Fixed de
ection of aft �ns
�; �;  Euler angles
�s Damping ratio of servo
� Variance of normal distribution
� Pheromone distribution function
�r Relative roll angle of aft body with

respect to front body


B1E ;
B2E Skew symmetric forms of !B1E and
!B2E

!B2B1 Angular velocity of aft body with
respect to front body

!B1E ;!B2E Angular velocities of front and aft
bodies with respect to Earth frame

!n Natural frequency of servo
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Appendix A

Derivation of translational equations
To derive the translational equations of the 
ying
vehicle, the two-body system is split at the bearing
connection point and, then, the Newton's second law
is written for each body. Eqs. (A.1) and (A.2)
show the translational motion of front and aft bodies,
respectively:
m1DEvEB1

= fa1 +m1g + f12; (A.1)

m2DEvEB2
= fa2 + fp +m2g + f21; (A.2)

where DE is the rotational time derivative with respect
to the Earth frame; B1 and B2 represent the mass
centers of the front and aft bodies, respectively; vEB1

and vEB2
are the velocity vectors of the front and aft

bodies with respect to the Earth frame; fa1 and fa2

are the vectors of aerodynamic forces applied to the
front and aft bodies; g is the gravity vector; fp is
the thrust force applied to the aft body; and f12 and
f21 are the vector forces applied to the front body
from the aft body and to the aft body from the front
body, respectively. The translational motion of the
entire 
ying vehicle can be obtained by adding both
equations. Notice that f12 and f21 are internal forces
and are canceled. Therefore:
m2DEvEB2

+m1DEvEB1
= fa1 +fa2 +fp+m1g+m2g:

(A.3)

The velocity vectors, vEB1
and vEB2

, can be related to
the total velocity vector, (vEB), in the following manner:

vEB1
= DEsB1E = DEsB1B +DEsBE

= DB1sB1B + 
B1EsB1B +DEsBE

= vB1
B1

+ 
B1EsB1B + vEB ; (A.4)

vEB2
= DEsB2E = DEsB2B +DEsBE

= DB1sB2B + 
B1EsB2B +DEsBE

= vB1
B2

+ 
B1EsB2B + vEB ; (A.5)

where sB1E and sB2E are the displacements of B1 and
B2 with respect to an Earth-�xed point (E); sB1B and
sB2B are the displacements of B1 and B2 with respect
to the total mass center of the 
ying vehicle (B); sBE
is the displacement of B with respect to E; DB1 is
the rotational time derivative with respect to the front
body frame; 
B1E is the skew symmetric form of the
angular velocity vector of frame B1 with respect to
frame E; and vB1

B1
and vB1

B2
are the velocity vectors

of B1 and B2 with respect to the front body frame.
In this work, the velocity of mass centers is supposed
to be negligible; thus, vB1

B1
and vB1

B2
will vanish. Now,

substituting Eqs. (A.4) and (A.5) into Eq. (A.3) the
following is obtained:

m2DE(
B1EsB2B)+mDEvEB+m1DE(
B1EsB1B)

= fa1 + fa2 + fp +mg: (A.6)

The left hand of Eq. (A.6) is rewritten using Euler
transformation as follows:

m2DB1(
B1EsB2B) +m2
B1E
B1EsB2B

+m1DB1(
B1EsB1B) +m1
B1E
B1EsB1B

+mDB1vEB+m
B1EvEB=mg+fa1 +fa2 +fp:
(A.7)

The �rst and third terms of the left-hand side can be
expanded in front body as follows:

m2DB1(
B1EsB2B) +m1DB1(
B1EsB1B)

= m2(DB1(
B1E)sB2B + 
B1EDB1sB2B)

+m1(DB1(
B1E)sB1B + 
B1EDB1sB1B)

= m2DB1(
B1E)sB2B +m2
B1EvB1
B2

+m1DB1(
B1E)sB1B +m1
B1EvB1
B2

= m2DB1(
B1E)sB2B +m1DB1(
B1E)sB1B :
(A.8)

The parameters of Eq. (A.8) can be expressed in front
body coordinate as follows:h


B1E
iB1

=

24 0 �r q
r 0 �p
�q p 0

35 ; (A.9)

[sB1B ]B1 =

24x1
0
0

35 ; [sB2B ]B1 =

24�x2
0
0

35 ; (A.10)

where x1 = m2
m d12, and x2 = m1

m d12. Substituting
Eqs. (A.9) and (A.10) into Eq. (A.8), it can be shown
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that Eq. (A.8) will be zero. Similarly, it can be shown
that the second and forth terms in the left-hand side
of Eq. (A.7) will vanish. Finally, Eq. (A.7) is written
as follows:

mDB1vEB +m
B1EvEB = mg + fa1 + fa2 + fp:
(A.11)

This equation can be expressed in front body coordi-
nate ]B1 as follows:�

dvEB
dt

�B1

+
h

B1E

iB1 �
vEB
�B1 = [T ]B1L[g]L

+
�

1
m

��
[fa1 ]B1 +[fa2 ]B1 +[fp]

B1
�
; (A.12)

where ]L represents the local-level coordinate and:

�
vEB
�B1 =

24uv
w

35 ;
[fa1 ]B1 =

24X1
Y1
Z1

35 ; (A.13)

[fa2 ]B1 = [T ]B1B2 [fa2 ]B2 =

24X2
Y 02
Z 02

35 ;
[fp]

B2 = [T ]B1B2 [fp]
B2 =

24XT2

Y 0T2

Z 0T2

35 ; (A.14)

[g]L =

240
0
g

35 ; (A.15)

[T ]B1L =

24 cos cos �
cos sin � sin�� sin cos�
cos sin � cos�+ sin sin�

sin cos �
sin sin � sin�+ cos cos�
sin sin � cos�� cos sin�

� sin �
cos � sin�
cos � cos�

35 ; (A.16)

[T ]B1B2 =

241 0 0
0 cos�r � sin�r
0 sin�r cos�r

35 : (A.17)

By substituting Eq. (A.9), and Eqs. (A.13) to (A.17)
into Eq. (A.12), Eqs. (1) to (3) are derived.

Appendix B

Derivation of rotational equations
Like the translational equations, to derive the rota-
tional equations of the 
ying vehicle, the two-body
system is split at the bearing connection point and,
then, the Newton Euler's law is written for each body.
The rotational motions of front and aft bodies can be
stated as:

IB1
B1
DB1!B1E + 
B1EIB1

B1
!B1E = ma1 + m12

+ SCB1f12; (B.1)

IB2
B2
DB2!B2E + 
B2EIB2

B2
!B2E = ma2 + mp

+ m21 + SCB2f21; (B.2)

where IB1
B1

and IB2
B2

are inertia tensors of B1 and B2
frames with respect to points B1 and B2, respectively,
ma1 and ma2 are aerodynamic moments applied to
front and aft bodies, m12 and m21 are the moments
applied to the front body from the aft body and vice
versa, SCB1 and SCB2 are the skew symmetric form
of the displacement vectors from the front and aft
mass centers to the bearing coupling point, DB2 is the
rotational time derivative with respect to the aft body
frame, !B2E and 
B2E are the vector and the skew
symmetric forms of angular velocity vector of frame
B2 with respect to frame E, respectively, and mp is
the thrust moment applied to the aft body. These
equations can be expressed in the front body coordinate
]B1 as follows:h

IB1
B1

iB1
�
d!B1E

dt

�B1

+
h

B1E

iB1 h
IB1
B1

iB1 �
!B1E

�B1

= [ma1 ]B1 + [m12]B1 + [SCB1 ]B1 [f12]B1 ;
(B.3)h

IB2
B2

iB1
[T ]B1B2

�
d!B2E

dt

�B2

+
h

B2E

iB1 h
IB2
B2

iB1 �
!B2E

�B1 = [ma2 ]B1

+ [mp]
B1 + [m21]B1 + [SCB2 ]B1 [f21]B1 :

(B.4)

Given the assumptions made in Section 2, the parame-
ters of Eqs. (B.3) and (B.4) can be expressed in ]B1 as
follows:

[ma1 ]B1 =

24L1
M1
N1

35 ;
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[ma2 ]B1 = [T ]B1B2 [ma2 ]B2 =

24L2
M 02
N 02

35 ; (B.5)

[mp]
B1 = [T ]B1B2 [mp]

B2 =

24LT2

M 0T2

N 0T2

35 ; (B.6)

[f12]B1 =

24f12x
f12y
f12z

35 ; [f21]B1 =

24f21x
f21y
f21z

35 ; (B.7)

[m12]B1 = � [m21]B1 =

24bt _�r
M12
N12

35 ; (B.8)

h
IB1
B1

iB1
=

24Ix1 0 0
0 Iy1 0
0 0 Iy1

35 ; (B.9)

h
IB2
B2

iB1
= [T ]B1B2

h
IB2
B2

iB2
[T ]B2B1

=

24Ix2 0 0
0 Iy2 0
0 0 Iy2

35 ; (B.10)

[SCB1 ]B1 =

240 0 0
0 0 d1
0 �d1 0

35 ;
[SCB2 ]B1 =

240 0 0
0 0 �d2
0 d2 0

35 ; (B.11)

where bt is the viscous friction coe�cient of the bearing,
and d1 and d2 are distances between the mass centers
of the front and aft bodies and midpoint of bearing,
respectively. To calculate [!B2E ]B1 , !B2E is expanded
as:

!B2E = !B2B1 + !B1E : (B.12)

This equation can be expressed in the front body
coordinates ]B1 as follows:�
!B2E

�B1 =
�
!B2B1

�B1 +
�
!B1E

�B1 ; (B.13)

where:�
!B2E

�B1 = [T ]B1B2
�
!B2E

�B2 =

24p2
q02
r02

35 ; (B.14)

�
!B2B1

�B1 =

24 _�r
0
0

35 : (B.15)

Therefore:�
!B2E

�B1 =

24p2
q02
r02

35 =

24p+ _�r
q
r

35 =

24p2
q
r

35 : (B.16)

In a similar way, [T ]B1B2 [d!
B2E

dt ]B2 can be calculated
as follows:
DB2!B2E = DB1!B2E + 
B1B2!B2E ; (B.17)

[T ]B1B2

�
d!B2E

dt

�B2

=
�
d!B2E

dt

�B1

+
h

B1B2

iB1 �
!B2E

�B1 ; (B.18)

or:

[T ]B1B2

�
d!B2E

dt

�B2

=

24 _p2

_q + _�rr
_r � _�rq

35 : (B.19)

By substituting Eqs. (B.5) to (B.11), (B.16), and
(B.19) into Eqs. (B.3) and (B.4), the component form
of these equations can be written as:24Ix1 0 0

0 Iy1 0
0 0 Iy1

3524 _p
_q
_r

35
+

24 0 �r q
r 0 �p
�q p 0

3524Ix1 0 0
0 Iy1 0
0 0 Iy1

3524pq
r

35
=

24L1
M1
N1

35+

24bt _�r
M12
N12

35+

240 0 0
0 0 d1
0 �d1 0

3524f12x
f12y
f12z

35 ;
(B.20)24Ix2 0 0

0 Iy2 0
0 0 Iy2

3524 _p2

_q + _�rr
_r � _�rq

35
+

24 0 �r q
r 0 �p2�q p2 0

3524Ix2 0 0
0 Iy2 0
0 0 Iy2

3524p2
q
r

35
=

24L2
M 02
N 02

35+

24LT2

M 0T2

N 0T2

35+

24�bt _�r�M12�N12

35
+

240 0 0
0 0 �d2
0 d2 0

3524f21x
f21y
f21z

35 :
(B.21)

Eqs. (4) and (5) can be concluded from Eqs. (B.20)
and (B.21). Moreover:

Iy1 ( _q � pr) + Ix1pr = M1 + d1f12z ; (B.22)

Iy2 ( _q � pr) + Ix2p2r = M 02 +M 0T2
� d2f21z : (B.23)
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Adding these equations provides Eq. (6) as follows:

Iy1 ( _q � pr) + Ix1pr + Iy2 ( _q � pr) + Ix2p2r

= M1 +M 02 +M 0T2
� d12f21z : (B.24)

By substituting Eqs. (A5) and (1) to (3) into Eq. (A.2)
and performing a series of mathematical operations,
the last term of Eq. (B.24) can be expressed as
follows:

�d12f21z =� x1Z1 + x2Z 0 + x2ZT2

� �m1m2

m

�
d2

12 ( _q � pr) : (B.25)

By substituting Eq. (B.25) into Eq. (B.24) and per-
forming a series of mathematical operations, Eq. (6)
is derived. Eq. (7) can be achieved in a similar
way.
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