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Abstract. With respect to the interval neutrosophic Multi-Attribute Decision-Making
(MADM) problems, the MADM method is developed based on some interval neutrosophic
aggregation operators. Firstly, the Induced Generalized Interval Neutrosophic Hybrid
Arithmetic Averaging (IGINHAA) operator and the Induced Generalized Interval Neutro-
sophic Hybrid Geometric Mean (IGINHGM) operator are proposed, which can weight all
the input arguments and their ordered positions. Further, regarding the situation where the
input elements are interdependent, the Induced Generalized Interval Neutrosophic Shapley
Hybrid Arithmetic Averaging (IGINSHAA) operator and the Induced Generalized Interval
Neutrosophic Shapley Hybrid Geometric Mean (IGINSHGM) operator are proposed, which
are extensions of IGINHAA and IGINHGM operators, respectively, and some properties
of these given operators are investigated. Furthermore, the interval neutrosophic cross
entropy, which is an extension of single-valued neutrosophic cross entropy, is de�ned,
and the models based on the interval neutrosophic cross entropy and generalized Shapley
function are respectively constructed to determine the optimal fuzzy measures on the
attribute and ordered sets. Finally, an approach to interval neutrosophic MADM with
interactive conditions and incomplete known weight information is proposed based on these
given operators, and a practical example is shown to verify the practicality and feasibility
of the new approach.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Since Neutrosophic Set (NS), which is a generalization
of fuzzy set [1], vague set [2], intuitionistic fuzzy
set [3], tautological set [4], and so on, was introduced
by Smarandache [4], it has been applied in many
di�erent areas, such as medical diagnosis [5,6], imaging
processing [7], pattern recognition [8], and decision-
making problems [9-11]. It should be noted that
the words \neutrosophy" and \neutrosophic" were in-
vented by Smarandache [4]. Etymologically, \neutroso-
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phy" (noun) means knowledge of neutral thought while
\neutrosophic" (adjective) means having the nature of
or the characteristic of Neutrosophy. Because NS con-
sists of three completely independent parts, which are
truth-membership degree, indeterminacy-membership,
degree and falsity-membership degree, it is very suit-
able to capture the incomplete, indeterminate, and
inconsistent information. Now, NS has attracted more
and more attentions [12-17]. Wang et al. [18] de�ned
the Single-Valued Neutrosophic Set (SVNS) as a sub-
class of the NS. Majumdar and Samanta [19] intro-
duced normalized Hamming distance and normalized
Euclidian distance between two SVNSs, and they fur-
ther presented the similarity between two SVNSs and
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the entropy of a SVNS. Ye [20] de�ned the single-valued
neutrosophic weighted cross entropy and applied it to
the MADM problem. P�atra�scu [21] presented two types
of neutrosophic entropy as extensions of Kaufman's
formula and Kosko's formula, respectively. Biswas et
al. [22] developed a modi�ed GRA method for the
single-valued neutrosophic MADM problems with com-
pletely unknown weight information, and entropy of the
SVNS is used to obtain the weight information. Biswas
et al. [23] developed an extended TOPSIS method
for the neutrosophic MADM problems. In fact, in
some complex decision environment, it is insu�cient to
express the truth-membership degree, indeterminacy-
membership degree, and falsity membership degree by
crisp values. Wang et al. [24] utilized interval numbers
to denote these three parts and de�ned the Interval
Neutrosophic Set (INS) as an instance of NS. Chi
and Liu [25] developed an extended TOPSIS method
to solve MADM problems with interval neutrosophic
information, and the maximization deviation method
was used to determine the attribute weights.

The aggregation operators are important tools to
process the MADM problems [26-30]. With respect to
neutrosophic information, Ye [31] proposed the Single-
Valued Neutrosophic Weighted Geometric Averaging
(SVNWGA) operator and applied it to solve single-
valued neutrosophic decision-making problems. Liu
and Wang [32] proposed the Single-Valued Neutro-
sophic Normalized Weighted Bonferroni Mean (SVN-
NWBM) operator which has the reducibility, idempo-
tency, and commutativity, and utilized it to handle the
MADM problems with correlated attributes. Zhang
et al. [33] de�ned the operational and comparison
rules of INSs and proposed two interval neutrosophic
aggregation operators, including Interval Neutrosophic
Number Weighted Averaging Aggregation (INNWAA)
operator and Interval Neutrosophic Number Weighted
Geometric Aggregation (INNWGA) operator to handle
the interval neutrosophic MADM problems. Ye [34]
proposed an approach to the MADM problems based
on Interval Neutrosophic Number Ordered Weighted
Averaging (INNOWA) operator and the Interval Neu-
trosophic Number Ordered Weighted Geometric (IN-
NOWG) operator. There are some di�erences between
aforementioned interval neutrosophic aggregation op-
erations. INNWAA and INNWGA operators only
weight the input arguments themselves, but ignore
their ordered positions. INNOWAA and INNOWGA
operators only take into account the ordered positions
of the interval neutrosophic arguments, but do not
consider the arguments themselves. In addition, these
above interval neutrosophic number aggregation oper-
ators cannot reect the correlations among the given
arguments.

In INNOWAA and INNOWGA operators, we
can see that the reordering process depends on the

values of the interval neutrosophic arguments, and
these two operators could not consider the importance
of the aggregated arguments. However, in some
real applications, this reordering may not meet our
interests. Sometimes, the decision-makers may want
to order the arguments based on some other associated
variables instead of the aggregated arguments. To
overcome these shortcomings, the Induced Generalized
Interval Neutrosophic Hybrid Arithmetic Averaging
(IGINHAA) operator and the Induced Generalized
Interval Neutrosophic Hybrid Geometric Mean (IG-
INHGM) operator are proposed in this paper. In
addition, the aforementioned interval neutrosophic
number operators only consider the addition of the
importance of individual input arguments. However,
in real decision making, the arguments (i.e., attributes)
are often not independent. To address these situations,
the Induced Generalized Interval Neutrosophic Shapley
Hybrid Arithmetic Averaging (IGINSHAA) operator
and Induced Generalized Interval Neutrosophic Shap-
ley Hybrid Geometric Mean (IGINSHGM) operator
are proposed in this paper. These two operators
can not only consider the importance of input argu-
ments and their ordered positions, but also, overall,
take into account the correlations among them and
their ordered positions. Furthermore, due to time
pressure, lack of knowledge or data, and the expert's
limited expertise, the weight information in the MADM
problems is usually incompletely known or completely
unknown. Models based on the cross entropy of the
INNs are constructed to determine the attribute weight
information. As a very important goal, a method of
interval neutrosophic MADM with interactive criteria
and incompletely known weight information is devel-
oped.

The remainder of this paper is constructed as
follows. In Section 2, some basics in regard to INS are
introduced, and the cross entropy of INSs is de�ned.
In Section 3, we propose IGINHAA and IGINHGM
operators and investigate their several proprieties. In
Section 4, we review some basic concepts, such as
the fuzzy measure and generalized Shapley function;
moreover, we propose IGINSHAA and IGINSHGM
operators. In Section 5, the models based on cross
entropy of INSs are constructed to obtain the attribute
weight information, and a method for the neutrosophic
MADM is developed. In Section 6, a practical example
is shown to verify the e�ectiveness of the developed
method. In Section 7, the conclusions are summarized.

2. Preliminaries

2.1. Interval Neutrosophic Set (INS)
De�nition 1 [33]. Suppose that X is a universe of
discourse, with a generic element in X represented by
x. An INS Â in X is expressed by:
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Â =
��
x; TÂ(x); IÂ(x); FÂ(x)

	 jx 2 X	 ;
=
�
x;
��
TLÂ (x); TUÂ (x)

�
;
�
ILÂ(x); IUÂ (x)

�
;�

FLÂ (x); FUÂ (x)
�	 jx 2 X	 ; (1)

where functions TÂ(x), IÂ(x), and FÂ(x) are the truth-
membership, indeterminacy-membership, and falsity-
membership functions, respectively, and they satisfy
TÂ = [TL

Â
; TU
Â

] � [0; 1], IÂ = [IL
Â
; IU
Â

] � [0; 1], FÂ =
[FL
Â
; FU

Â
] � [0; 1], and 0 � TU

Â
+ IU

Â
+ FU

Â
� 3.

For convenience, we call â = fT (â); I(â); F (â)g =�
[TL(â); TU (â)]; [IL(â); IU (â)]; [FL(â); FU (â)]t

	
an

Interval Neutrosophic Number (INN). Let:

â = fT (â); I(â); F (â)g;
and:

b̂ = fT (b̂); I(b̂); F (b̂)g;
be any two INNs; the operational laws of them are
shown in Box I [33].

De�nition 2 [24]. Suppose â = fT (â); I(â); F (â)g =�
[TL(â); TU (â)]; [IL(â); IU (â)]; [FL(â); FU (â)]

	
is an

INN, the complement of â is de�ned as follows:

âc = fT c(â); Ic(â); F c(â)g

=
��
FL(â); FU (â)

�
;
�
1� IU (â); 1� IL(â)

�
;

�
TL(â); TU (â)

��
:

De�nition 3 [35]. Let â = fT (â); I(â); F (â)g and
b̂ = fT (b̂); I(b̂); F (b̂)g be any two INNs, then the
Euclidean distance between â and b̂ is de�ned as shown
in Box II.

De�nition 4 [33]. Suppose that:
â = f(T (â); I(â); F (â))g

is an INN, and then:
S(â) = [TL(â) + 1� IU (â) + 1� FU (â); TU (â)

+ 1� IL(â) + 1� FL(â)];

A(â) = [ minfTL(â)� FL(â); TU (â)� FU (â)g;
maxfTL(â)� FL(â); TU (â)� FU (â)g];

C(â) = [TL(â); TU (â)];

â� b̂ =

8>><>>:
h
TL(â) + TL(b̂)� TL(â)TL(b̂); TU (â) + TU (b̂)� TU (â)TU (b̂)

i
;h

IL(â)IL(â); IU (â)IU (b̂)
i
;
h
FL(â)FL(b̂); FU (â)FU (b̂)

i
9>>=>>; (2)

â
 b̂ =

8>>>>>>><>>>>>>>:

h
TL(â)TL(b̂); TU (â)TU (b̂)

i
;h

IL(â) + IL(â)� IL(â)IL(â); IU (â) + IU (b̂)� IU (â)IU (b̂)
i
;h

FL(â) + FL(b̂)� FL(â)FL(b̂); FU (â) + FU (b̂)� FU (â)FU (b̂)
i
9>>>>>>>=>>>>>>>;

(3)

�â =

8>><>>:
h
1� �1� TL(â)

�� ; 1� �1� TU (â)
��i ;h�

IL(â)
�� ; �IU (â)

��i ; h�FL(â)
�� ; �FU (â)

��i
9>>=>>; � > 0; (4)

(â)� =

8>><>>:
h�
TL(â)

�� ; �TU (â)
��i ;h

1� �1� IL(â)
�� ; 1� �1� IU (â)

��i ; h1� �1� FL(â)
�� ; 1� �1� FU (â)

��i
9>>=>>; � > 0: (5)

Box I



P.D. Liu et al./Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 2164{2181 2167

d(â; b̂)=
r

1
6

�jTL(â)�TL(b̂)j2+jTU(â)�TU(b̂)j2+jIL(â)�IL(b̂)j2+jIU(â)�IU(b̂)j2+jFL(â)�FL(b̂)j2+jFU(â)�FU(b̂)j2�:
(6)

Box II

where S(â), A(â), and C(â) represent the score func-
tion, accuracy function, and certainty function of INN
â, respectively.

For an INN â, the bigger the truth-membership
T (â) degree is, the smaller the indeterminacy-
membership I(â) degree and the falsity-membership
F (â) degree are, and the greater the INN is. As for the
accuracy function, the bigger the di�erence between
truth-membership T (â) and falsity-membership F (â)
is, the surer the statement is. For the certainty
function, the bigger the truth-membership T (â) is, the
greater the corresponding INN is.

Based on the score function, accuracy function
and certainty function of INNs, the comparison rules
of INNs are shown as follows:

De�nition 5 [33]. Let â and b̂ be any two INNs, the
comparison rules are provided as follows:

1. If S(â) � S(b̂) > 1
2 , then â � b̂;

2. If S(â) � S(b̂) = 1
2 , and A(â) � A(b̂) > 1

2 , then
â � b̂;

3. If S(â) � S(b̂) = 1
2 , A(â) � A(b̂) = 1

2 , and C(â) �
C(b̂) > 1

2 , then â � b̂;
4. If S(â) � S(b̂) = 1

2 , A(â) � A(b̂) = 1
2 , and C(â) �

C(b̂) = 1
2 , then â = b̂.

2.2. The cross entropy of INS
Before introducing the cross entropy and discrimi-
nation information measures between the two INNs,
we �rstly review the notions of cross entropy and
discrimination information measures between two fuzzy
sets.

De�nition 6 [36]. Let:

A = (A(x1); A(x2); � � � ; A(xn));

and:

B = (B(x1); B(x2); � � � ; B(xn));

be two fuzzy sets in the universe of discourse, X =
fx1; x2; � � � ; xng. The cross entropy between A and B
is shown as follows:

H(A;B) =
nX
i=1

 
A(xi) log2

A(xi)
(A(xi) +B(xi))=2

+ (1�A(xi)) log2
1�A(xi)

1� (A(xi) +B(xi))=2

!
: (7)

However, the cross entropy H(A;B) is not symmetric
in regard to its elements; a symmetric discrimina-
tion information measure was introduced by Shang et
al. [36] and shown as follows:

I(A;B) = H(A;B) +H(B;A): (8)

According to the cross entropy and discrimination
information measures between two fuzzy sets, the
cross entropy and discrimination information measures
between two interval neutrosophic sets are de�ned as
follows:

De�nition 7. Let Â = (Â(x1); Â(x2); � � � ; Â(xn))
and B̂ = (B̂(x1); B̂(x2); � � � ; B̂(xn)) be two interval
neutrosophic sets in the universe of discourse X =
fx1; x2; � � � ; xng. The cross entropy between Â and B̂
is de�ned as follows:

E(Â;B̂) =
nX
i=1

"
TL
Â

(xi) + TU
Â

(xi)
2

log2

TL
Â

(xi) + TU
Â

(xi)
(TL
Â

(xi) + TU
Â

(xi) + TL
B̂

(xi) + TU
B̂

(xi))=2

#
+

nX
i=1

" 
1� TL

Â
(xi) + TU

Â
(xi)

2

!
log2

1��TL
Â

(xi) + TU
Â

(xi)
�
=2

1��TL
Â

(xi)+TU
Â

(xi)+TL
B̂

(xi)+TU
B̂

(xi)
�
=4

#

+
nX
i=1

"
IL
Â

(xi) + IU
Â

(xi)
2

log2

IL
Â

(xi)+IU
Â

(xi)�
IL
Â

(xi)+IU
Â

(xi)+IL
B̂

(xi)+IU
B̂

(xi)
�
=2

#
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+
nX
i=1

" 
1� IL

Â
(xi) + IU

Â
(xi)

2

!
log2

1� �IL
Â

(xi) + IU
Â

(xi)
�
=2

1��IL
Â

(xi)+IU
Â

(xi)+IL
B̂

(xi)+IU
B̂

(xi)
�
=4

#

+
nX
i=1

"
FL
Â

(xi) + FU
Â

(xi)
2

log2

FL
Â

(xi) + FU
Â

(xi)�
FL
Â

(xi) + FU
Â

(xi) + FL
B̂

(xi) + FU
B̂

(xi)
�
=2

#

+
nX
i=1

" 
1� FL

Â
(xi) + FU

Â
(xi)

2

!
log2

1��FL
Â

(xi) + FU
Â

(xi)
�
=2

1��FL
Â

(xi)+FU
Â

(xi)+FL
B̂

(xi)+FU
B̂

(xi)
�
=4

#
;
(9)

where:

Â =
��
x; TÂ(x); IÂ(x); FÂ(x)

	 jx 2 X	
=
�
x;
�

[TLÂ (x); TUÂ (x)]; [ILÂ(x); IUÂ (x)];

[FLÂ (x); FUÂ (x)]
	jx 2 X�;

B̂ =
��
x; TB̂(x); IB̂(x); FB̂(x)

	 jx 2 X	
=
�
x;
�

[TLB̂ (x); TUB̂ (x)]; [ILB̂(x); IUB̂ (x)];

[FLB̂ (x); FUB̂ (x)]
	jx 2 X�:

According to Shannon's inequality [37], we can easily
prove that E(Â; B̂) � 0 and E(Â; B̂) = 0 if and only if
TÂ(x) = TB̂(x); IÂ(x) = IB̂(x) and FÂ(x) = FB̂(x)
for any xi 2 X. In addition, we can easily prove
that E(Âc; B̂c) = E(Â; B̂), where Âc and B̂c are the
complements of INSs Â and B̂, respectively.

E(Â; B̂) denotes the degree of discrimination of
Â from B̂, which can also be named a discrimination
for INSs. Since E(Â; B̂) is not symmetric, a modi�ed
symmetric discrimination information measures for
INSs is de�ned as follows:

D(Â; B̂) = E(Â; B̂) + E(B̂; Â): (10)

The smaller D(Â; B̂) is, the smaller the di�erence
between Â and B̂ is.

3. Induced generalized interval neutrosophic
hybrid aggregation operators based on the
additive measures

In this section, we will propose IGINHAA and IGIN-
HGM operators, which can weight the interval neutro-
sophic arguments and their ordered positions by the
induced variables.

3.1. IGHAA operator
The Induced Generalized Hybrid Averaging (IGHA)
operator [38] is a generalization of Induced Ordered
Weighted Averaging (IOWA) operator and the Hybrid
Weighted Averaging (HWA) operator. The HWA op-
erator weights both input arguments and their ordered
positions. However, the HWA operator does not have
the boundedness and idempotency. Further, Lin et
al. [39] proposed a new Hybrid Weighted Arithmetical
Averaging (HWAA) operator with the boundedness
and idempotency.

De�nition 8 [39]. A HWAA operator of dimension n
is a mapping HWAA: Rn ! R that has an associated
weight vector w = (w1; w2; � � � ; wn)T with wj 2 [0; 1]
and

Pn
j=1 wj = 1, denoted by:

HWAA(a1; a2; � � � ; an) =

nP
j=1

wj!(j)a(j)

nP
j=1

wj!(j)

; (11)

where a(j) is the jth largest value of ai (i = 1; 2; � � � ; n),
and ! = (!1; !2; � � � ; !n)T is the weight vector of
ai (i = 1; 2; � � � ; n) with !j 2 [0; 1] and

Pn
j=1 !j = 1.

Moreover, Merigo proposed the Induced General-
ized Hybrid Averaging (IGHA) operator [38], which is
a generalization of HWA operator by utilizing general-
ized means [40] and order inducing variables. However,
the IGHA operator does not have the properties,
such as boundedness and idempotency. Based on
HWAA operator, Meng et al. [41] proposed an Induced
Generalized Hybrid Arithmetical Averaging (IGHAA)
operator which has the boundedness and idempotency.

De�nition 9 [41]. Suppose that ui(i = 1; 2; � � � ; n) is
a set of order-inducing variables, and  is a parameter
with  2 (0;+1). An IGHAA operator of dimension n
is a mapping IGHAA: Rn ! R on the set of the second
arguments of two tuples < u1; a1 >;< u2; a2 >; � � � ; <
un; an >, such that:

IGHAA(< u1; a1 >;< u2; a2 >; � � � ; < un; an >)

=
� n�
j=1

wj!(j)a

(j)

nP
j=1

wj!(j)

� 1


; (12)
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where a(j) is ai value of IGHAA pair < ui; ai > having
the jth largest value of ui, ! = (!1; !2; � � � ; !n)T is
the weight vector of ai(i = 1; 2; � � � ; n), such that !j 2
[0; 1],

Pn
j=1 !j = 1, and w = (w1; � � � ; wn)T is a weight

vector on the ordered set N = f1; 2; � � � ; ng, such that
wj 2 [0; 1],

Pn
j=1 wj = 1.

3.2. IGINHAA operator
The IGHAA operator fails to aggregate interval neu-
trosophic information; in this section, we will extend it
to INNs and propose IGINHAA operator.

De�nition 10. Suppose that 
 is the set of all
INNs, âi = fT (âi); I(âi); F (âi)g(i = 1; 2; � � � ; n) is
a collection of INNs, ui (i = 1; 2; � � � ; n) is a set of
order-inducing variables, and  is a parameter with
 2 (0;+1). An IGINHAA operator of dimension
n is a mapping IGINHAA: 
n ! 
 on the set of the
second components of 2-tuple arguments < u1; â1 >;<
u2; â2 >; � � � < un; ân >, such that:

IGINHAA(< u1; â1 >;< u2; â2 >; � � � ; < un; ân >)

=

0BB@
n�
j=1

wj!(j)â

(j)

nP
j=1

wj!(j)

1CCA
1


;
(13)

where â(j) is âi value of IGINHAA pair < ui; âi > hav-
ing the jth largest value of ui, ! = (!1; !2; � � � ; !n)T
is the weight vector of âi(i = 1; 2; � � � ; n), such that
!j 2 [0; 1] and

Pn
j=1 !j = 1, and w = (w1; � � � ; wn)T

is a weight vector on the ordered set N = f1; � � � ; ng,
such that wj 2 [0; 1],

Pn
j=1 wj = 1.

However, if there is a tie between < ui; âi >
and < uj ; âj > regarding order-inducing variables
such that ui = uj , then in this case, we replace the
second components of 2-tuple arguments< ui; âi > and
< uj ; âj > by their generalized mean ((âi � âj )=2)1= .
If k order-inducing variables are equal, we replace these
by k replicas of their generalized mean.

Theorem 1. With the operations of INNs, IGIN-
HAA operator (Eq. (13)) can be transformed into the
following form.

IGINHAA(< u1; â1 >;< u2; â2 >; � � � ; < un; ân >)

=

8>>><>>>:
26664
0BB@1�

nY
j=1

�
1� �TL(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1


;

0BB@1�
nY
j=1

�
1� �TU (â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1

37775 ;

266641�
0BB@1�

nY
j=1

�
1�(1�IL(â(j)))

� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1


;

1�
0BB@1�

nY
j=1

�
1��1�IU (â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1

37775 ;

266641�
0BB@1�

nY
j=1

�
1��1�FL(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1


;

1�
0BB@1�

nY
j=1

�
1��1�FU (â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1

37775
9>>>=>>>; ;

(14)

whose aggregated value is also an INN.

Proof. Firstly, as shown in Box III, we prove that
Eq. (14) holds.

Next, we prove that Eq. (14) is an INN. It is easy
to prove the following inequalities:26664

0BB@1�
nY
i=1

�
1� �TL(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1


;

0BB@1�
nY
i=1

�
1��TU(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1

37775 � [0; 1];

266641�
0BB@1�

nY
i=1

�
1� �1� IL(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1


;

1�
0BB@1�

nY
i=1

�
1��1�IU(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1

37775 � [0; 1];
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IGINHAA(< �1; â1 >;< �2; â2 >; � � � ; < �n; ân >)

=

0BBBBBBBBBBBBB@

n�
j=1

wj!(j)

8>>><>>>:
h�
TL(â(j))

�
;
�
TU(â(j))

�i
;
h
1� �1� IL(â(j))

�
; 1� �1� IU(â(j))

�i
;

h
1� �1� FL(â(j))

�
; 1� �1� FU(â(j))

�i
9>>>=>>>;

nP
j=1

wj!(j)

1CCCCCCCCCCCCCA

1


=

0BBBBBBBBBBBBBBBBBBBBBBB@

n�
j=1

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

26641� �1� �TL(â(j))

�� wj!

(j)

nP
j=1

wj!

(j) ; 1� �1� �TU(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

3775 ;
2664�1� �1� IL(â(j))

�� wj!

(j)

nP
j=1

wj!

(j) ;

�
1� �1� IU(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

3775 ;
2664�1� �1� FL(â(j))

�� wj!

(j)

nP
j=1

wj!

(j) ;

�
1� �1� FU(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

3775

9>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>;

1CCCCCCCCCCCCCCCCCCCCCCCA

1


;

IGINHAA(< u1; â1 >;< u2; â2 >; � � � ; < un; ân >)

=

8>>><>>>:
26664
0BB@1�

nY
j=1

�
1� �TL(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1


;

0BB@1�
nY
j=1

�
1� �TU (â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1

37775 ;

266641�
0BB@1�

nY
j=1

�
1��1�IL(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1


; 1�
0BB@1�

nY
j=1

�
1��1�IU (â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1

37775 ;

266641�
0BB@1�

nY
j=1

�
1� �1� FL(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1


;

1�
0BB@1�

nY
j=1

�
1� �1� FU (â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1

37775
9>>>=>>>; :

Box III
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266641�
0BB@1�

nY
i=1

�
1� �1� FL(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1


;

1�
0BB@1�

nY
i=1

�
1��1�FU(â(j))

�� wj!

(j)

nP
j=1

wj!

(j)

1CCA
1

37775 � [0; 1]:

Thus, it is an INN.

Remark 1. If  = 1, then IGINHAA operator
reduces to the Induced Interval Neutrosophic Hybrid
Arithmetic Averaging (IINHAA) operator:

IINHAA(< u1; â1 >;< u2; â2 >; � � � ; < un; ân >)

=

n�
j=1

wj!(j)â(j)

nP
j=1

wj!(j)

: (15)

Furthermore, If wj = 1
n (j = 1; 2; � � � ; n), then we get

the Interval Neutrosophic Number Weighted Averaging
Aggregation (INNWAA) operator [33].

Remark 2. If  = 2, then IGINHAA operator
reduces to the Induced Interval Neutrosophic Hybrid
Quadratic Averaging (IINHQA) operator:

IINHQA(< u1; â1 >;< u2; â2 >; � � � ; < un; ân >)

=

0BB@
n�
j=1

wj!2
(j)â

2
(j)

nP
j=1

wj!2
(j)

1CCA
1
2

: (16)

From these remarks, we can know that IGINHAA
operator is the generalized form of IINHAA, INNWAA,
and IINHQA operators.

Based on the operational laws of INNs, we shall
prove that IGINHAA operator has the following prop-
erties.

Theorem 2 (idempotency). Suppose that âi =
a = fT (a); I(a); F (a)g(i = 1; 2; � � � ; n), then we have:

IGINHAA(<u1; â1>;< u2; â2>; � � � ; < un; ân >)= â:

Theorem 3 (Commutativity). Suppose that (â01;
â02; � � � ; â0n) is any permutation of (â1; â2; � � � ; ân), then
we get:

IGINHNAA(< u1; â1 >;< u2; â2 >; � � � ; < un; ân >)

=IGINHNAA(<u01; â01>;< _u02; â02>; � � � ;<u0n; â0n>):

Theorem 4 (monotonicity). Suppose that A =
(â1; â2; � � � ; ân) and ~B = (b̂1; b̂2; � � � ; b̂n) are two
collections of INNs, âi = fT (âi); I(âi); F (âi)g(i =
1; 2; � � � ; n), b̂i = fT (b̂i); I(b̂i); F (b̂i)g(i = 1; 2; � � � ; n),
and (�) is a permutation on ~A and ~B, respectively, such
that:

TL(â(i)) � TL(b̂(i)); TU (â(i)) � TU (b̂(i));

IL(â(i)) � IL(b̂(i)); IU (â(i)) � IU (b̂(i));

FL(â(i)) � FL(b̂(i)); FU (â(i)) � FU (b̂(i));

then we have:

IGINHAA(< u1; â1 >;< u1; â2 >; � � � ; < u1; ân >)

� IGINHAA(<u1; b̂1>;<u1; b̂2>;� � � ;<u1; b̂n>):

Theorem 5 (boundedness). Suppose that âi =
fT (âi); I(âi); F (âi)g(i = 1; 2; � � � ; n) is a collection of
INNs, and:

â� =
��

max(TL(âi));max(TU (âi))
�
;�

min(IL(âi));min(IU (âi))
�
;�

min(FL(âi));min(FU (âi))
�	
;

â+ =
��

min(TL(âi));min(TU (âi))
�
;�

max(IL(âi));max(IU (âi))
�
;�

max(FL(âi));max(FU (âi))
�	
;

then:

â�� IGINHAA(<u1; â1>;<u2; â2>;� � �;<un; ân>)

� â+:

Limited to the space, the proofs of the properties of
IGINHAA operator are omitted here.

3.3. IGINHGM operator
In terms of IGINHAA operator and geometric mean,
we de�ne an IGINHGM operator.

De�nition 11. Suppose that 
 is the set of all
INNs, âi = fT (âi); I(âi); F (âi)g; (i = 1; 2; � � � ; n) is
a collection of INNs, ui (i = 1; 2; � � � ; n) is a set of
order-inducing variables, and  is a parameter with
 2 (0;+1). An IGINHGM operator of dimension
n is a mapping IGINHGM: 
n ! 
 on the set of the
second components of 2-tuple arguments < u1; â1 >;<
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u2; â2 >; � � � < un; ân >, such that:

IGINHGM(< u1; â1 >;< u2; â2 >; � � � ; < un; ân >)

=
1


0@ n

i=1

�
â(j)

� wj!(j)
nP
j=1

wj!(j)

1A ; (17)

where â(j) is âi value of IGINHGM pair < ui; âi > hav-
ing the jth largest value of ui, ! = (!1; !2; � � � ; !n)T
is the weight vector of âi (i = 1; 2; � � � ; n), such that
!j 2 [0; 1] and

Pn
j=1 !j = 1; w = (w1; w2; � � � ; wn)T is

a weight vector on the ordered set N = f1; 2; � � � ; ng,
such that wj 2 [0; 1] and

Pn
j=1 wj = 1.

However, if there is a tie between < ui; âi >
and < uj ; âj > regarding order-inducing variables
such that ui = uj , then in this case, we replace the
second components of 2-tuple arguments < ui; âi >
and < uj ; âj > by their generalized geometric mean
1
 ((âi)

1
2
(âi)

1
2 ). If k items are tied, we replace these

by k replicas of their generalized geometric mean.

Theorem 6. With the operations of INNs, IGIN-
HGM operator (Eq. (17)) can be transformed into the
following form:

IGINHGM(< u1; â1 >;< u2; â2 >; � � � ; < un; ân >)

=

8><>:
2641�0@1�

nY
j=1

�
1��1�TL(â(j))

�� wj!(j)
nP
j=1

wj!(j)

1A1


;

1�
0@1�

nY
j=1

�
1��1�TU (â(j))

�� wj!(j)
nP
j=1

wj!(j)

1A1

375 ;

2640@1�
nY
j=1

�
1� �IL(â(j))

�� wj!(j)
nP
j=1

wj!(j)

1A 1


;

0@1�
nY
j=1

�
1� �IU (â(j))

�� wj!(j)
nP
j=1

wj!(j)

1A 1

375 ;

2640@1�
nY
j=1

�
1� �FL(â(j))

�� wj!(j)
nP
j=1

wj!(j)

1A 1


;

0@1�
nY
j=1

�
1� �FU (â(j))

�� wj!(j)
nP
j=1

wj!(j)

1A 1

375
9>=>; ;

(18)

whose aggregated value is also an INN.

Similar to the proof of Theorem 1, it is easy to
get the result.

Remark 3. If  = 1, then IGINHGM operator
reduces to the Induced Interval Neutrosophic Hybrid
Geometric Mean (IINHGM) operator:

IINHGM(< u1; â1 >;< u2; â2 >; � � � ; < un; ân >)

=
n

i=1

(â(j))

wj!(j)
nP
j=1

wj!(j) : (19)

Furthermore, if wj = 1
n (j = 1; 2; � � � ; n), then we get

the Interval Neutrosophic Number Weighted Geometric
Aggregation (INNWGA) operator [33].

Remark 4. If  = 2, then IGINHGM operator
reduces to the Induced Interval Neutrosophic Hybrid
Quadratic Geometric (IINHQG) operator.

IINHQG(< u1; â1 >;< u2; â2 >; � � � ; < un; ân >)

=
1
2

0@ n

i=1

(2 � â(j))

wj!(j)
nP
j=1

wj!(j)

1A : (20)

From these remarks, we can know that IGINHGM op-
erator is the generalized form of IINHGM, INNWGA,
and IINHQG operators.

Similar to the proofs of the properties of IGIN-
HAA operator, we can prove that IGINHGM operator
also has idempotency, commutativity, monotonicity,
and boundedness.

4. The induced generalized interval
neutrosophic hybrid aggregation operators
based on the Shapley function

Although IGINHAA and IGINHGM operators can
weigh the interval neutrosophic arguments and their or-
dered positions, they are under the implicit assumption
that the aggregated interval neutrosophic arguments
are independent. However, in some situations, espe-
cially in some decision-making cases, some correlations
may exist between the input elements; these two
operators cannot process this condition. To address
this situation, we shall propose two new aggregation
interval neutrosohphic operators, named IGINSHAA
and IGINSHGM operators, which not only weight
the interval neutrosophic arguments and their ordered
positions, but also consider the interactions among
them and among their ordered positions.

4.1. Fuzzy measures and the generalized
Shapley function

De�nition 12 [42]. A fuzzy measure on a �nite set
N = f1; 2; � � � ; ng is a set function � : P (N) ! [0; 1].
It satis�es the following conditions:
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1. Boundary: �(�) = 0, �(N) = 1;
2. Monotonicity: If F , G 2 P (N) and F � G, then

�(F ) � �(G), where P (N) is the power set of N .

In MADM problems, �(F ) can be regarded as the
importance of attribute set F .

The generalized Shapley function was provided by
Shapley [43], which is shown as follows:

'i(�;N) =
X

F�Nni
(n� f � 1)!f !

n!
(�(i [ f)� �(f))

8i 2 N; (21)

where � is a fuzzy measure on N = f1; 2; � � � ; ng, n and
f represent the cardinalities of N and F , respectively.
From the generalized Shapley function, we know that
it is an expectation value of the overall interaction
between element i 2 N and every combination in Nni.
From Eq. (21) and De�nition 12, it is easy to know that
f'i(�;N)gi2N is a weight vector, because 'i(�;N) �
0 for any element i 2 N and

Pn
i=1 'i(�;N) = 1.

It should be noted that if there are no interactions
between elements, then the Shapley values are equal
to their own importance.

4.2. IGINSHAA operator
De�nition 13. Suppose that 
 is the set of all
INNs, âi = fT (âi); I(âi); F (âi)g (i = 1; 2; � � � ; n) is
a collection of INNs, ui(i = 1; 2; � � � ; n) is a set of
order-inducing variables, and  is a parameter with
 2 (0;+1). An IGINSHAA operator of dimension
n is a mapping IGINSHAA: 
n ! 
 on the set of the
second components of 2-tuple arguments < u1; â1 >;<

u2; â2 >; � � � < un; ân >, such that:

IGINSHAA(<�1; â1>;<�2; â2>; � � � ; <�n; ân>)

=

0BB@
n�
j=1

'j(�;N)'(j)(�;A)â(j)
nP
j=1

'j(�;N)'(j)(�;A)

1CCA
1


; (22)

where â(j) is âi value of IGINSHAA pair < ui; âi >
having the jth largest value of ui, 'j(�;N) is the
Shapley value in regard to the associated fuzzy measure
� on N = f1; 2; � � � ; ng for jth ordered positions, and
'(j)(�;A) is the Shapley value in regard to fuzzy mea-
sure � on A = fâ1; â2; � � � ; âng for â(j)(j = 1; 2; � � � ; n).

However, if there is a tie between < ui; âi > and <
uj ; âj > with respect to order-inducing variables such
that ui = uj , then in this case, we replace the second
components of 2-tuple arguments < ui; âi > and <
uj ; âj > by their generalized mean ((âi � âj )=2)1= . If
k items are tied, we replace these by k replicas of their
generalized mean.

Theorem 7. With the operations of INNs, IGIN-
SHAA operator (Eq. (22)) can be transformed into the
form shown in Box IV, whose aggregated valued is also
an INN.

Similar to the proof of Theorem 1, it is easy to
get the result.

Remark 5. If fuzzy measures � and � are both
additive, then IGINSHAA operator degenerates to
IGINHAA operator.

IGINSHAA(< u1; â1 >;< u2; â2 >; � � � ; < un; ân >)

=

8>>><>>>:
26664
0BB@1�

nY
j=1

�
1��TL(â(j))

�� 'j(�;N)'(j)(�;A)

nP
j=1

'j(�;N)'(j)(�;A)

1CCA
1


;

0BB@1�
nY
j=1

�
1��TU (â(j))

�� 'j(�;N)'(j)(�;A)

nP
j=1

'j(�;N)'(j)(�;A)

1CCA
1

37775 ;

266641�
0BB@1� nY

j=1

�
1��1�IL(â(j))

�� 'j(�;N)'(j)(�;A)

nP
j=1

'j(�;N)'(j)(�;A)

1CCA
1


; 1�
0BB@1� nY

j=1

�
1��1�IU (â(j))

�� 'j(�;N)'(j)(�;A)

nP
j=1

'j(�;N)'(j)(�;A)

1CCA
1

37775 ;

266641�
0BB@1� nY

j=1

�
1��1�FL(â(j))

�� 'j(�;N)'(j)(�;A)

nP
j=1

'j(�;N)'(j)(�;A)

1CCA
1


; 1�
0BB@1� nY

j=1

�
1��1�FU (â(j))

�� 'j(�;N)'(j)(�;A)

nP
j=1

'j(�;N)'(j)(�;A)

1CCA
1

37775
9>>>=>>>; :

(23)

Box IV
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Remark 6. If  = 1, then IGINSHAA operator
reduces to the Induced Interval Neutrosophic Shapley
Hybrid Arithmetic Averaging (IINSHAA) operator:

IINSHAA(< �1; â1 >;< �2; â2 >; � � � ; < �n; ân >)

=

n�
j=1

'j(�;N)'(j)(�;A)â(j)

nP
j=1

'j(�;N)'(j)(�;A)
: (24)

Remark 7. If  = 2, then IGINSHAA operator
reduces to the Induced Interval Neutrosophic Shapley
Hybrid Quadratic Averaging (IINSHQA) operator:

IGINSHAA(<�1; â1>;<�2; â2>; � � � ; <�n; ân>)

=

0BB@
n�
j=1

'j(�;N)'2
(j)(�;A)â2

(j)

nP
j=1

'j(�;N)'2
(j)(�;A)

1CCA
1
2

: (25)

Similar to the proofs of the properties of IGINHAA
operator, we can see that IGINSHAA operator has
properties, such as idempotency, commutativity, mono-
tonicity, and boundedness.

4.3. IGINSHGM operator
De�nition 14. Suppose that 
 is the set of all
INNs, âi = fT (âi); I(âi); F (âi)g (i = 1; 2; � � � ; n) is
a collection of INNs, ui (i = 1; 2; � � � ; n) is a set of
order-inducing variables, and  is a parameter with
 2 (0;+1). An IGINSHGM operator of dimension n
is a mapping IGINSHGM: 
n ! 
 on the set of the
second components of 2-tuple arguments < u1; â1 >;<

u2; â2 >; � � � < un; ân >, such that:

IGINSHGM(<u1; â1>;<u2; â2>; � � � ; <un; ân>)

=
1


0B@ n

i=1

(â(j))

'j(�;N)'(j)(�;A)
nP
j=1

'j(�;N)'(j)(�;A)

1CA ;
(26)

where â(j) is âi value of IGINSHGM pair < ui; âi >
having the jth largest value of ui, 'j(�;N) is the
Shapley value in regard to the associated fuzzy measure
� on N = f1; 2; � � � ; ng for jth ordered positions, and
'(j)(�;A) is the Shapley value in regard to fuzzy mea-
sure � on A = fâ1; â2; � � � ; âng for â(j)(j = 1; 2; � � � ; n).

However, if there is a tie between < ui; âi > and
< uj ; âj > with respect to order-inducing variables
such that ui = uj , then in this case, we replace the
second components of 2-tuple arguments < ui; âi >
and < uj ; âj > by their generalized geometric mean
1
 ((âi)

1
2
(âi)

1
2 ). If k items are tied, we replace these

by k replicas of their generalized geometric mean.

Theorem 8. With the operations of INNs, IGIN-
SHGM operator (Eq. (26)) can be transformed into the
form shown in Box V, whose aggregated value is also
an INN.

Similar to the proof of Theorem 1, it is easy to
get the result.

Remark 8. If � and � are both additive, then IGIN-
SHGM operator degenerates to IGINHGM operator.

Remark 9. If  = 1, then IGINSHGM operator
reduces to the Induced Interval Neutrosophic Shapley

IGINSHGM(< �1; â1 >;< �2; â2 >; � � � ; < �n; ân >)

=

8>><>>:
26641�

0B@1�
nY
j=1

�
1��1�TL(â(j))

�� 'j(�;N)'(j)(�;A)
nP
j=1

'j(�;N)'(j)(�;A)

1CA
1


; 1�
0B@1�

nY
j=1

�
1��1�TU (â(j))

�� 'j(�;N)'(j)(�;A)
nP
j=1

'j(�;N)'(j)(�;A)

1CA
1

3775 ;

2664
0B@1�

nY
j=1

�
1� �IL(â(j))

�� 'j(�;N)'(j)(�;A)
nP
j=1

'j(�;N)'(j)(�;A)

1CA
1


;

0B@1�
nY
j=1

�
1� �IU (â(j))

�� 'j(�;N)'(j)(�;A)
nP
j=1

'j(�;N)'(j)(�;A)

1CA
1

3775 ;

2664
0B@1�

nY
j=1

�
1��FL(â(j))

�� 'j(�;N)'(j)(�;A)
nP
j=1

'j(�;N)'(j)(�;A)

1CA
1


;

0B@1�
nY
j=1

�
1��FU (â(j))

�� 'j(�;N)'(j)(�;A)
nP
j=1

'j(�;N)'(j)(�;A)

1CA
1

3775
9>>=>>; :

(27)

Box V
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Hybrid Geometric Mean (IINSHGM) operator:

IGINSHGM(<u1; â1>;<u2; â2>; � � � ; <un; ân>)

=
n

i=1

(â(j))

'j(�;N)'(j)(�;A)
nP
j=1

'j(�;N)'(j)(�;A)

: (28)

Remark 10. If  = 2, then IGINSHGM operator de-
generates to the Induced Interval Neutrosophic Shapley
Hybrid Quadratic Geometric (IINSHQG) operator:

IINSHQG(<u1; â1>;<u2; â2>; � � � ; <un; ân>)

=
1
2

0B@ n

i=1

�
2 � â(j)

� 'j(�;N)'(j)(�;A)
nP
j=1

'j(�;N)'(j)(�;A)

1CA :
(29)

From the above analysis, we know that IGINSHGM op-
erator is the generalized form of IGINHGM, IINSHGM,
and IINSHQG operators.

Similar to IGINSHAA operator, we can prove that
IGINSHGM operator has idempotency, commutativity,
monotonicity, and boundedness. It is omitted here.

5. An approach to MADM under interval
neutrosophic environment

For a MADM problem with interval neutrosophic infor-
mation, in which the criteria are interactive, suppose
that A = fA1; A2; � � � ; Amg is a set of m candidate
alternatives, C = fC1; C2; � � � ; Cng is a set of n
attributes. Assume that R = [rij ]m�n is a decision
matrix, where rij =< [TLij ; TUij ]; [ILij ; IUij ], [FLij ; FUij ]) >
(i = 1; 2; � � � ;m; j = 1; 2; � � � ; n) is the attribute value
expressed by the interval neutrosophic information for
alternative Ai with respect to attribute Cj , satisfying
[TLij ; TUij ] � [0; 1], [ILij ; IUij ] � [0; 1], [FLij ; FUij ] � [0; 1],
and 0 � TUij + IUij + FUij � 3.

5.1. The models based on cross entropy for
obtaining the optimal fuzzy measures

Due to time pressure, lack of knowledge, the expert's
limited expertise about the complex problems, the
attribute weights are usually incompletely known. Be-
cause the cross entropy is a very important method to
obtain the weight vector [44], the models based on the
cross entropy are respectively established to obtain the
optimal fuzzy measures on the attribute and ordered
sets.

Here, the Shapley values can overall reect the
correlations between criteria, and it is regarded as the
criteria weights.

Firstly, we use the approach proposed by Zhang et
al. [44] to obtain optimal fuzzy measure � on attribute
set C. Suppose that R+ = (r+

1 ; r
+
2 ; � � � ; r+

n ) and R� =

(r�1 ; r�2 ; � � � ; r�n ) represent the positive and negative
ideal alternatives, respectively, where:

r+
j =

��
max

1�i�mT
L
ij ; max

1�i�mT
U
ij

�
;�

min
1�i�m I

L
ij ; min

1�i�m I
U
ij

�
;�

min
1�i�mF

U
ij ; min

1�i�mF
U
ij

��
;

r�j =
��

min
1�i�mT

L
ij ; min

1�i�mT
U
ij

�
;�

max
1�i�m I

L
ij ; max

1�i�m I
U
ij

�
;�

max
1�i�mF

U
ij ; max

1�i�mF
U
ij

��
: (30)

We can get the performance of alternative Ai with
respect to attribute Cj as follows:

Dij =
D�ij

D�ij +D+
ij
; (31)

where D�ij and D+
ij are the degrees of discriminations

of Ai from positive ideal solution r+
j and form negative

ideal solution r�j with respect to attribute Cj , respec-
tively.

If the criteria weights are incompletely known,
according to the model established by Zhang et al. [44],
we can construct the following model to obtain optimal
fuzzy measure � on attribute C:

max
mX
i=1

nX
j=1

D�ij
D�ij +D+

ij
'cj (�; C);

s.t.

8><>:�(�) = 0; �(C) = 1
�(G) � �(F )8 G; F � C; G � F
�(Cj) 2Wcj ; j = 1; 2; � � � ; n

(32)

where 'cj (�; C) is the Shapley value of attribute Cj
with respect to fuzzy measure �, Wcj(j = 1; 2; � � � ; n)
is the known weight information. If the criteria weights
are completely unknown, �(cj) 2 Wcj(j = 1; 2; � � � ; n)
in the above model should be omitted.

Then, we consider how to get optimal fuzzy
measure � on ordered set N = f1; 2; � � � ; ng. If the
weight information about ordered positions is partly
known, the following model can be constructed to
obtain optimal fuzzy measure � on ordered set N :

max
mX
i=1

nX
j=1

D�i(j)
D�i(j) +D+

i(j)
'j(�;N);
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s.t.

8><>:�(�) = 0; �(N) = 1
�(G) � �(F )8 G; F � N; G � F
�(j) 2Wj ; j = 1; 2; � � � ; n (33)

where 'j(�;N) is the Shapley value of the jth position
with respect to fuzzy measure �, and (�) is a permuta-

tion on N for each i = 1; 2; � � � ;m, such that
D�i(j)

D�i(j)+D
+
i(j)

is the jth largest value of D�ij
D�ij+D

+
ij

. It should be noted
that if the weight information for the ordered positions
is completely unknown, �(j) 2 Wj(j = 1; 2; � � � ; n) in
the above model should be omitted.

5.2. The decision procedure
According to above models and induced generalized
interval neutrosophic Shapley hybrid operators, we
propose a procedure to handle MADM problems in
which the attribute values are in the form of INNs,
and the weight information for attribute and ordered
positions is incompletely known. The steps are given
as follows:

- Step 1: Evaluate the alternatives with respect to
the criteria to construct the interval neutrosophic
matrix R = [rij ]m�n;

- Step 2: Utilize Eq. (31) to calculate performance
of alternative Ai(i = 1; 2; � � � ;m) with respect to
attribute Cj(j = 1; 2; � � � ; n);

- Step 3: Utilize model (32) to obtain optimal fuzzy
measure � on attribute C and calculate their Shapley
values;

- Step 4: Utilize model (33) to obtain the optimal
fuzzy measure, �, on ordered set, N , and calculate
their Shapley values;

- Step 5: Utilize IGINSHAA operator or IGINSHGM
operator to determine comprehensive interval neu-
trosophic value, ~ri, of each alternative, Ai(i =
1; 2; � � � ; ;m);

- Step 6: Utilize De�nition 5 to construct the possi-
bility matrix of the score function value;

- Step 7: Rank all the alternatives fa1; a2; � � � ; ang by
comparison rules of interval neutrosophic numbers
and select the best alternative(s);

- Step 8: End.

6. An illustrative example

Let us consider the MADM problems with respect
to a manufacturing company to evaluate the global
suppliers based on the core competencies of suppliers
(adapted from [45]). Suppose that there are four
suppliers whose core competencies are evaluated by
the following four attributes C = fC1; C2; C3; C4g: the
level of technology innovation (C1); the control ability
of ow (C2); the ability of management (C3); and the
level of service (C4). The evaluated value of supplier
Ai(i = 1; 2; 3; 4) with respect to Cj(j = 1; 2; 3; 4) can
be expressed by interval neutrosophic number of:

rij =< [TLij ; T
U
ij ]; [ILij ; I

U
ij ]; [F

L
ij ; F

U
ij ])

> (i = 1; 2; � � � ;m; j = 1; 2; � � � ; n):

Interval neutrosophic matrix R = [rij ]m�n is listed in
Table 1. Assume that the importance of attributes is
respectively given as !1 = [0:3; 0:4], !2 = [0:15; 0:25],
!1 = [0:2; 025], and !4 = [0:25; 0:3]. Furthermore, the
importance of the ordered positions is, respectively,
de�ned by w1 = [0:1; 0:2], w2 = [0:2; 0:3], w3 =
[0:3; 0:4], and w4 = [0:2; 0:3].

6.1. The evaluation steps by IGINSHAA
operator

- Step 1: Utilize Eq. (31) to calculate performance of
alternative Ai with respect to attribute Cj . We can
get:

D�ij
D�ij +D+

ij
=

0BB@0:0659 0:7709 0:7244 0:0567
0:5922 0:5886 1:0000 0:0230
0:8043 1:0000 0:0000 1:0000
0:6951 0:0000 0:6994 0:9759

1CCA :

Table 1. Interval neutrosophic decision matrix.

C1 C2

A1 f[0:3; 0:5]; [0:2; 0:3]; [0:2; 0:5]g f[0:3; 0:5]; [0:1; 0:3]; [0:3; 0:5]g
A2 f[0:4; 0:5]; [0:1; 0:2]; [0:3; 0:4]g f[0:2; 0:4]; [0:1; 0:2]; [0:3; 0:5]g
A3 f[0:3; 0:5]; [0:1; 0:2]; [0:2; 0:3]g f[0:3; 0:5]; [0:1; 0:2]; [0:3; 0:5]g
A4 f[0:4; 0:6]; [0:2; 0:3]; [0:2; 0:3]g f[0:2; 0:4]; [0:2; 0:3]; [0:3; 0:5]g

C3 C4

A1 f[0:5; 0:6]; [0:1; 0:2]; [0:1; 0:3]g f[0:3; 0:5]; [0:2; 0:4]; [0:2; 0:3]g
A2 f[0:6; 0:7]; [0:1; 0:2]; [0:1; 0:2]g f[0:4; 0:5]; [0:3; 0:4]; [0:2; 0:4]g
A3 f[0:4; 0:6]; [0:2; 0:4]; [0:2; 0:3]g f[0:6; 0:7]; [0:1; 0:2]; [0:1; 0:3]g
A4 f[0:5; 0:7]; [0:1; 0:2]; [0:2; 0:3]g f[0:5; 0:7]; [0:1; 0:2]; [0:1; 0:3]g
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- Step 2: Utilize model (32) to obtain the optimal
fuzzy measures on attribute set C. The program-
ming model is shown as follows:

max =� 0:03055(�(c1)� �(c2; c3; c4))

+ 0:03679(�(c2)� �(c1; c3; c4))

+ 0:05824(�(c3)� �(c1; c2; c4))

� 0:06448(�(c4)� �(c1; c2; c3))

+ 0:00312(�(c1; c2)� �(c3; c4))

+ 0:01385(�(c1; c3)� �(c2; c4))

� 0:04752(�(c1; c4)� �(c2; c3)) + 2:24908;8>>>>>><>>>>>>:
�(c1; c2; c3; c4) = 1 u(�) = 0
�(G) � �(F ) 8 F; G � fc1; c2; c3; c4g

G � F
�(c1) 2 [0:3; 0:4]; �(c2) 2 [0:15; 0:25];
�(c3) 2 [0:2; 0:25]; �(c4) 2 [0:25; 0:3]

Solving the above model by Lingo software, we can
obtain:

�(c1) = �(c1; c2) = �(c1; c3) = �(c1; c4)

= �(c1; c2; c4) = �(c1; c3; c4) = 0:3;

�(c2)=�(c3)=�(c4)=�(c2; c4)=�(c3; c4)=0:2;

�(c2; c3) = �(c1; c2; c3) = �(c2; c3; c4)

= �(c1; c2; c3; c4) = 1:

By Eq. (21), we can obtain the following attribute
Shapley values:

'c1(�; C) = 0:0958; 'c2(�; C) = 0:4208;

'c3(�; C) = 0:4208; 'c4(�; C) = 0:0625:

- Step 3: Utilize model (33) to obtain optimal fuzzy
measure, �, on the ordered set N = f1; 2; � � � ; ng.
The programming model is shown as follows:

max =0:49925(�(1)� �(2; 3; 4))

+ 0:25563(�(c2)� �(1; 3; 4))

� 0:03175(�(3)� �(1; 2; 4))

� 0:72313(�(4)� �(1; 2; 3))

+ 0:37744(�(1; 2)� �(3; 4))

+ 0:23375(�(1; 3)� �(2; 4))

� 0:11194(�(1; 4)� �(2; 3)) + 2:24908;8>>>>>><>>>>>>:
�(1; 2; 3; 4) = 1 �(�) = 0
�(G) � �(G) 8 G; F � f1; 2; 3; 4g

G � F
�(1) 2 [0:1; 0:2]; �(2) 2 [0:2; 0:3];
�(3) 2 [0:3; 0:4]; �(4) 2 [0:2; 0:3]

Solving the above model by Lingo software, we can
obtain:

�(1) = �(4) = �(1; 4) = 0:2;

�(2) = �(3) = �(1; 3) = �(2; 3) = �(2; 4) = �(3; 4)

= �(1; 3; 4) = �(2; 3; 4) = 0:3;

�(1; 2) = �(1; 2; 4) = �(1; 2; 3) = �(1; 2; 3; 4) = 1:

By Eq. (21), we get the following position Shapley
values:

'1(�;N) = 0:4000; '2(�;N) = 0:4500;

'3(�;N) = 0:1000; '4(�;N) = 0:0500:

- Step 4: Utilize IGINSHAA operator to get the
comprehensive interval neutrosophic value ~ri of each
alternative Ai (i = 1; 2; 3; 4). Suppose that � = 1,
we can obtain:

~r1 =<[0:4106; 0:5539]; [0:1024; 0:2444];

[0:1687; 0:3834] >;

~r2 =<[0:5179; 0:6315]; [0:1013; 0:2017];

[0:1452; 0:2633] >;

~r3 =<[0:4583; 0:6073]; [0:1066; 0:2133];

[0:1766; 0:3742] >;

~r4 =<[0:4757; 0:6780]; [0:1091; 0:2104];

[0:1929; 0:3135] > :

- Step 5: Utilize De�nition 5 to construct the possi-
bility matrix of the score function value, then we can
obtain:266664

0:5 0:2763 0:4321 0:3581
0:7237 0:5 0:6546 0:5727
0:5679 0:3454 0:5 0:4243
0:6419 0:4273 0:5757 0:5

377775 :
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- Step 6: Get the order of the alternatives, to have:

a2 � a4 � a3 � a1:

Thus, the best alternative is a2.

6.2. The evaluation steps by IGINSHGM
operator

- Step 1-Step 3: See the above Steps 1 to 3;
- Step 4: Utilize IGINSHGM operator to get com-

prehensive interval neutrosophic value ~ri of each
alternative Ai (i = 1; 2; 3; 4) (suppose that � = 1),
then we can get:

~r1 =<[0:3895; 0:5488]; [0:1036; 0:2515];

[0:2004; 0:4045] >;

~r2 =<[0:4658; 0:6011]; [0:1027; 0:2028];

[0:1732; 0:2968] >;

~r3 =<[0:4158; 0:5882]; [0:1098; 0:2210];

[0:2054; 0:3948] >;

~r4 =<[0:4581; 0:6631]; [0:1132; 0:2132];

[0:1996; 0:3199] > :

- Step 5: Utilize De�nition 5 to construct the possi-
bility matrix of the score function value, then we can
obtain:266664

0:5 0:3202 0:4520 0:3415
0:6789 0:5 0:6313 0:5102
0:5480 0:3687 0:5 0:3873
0:6585 0:4898 0:6127 0:5

377775 :
- Step 6: Get the order of the alternatives, then we

have:

a2 � a4 � a3 � a1:

Thus, the best alternative is a2.

6.3. Analysis of the inuence of parameter �
In order to demonstrate the inuence of parameter �
on decision-making results, we use di�erent values �
in IGINSHAA and IGINSHGM operators to rank the
alternatives. The ranking results are listed in Table 2.

As we can see from Table 2, the ranking results
of the alternatives are di�erent for the di�erent values
� in IGINSHAA and IGINSHGM operators. But, the
best alternative from the di�erent values � is the same
in IGINSHAA operator. Thus, the individual or orga-
nization can properly select the favorable alternative in
terms of his interest and actual needs. In general, we
can get � = 1.

Table 2. Ordering of the alternatives by utilizing the
di�erent � in IGINSHAA and IGINSHGM operators.

�
Ranking by
IGINSHAA

operator

Ranking by
IGINSHGM

operator
1=2 a2 � a4 � a3 � a1 a4 � a2 � a3 � a1

1 a2 � a4 � a3 � a1 a2 � a4 � a3 � a1

2 a2 � a4 � a3 � a1 a2 � a4 � a3 � a1

5 a2 � a4 � a3 � a1 a4 � a2 � a1 � a3

10 a2 � a3 � a4 � a1 a4 � a2 � a1 � a3

6.4. Comparison of the existing methods
In order to demonstrate the practicality and e�ec-
tiveness of the developed method in this paper, we
can compare the proposed method with the existing
method proposed by Zhang and Wu [46]. The steps
are shown as follows:

- Step 1: Utilize the maximization deviation method
to determine the attribute weights. The model is
established as follows:

max =1:0699w(c1) + 0:7587w(c2) + 1:1132w(c3)

+ 1:5471w(c4);8>>><>>>:
w(c1) + w(c2) + w(c3) + w(c4) = 1

w(c1) 2 [0:3; 0:4]; w(c2) 2 [0:15; 0:25];
w(c3) 2 [0:2; 0:25]; w(c4) 2 [0:25; 0:3]

Solving this above model by Lingo software, we
obtain:
w(c1) = 0:3; w(c2) = 0:15;

w(c3) = 0:25; w(c4) = 0:3:

- Step 2: Identify the positive ideal solution and
negative ideal solution, then we can obtain:

r̂+ = (f[0:4; 0:6]; [0:1; 0:2]; [0:2; 0:3]g ;
f[0:3; 0:5]; [0:1; 0:2]; [0:3; 0:5]g ;
f[0:6; 0:7]; [0:1; 0:2]; [0:1; 0:2]g ;
f[0:6; 0:7]; [0:1; 0:2]; [0:1; 0:3]g) ;

r̂� = (f[0:3; 0:5]; [0:2; 0:3]; [0:3; 0:5]g ;
f[0:2; 0:4]; [0:2; 0:3]; [0:3; 0:5]g ;
f[0:4; 0:6]; [0:2; 0:4]; [0:2; 0:3]g ;
f[0:3; 0:5]; [0:3; 0:4]; [0:2; 0:4]g) :

- Step 3: Determine the distance between each
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alternative and the positive ideal and negative ideal
solutions, respectively, then we can get:

D+ = (0:1118; 0:0818; 0:0527; 0:0595);

D� = (0:0672; 0:0808; 0:1034; 0:1114):

- Step 4: Determine the closeness coe�cient of each
alternative to the ideal solution, then we get:

CC1 = 0:3753; CC2 = 0:4967;

CC3 = 0:6625; CC4 = 0:6518:

- Step 5: According to relative closeness coe�cient,
CCi(i = 1; 2; 3; 4), get the order of the alternatives:

a3 � a4 � a2 � a1:

So, the best alternative is a3.

From the above analysis, we can see that the
ranking results by the proposed methods in this pa-
per are di�erent from those obtained by the existing
method. The reason may be that the existing method
could not weight the input arguments' positions and
capture their interrelationship, which may result in the
unreasonable ranking results. However, the method
proposed in this paper can e�ectively handle the
interval neutrosophic MADM problems in which the
attribute and ordered position weights are incompletely
known, and attributes exist correlatively. So, we think
the method developed in this paper is more suitable to
handle this application example.

7. Conclusion

This paper developed an approach to interval neutro-
sophic MADM with interactive conditions and incom-
plete weight information. To get the comprehensive
values, two types of interval neutrosophic hybrid ag-
gregation operators were introduced. One is based on
additive measures which could consider the importance
of the aggregated interval neutrosophic arguments and
their ordered positions; the other utilizes the Shapley
function in regard to fuzzy measures which not only
considers the importance of the aggregated interval
neutrosophic arguments and their ordered positions,
but also captures their interrelationship. To get the
weight information, the programming models based on
cross entropy were established.

It should be mentioned that the fuzzy measures
can well process the situations where the input ar-
guments are correlative, but they are determined by
ascertaining 2n � 2 parameters for n criteria. To
reduce the complexity of calculating the fuzzy measures
on the given set, it shall be signi�cant to research

into some special kinds of fuzzy measures, such as �-
fuzzy measures, k-additive measure, and p-symmetry
measures. In addition, in future research, we shall
concentrate on extending the ideas of this paper by
using the re�ned neutrosophic set as a generalized form
of neutrosophic set [47].
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