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Abstract. This paper deals with an Economic Production Quantity (EPQ) model to
determine production-inventory policies for perishable products. Shortage is permitted
and fully backordered. The demand rate is stochastic- and stock-dependent. Since the
problem is mathematically challenging and intractable via analytical approaches, this
paper designs a simulation-based optimization algorithm by combining a grid search and
a simulation model to solve the problem. The grid search plays the role of optimizer
to determine the model variables, and the simulation model is utilized to evaluate the
quality of solutions obtained by the optimizer through an iterative procedure. Eventually,
a numerical example is discussed to illustrate how the solution procedure works, and a
comparison study is carried out to demonstrate the superiority of suggested approach.
Moreover, a comprehensive sensitivity analysis with respect to the problem parameters is
performed.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

In today markets, the manufacturers are often encoun-
tered with high degrees of competition forcing them
to improve their performance continuously. One of the
main systems which greatly in
uences the performance
of manufacturers is inventory system. Raw materials,
sparse parts, work in processes, and �nished goods are
various types of inventory. The important decision
in an inventory system is how many and when a
company should order goods. If inventories are not
controlled appropriately, they might become unreliable,
ine�cient, and costly. Since most companies in any
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industrial sectors have some types of inventory, many
studies have been conducted on di�erent types of
inventory systems so far. Although inventory problems
are usually developed based on basic assumptions in
earlier literature, they are still extensively employed by
industries. The Economic Production Quantity (EPQ)
model, also known as the Economic Manufacturing
Quantity (EMQ), is one of the basic types of inventory
model that determines the optimal production rate of
an item for a facility. The aim of the EPQ model is of-
ten to optimize the total inventory and production cost,
when items are processed internally instead of being
provided from external sources. In some recent studies
on the EPQ, Pan et al. [1] developed an integrated
EPQ model with the statistical process control and
maintenance issues. Additionally, Wee et al. [2] devised
an economic production quantity model and a renewal
reward theorem-based procedure for imperfect items
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with shortage and screening constraints. Dash et al. [3]
proposed a deteriorating inventory model incorporating
time-value of money with price-dependent demand and
Discounted Cash Flows (DCF) approach. Karimi-
Nasab and Sabri-Laghaie [4] designed an imperfect
EPQ problem with random defectives, reworkable and
non-reworkable items. Moreover, Nasr et al. [5] dis-
cussed an EPQ model with deteriorating raw material
and analyzed the model via di�erential equations.
Pacheco-Velazquez and Cardenas-Barron [6] analyzed
an economic production quantity model by considering
ordering and holding costs for both raw materials and
�nished products. Jawad et al. [7] developed an EPQ
model based on the laws of thermodynamics focusing
on the three pillars of sustainability and computed their
costs. In addition, Sadeghi et al. [8] presented a multi-
item economic production quantity model with fuzzy
demand, backordering shortage, and limited space of
warehouse. Al-Salamah [9] suggested an economic pro-
duction quantity model for a case where the production
process and inspection are both not perfect in order
to �nd the optimal lot size for batch manufacturing
while the batches are subjected to destructive or non-
destructive acceptance quality control process.

Many researchers presented their work on the
EPQ model by considering di�erent parameters such as
setup cost, rework process, scrap goods, inspection, de-
terioration, machine breakdown, backorder, shortage,
etc. The majority of researchers on the EPQ models do
not take into account the fact that customer behavior
is not necessarily independent of system parameters.
Traditional inventory models consider that the demand
rate is constant [10], and some recent studies on the
inventory models investigate the demand rate as a
function of di�erent variables such as price, advertise-
ment, etc. [11-12]. However, all these models consider
that the demand rate is independent of the inventory
level. For certain types of products, the demand may
be in
uenced by the inventory level. It has been
observed that neglecting the e�ect of inventory systems
on customer's behavior leads to poor performance of
the inventory management system. Thus, the inventory
systems with some dependence between the system
parameters have received the researchers' attention
in recent years. In such a situation, an increase in
the product space usually has a positive impact on
the sales of that product. It is usually observed by
practitioners that a large amount of goods displayed in
a supermarket attracts more customers, and conversely,
low inventory of goods might make the perception that
they are not fresh, and therefore decreases the demand.
Consequently, building up the inventory often has a
positive impact on the sales and pro�ts. Therefore, in
such a case, the demand has no longer a constant rate,
but it depends on the inventory level. This case is
known as stock-dependent demand or inventory-level-

dependent demand in the inventory literature. As a
result, many researchers have dedicated considerable
attention to the inventory systems with a demand
dependent on the stock level. Gupta and Vrat [13] were
the �rst researchers that introduced inventory models
with stock-dependent demand rate. Later, Recently,
Chang et al. [14] have considered an EOQ model with
stock-dependent demand and obtained the optimal
replenishment policy while maximizing the total pro�t.
In addition, Yang et al. [15] discussed an inventory
model under in
ation for stock-dependent consump-
tion rate products with shortage. Shah et al. [16]
derived optimal inventory policy for a price-sensitive
and stock-dependent demand inventory system under
a payment scheme. Sarkar and Sarkar [17] proposed
an inventory model for deteriorating items with stock-
dependent demand, time-varying backordering, and
time-varying deterioration rate to determine the op-
timal cycle length, such that the expected total cost is
minimized. Soni [18] extended the previously proposed
inventory model for deteriorating items under stock-
dependent demand and two-level trade credit. Singh
and Sharma [19] presented a mathematical model for
an inventory problem with stock-dependent demand
and deterioration to analyze the retailer's optimal in-
ventory policy under the permissible delay in payment.
Krommyda et al. [20] studied a substitutable inventory
management system where the demand for each prod-
uct depends on the inventory levels. Wu and Zhao [21]
suggested an economic order quantity model for de-
teriorating items with a current inventory-dependent
and linearly increasing time-varying demand under
trade credit. Tripathi and Singh [22] analyzed an
inventory model with stock-dependent demand and
di�erent holding cost patterns. Tsoularis [23] consid-
ered the pro�t maximization inventory problem with
the demand varied by price and stock availability.
Chakraborty et al. [24] discussed multi-item integrated
production-inventory models with stock-dependent de-
mand and nonlinear cost functions. Recently, Palanivel
and Uthayakumar [25] discussed an economic ordering
quantity model with stock-dependent demand and
imperfect products under the e�ect of in
ation and
time value of money.

Almost all physical items deteriorate over time,
and the deterioration of physical goods cannot be dis-
regarded. Consequently, a major issue of the inventory
system in a business organization is the maintenance
of perishable products inventories. Since deterioration
often leads to decreasing the usefulness of the items
over time, the deterioration is a major parameter in de-
signing inventory systems. In such a case, deterioration
is de�ned as decay, damage, spoilage, evaporation or
loss of the marginal value of goods. The examples are
drugs, volatile liquids, blood, vegetables, fruits, food
products, photographic �lms, pharmaceuticals, chemi-
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cals, electronic goods, and radioactive substances. As
a result, the inventory problem of perishable items has
been studied by researchers. The work done by Ghare
and Schrader [26] was the �rst attempt to design an
optimal inventory system for perishable products where
an inventory model with an exponentially deteriorating
inventory was discussed. Afterwards, a comprehensive
review of perishable literature till 2011 was provided
by Goyal and Giri [27]. Later, Balkhi [28] discussed
an inventory model for perishable products under
supplier trade credits case considering time value of
money. Bansal [29] developed the inventory model
for deteriorating items under in
ation. Vahdani et
al. [30] discussed a single-item lot-sizing and scheduling
problem with deteriorating inventory over time and
multiple warehouses. Later, Bhaula and Kumar [31]
provided an optimal inventory policy for two-parameter
Weibull deterioration. Recently, Giri and Sharma [32]
provided an integrated inventory model for a perish-
able item under allowable shortages and credit linked
wholesale price assumptions. Li et al. [33] studied an
EPQ model considering both product deterioration and
deteriorating production system with rework. Jaggi,
et al. [34] considered a two-warehouse manufacturing
inventory model for deteriorating items with imperfect
quality under permissible delay in payments to maxi-
mize the total pro�t per unit time. Moreover, Kouki
et al. [35] modeled a coordinated inventory system
for perishable items with random lifetime and positive
lead time as a Markov process. Moreover, Teimoury
and Kazemi [36] presented a two-stage supply chain,
including a wholesaler and a retailer, which produces a
single deteriorating product with a constant rate.

One of the factors that increases the complexity of
the inventory systems is the uncertainty existing in the
parameters and the input data. Numerous researchers
have developed inventory models with stochastic de-
mand functions. For example, Timmer et al. [37]
analyzed the cooperation strategies for the continuous
review inventory systems with Poisson demand. Juan
et al. [38] designed a simheuristic algorithm by combin-
ing simulation and heuristics for solving a stochastic
inventory problem considering distribution. Besides,
Bieda [39] investigated an application of the stochastic
approach to life cycle inventory data for a real case
in Poland. Recently, Tamjidzad and Mirmohammadi
[40] have discussed a single-item inventory system with
resource constraint and quantity discount while consid-
ering stochastic demand. In addition, Wu et al. [41]
proposed a supply chain problem of the coordination
policy under vendor-managed consignment inventory
subject to consumer return and stochastic demand.
Purohit et al. [42] discussed an inventory lot-sizing and
supplier selection problem considering time-varying
stochastic demand. Chuang et al. [43] evaluated
some models with stochastic ramp-type demand in the

literature. In the current paper, in order to make the
problem closer to real-world conditions, we assume a
stochastic demand function.

In this paper, an appropriate production-
inventory policy model based on a stochastic EPQ for
a perishable product with tock-dependent demand is
studied. It is assumed that shortages are allowed for
the product and fully backordered. The main objective
is to determine the optimal inventory cycle time and
production quantity. The rest of this paper is organized
as follows. Section 2 presents the notations and
assumptions. The mathematical model is constructed
in Section 3 while the solution algorithm is designed in
Section 4. Section 5 discusses the experimental results.
Finally, Section 6 concludes the paper.

2. Model notations and assumptions

The following notations are employed throughout the
paper:
P Production rate per unit time
� Deterioration rate per unit time
c Production cost per unit
h Holding cost per unit per unit time
b Shortage cost per unit per unit time
R Setup cost per cycle
k Selling price per unit
S Shortage per cycle
D(t) Demand rate at time t
" Stochastic term of the demand function
I(t) Inventory level at time t
A Constant term of the stock-dependent

demand rate
B Coe�cient of the inventory level in the

stock-dependent demand function
Imax Maximum inventory level
t0 Starting time of the planning horizon

when the maximum shortage occurs
t1 The time when inventory becomes zero

for the �rst time per cycle
t2 The time in which inventory reaches to

its maximum level
t3 The time when inventory becomes zero

for the second time per cycle
T Inventory cycle time
I1(t) Inventory level at time interval [t0; t1]
I2(t) Inventory level at time interval [t1; t2]
I3(t) Inventory level at time interval [t2; t3]
I4(t) Inventory level at time interval

[t3; T + t0]
TP (t1; t3) Total pro�t per unit time
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The proposed model in this paper is developed
based on the following assumptions:

1. The production-inventory system involves a single
product;

2. The demand rate is sensitive to the stock level when
I(t) � 0;

3. The production rate is �nite and constant;
4. The lead time is assumed to be zero;
5. Deterioration process occurs as soon as a product

is produced;
6. Deterioration rate is constant over the time period;
7. There is no replacement or repair for deteriorating

products over the time period and the deteriorated
products are removed from the system immediately;

8. Shortages are allowed and fully backordered;
9. Setup cost is incurred per cycle;

10. Holding cost is only applied to the product units;
11. The demand function is stochastic.

3. Model formulation

The behavior of the production-inventory model is de-
picted by Figure 1. According to this model, the inven-
tory system could be divided in four intervals. During
time interval [t0; t1], the inventory level increases due
to the fact that the production rate is higher than the
demand rate. At this interval, the demand rate is
equal to constant A due to negative inventory level.
Subsequently, on interval [t1; t2], the inventory level
continues to increase because the production rate is
higher than the demand rate and the deterioration
occurs until the inventory level reaches the maximum
level Imax. The demand rate is dependent on the
stock A+BI(t) at this interval. During the next time
interval [t2; t3], the inventory level decreases owing to
the demand and deterioration rates till the inventory
level becomes zero at time t3. Finally, a shortage
occurs as the demand grows only during time interval
[t3; T + t0]. The shortage continues up to the end of
the current inventory cycle.

The demand function is considered as follows:

D(t) =

(
A+BI(t) + " I(t) � 0
A+ " I(t) < 0

(1)

Figure 1. Inventory level illustration.

where " represents the stochastic term of the demand
function. It means that demand function, D(t), is a
stochastic variable with the expected value E[D(t)]:

E[D(t)] =

(
A+BI(t) I(t) � 0
A I(t) < 0

and random term ". Without loss of generality, let us
assume that t0 = 0 and I1(t) indicates the inventory
level at time t (0 � t � t1), then we have:

dI1(t)
dt

= P �D(t) = P �A 0 � t � t1: (2)

With boundary condition I1(t1) = 0, it is concluded
that:

I1(t) = (P �A)(t� t1) 0 � t � t1: (3)

As it is obvious from Figure 1, I1(0) = �S; hence, it
can be obtained that:

S = (P �A)t1: (4)

Assume that I2(t) represents the inventory level at time
t (t1 � t � t2), then we have:

dI2(t)
dt

+ �I2(t) = P �D(t) t1 � t � t2: (5)

Considering D(t) = A + BI(t) for t1 � t � t2 and
boundary condition I2(t1) = 0, it is concluded that:

I2(t)=
�
P�A
�+B

�h
1�e(�+B)(t1�t)

i
t1 � t � t2: (6)

Let I3(t) represent the inventory level at time t (t2 �
t � t3), then it is concluded that:

dI3(t)
dt

+ �I2(t) = �D(t) t2 � t � t3: (7)

Considering D(t) = A+BI(t) for t2 � t � t3 with the
boundary condition I3(t3) = 0:

I3(t) =
A

(� +B)

h
e(�+b)(t3�t) � 1

i
t2 � t � t3: (8)

It is obvious from Figure 1 that I2(t2) = I3 (t2) = Imax;
therefore, we can obtain t2 in terms of t1 and t3 as
follows:

t2 =
�1

(� +B)
log
�

P
Ae(�+B)t3 +(P �A)e(�+B)t1

�
: (9)

By substituting t2 into I2(t) or I3(t), maximum inven-
tory level Imax can be calculated in terms of t1 and t3
as follows:

Imax =
A(P �A)

(�+B)

�
e(�+B)t3 � e(�+B)t1

Ae(�+B)t3 +(P�A)e(�+B)t1

�
:(10)
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Assume that I4(t) represents the inventory level at time
t (t3 � t � T ), then we have:
dI4(t)
dt

= �D(t) = �A t3 � t � t4: (11)

With boundary condition I4(t3) = 0, it is concluded
that:
I4(t) = (�A)(t� t3) t3 � t � T: (12)

It is obvious from Figure 1 that I1(0) = I4(T ) = �S;
therefore, we can obtain T in terms of t1 and t3 as
follows:

T = t3 +
�
P �A
A

�
t1: (13)

Since the production is carried out in interval [0; t2]
with rate P , production quantity per cycle Q is given
by Pt2. Substituting t2 into Q, it (t2) can be calculated
in terms of t1 and t3. Therefore, all of the required
information, including I1(t), I2(t), I3(t), I4(t), Imax,
S, and Q, are calculated in terms of t1 and t3. Hence,
we can form the total pro�t in terms of t1 and t3 as
follows:
(i) Setup cost per cycle R

(ii) Production Cost (PC):
PC = cP t2: (14)

Substituting t2 into PC, it is concluded that:

PC =
�cP

(� +B)
log�

P
Ae(�+B)t3 + (P �A)e(�+B)t1

�
: (15)

(iii) Inventory Holding Cost (HC):

HC = h
�Z t2

t1
I2(t)dt+

Z t3

t2
I3(t)dt

�
=

h
(� +B)2

�
A
�
e(�+B)(t3�t2) � 1

�
�A(� +B)(t3 � t2)

+ (P �A)(� +B)(t2 � t1)

+ (P �A)
�
e�(�+B)(t2�t1)�1

��
: (16)

Substituting t2 into HC, the holding cost can be
rewritten in terms of t1 and t3 as shown in Box I.

(iv) Shortage Cost (SC):

SC = b
�Z t1

0
[�I1(t)] dt+

Z T

t3
[�I4(t)] dt

�
=
Pbt21(P �A)

2A
: (18)

(v) Sales Revenue (SR) is calculated based on the
di�erence between the quantity of products pro-
duced per cycle and the quantity of products
deteriorated per cycle:

SR =k
�
Q�

�Z t2

t1
�I2(t)dt+

Z t3

t2
�I3(t)dt

��
� 1

(� +B)2

�
�(A� P )

�
e(�+B)(t1�t2)

� �(t1 � t2)� 1
�

� �B(A� P )(t1 � t2)

� �A
�
e(�+B)(t3�t2) + �t2 � �At3 � 1

�
+ �AB(t3 � t2)

�
+ Pkt2: (19)

Substituting t2 into SR, it yields:

SR =
k�

(� +B)2

�
A�(t3 � t1) + P�t1

� PB
�

log
�

P
Ae(�+B)t3 + (P �A)e(�+B)t1

�
�AB (t3 + (P � 1)t1)

�
: (20)

Hence, the total pro�t per time unit can be written as
a function of t1 and t3 as follows:

HC = �Ph log
h

P
Ae(�+B)t3+(P�A)e(�+B)t1

i
+A�(t3 � t1) +ABh(t3 � t1) + Pht1(� +B)

(� +B)2 : (17)

Box I
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TP(t1; t3) =
SR�D � PC�HC� SC

T

=
1

(� +B)2
�
A(t3 � t1) + Pt1

�
�
APh�AD(�2 +B2)� 2A�BD

+
�
A2h(� +B) + (A�k)2

+A2k2�B
�

(t3 � t1) +
�
�0:5P 2b(�2

+B2) + 0:5APb(�2 +B2)

+A�BPb(1� P )
�
t21 +AP (� +B)

(h+ �k2)t1 +
AP 2he(�+B)t3

Ae(�+B)t3+(P�A)e(�+B)t1

�AP
�
Bk2 � c(� +B)� h

�
log
�

P
Ae(�+B)t3 +(P�A)e(�+B)t1

��
: (21)

This random demand function is utilized within all of
the above equations. Hence, the total pro�t (Eq. (21))
has also a stochastic term because the demand function
appears in its formulation. According to the above
expressions, the problem can be formulated as a non-
linear optimization model with a stochastic demand
function as follows:

Maximize TP(t1; t3)

s.t.

t3 � t1 t1; t3 � 0 (22)

4. Solution algorithm

A deep investigation into the problem formulated in
the previous section reveals that it is rarely possible
to obtain optimal production and inventory policies
analytically. Additionally, the stochastic term of the
demand function makes the problem more intractable.
Therefore, we propose a computational approach as
a simulation-based optimization algorithm to solve
the problem. The simulation part is responsible for
handling the uncertainty existing in the problem and
evaluating the �tness function. In order to achieve
the global optimal solution, a simulator is combined
with an optimizer. The optimizer is utilized to �nd

Figure 2. The solution algorithm 
owchart.

the best set of the solutions, and then the simulation is
used to evaluate the quality of the generated solutions
and guide the search movements. The optimization
part in the proposed simulation-based optimization
approach aims to calculate the values of the decision
variables. Our proposed approach considers a grid
search as an optimizer. It �rst recognizes a feasible
region with an equally divided grid, and then �nds
the best local solutions in that region. After that,
it investigates the space around each local solution.
During the search procedure, the algorithm may shift
between spaces so as to �nd better solutions. Brie
y,
the algorithm consists of three main parts: (i) The
initializing procedure; (ii) The neighborhood search
process; and (iii) The simulation-based evaluation.
Figure 2 presents a general procedure of the proposed
approach.

4.1. Initializing procedure
The algorithm is initialized by selecting a divider
factor, � , which is a real value. The grid network
in our problem has two axes: t1 and t3. Figure 3
shows the structure of grid network in our problem.

Figure 3. Grid network structure.
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Figure 4. Inventory level for the case with t1 = 0 and
t3 > 0.

The factor divides the axes of the grid network equally,
and then creates the points by marking intersections
of the horizontal and vertical grid lines. Figure 2
illustrates a grid network whose axes are divided by
divider factor � = 2. The algorithm recognizes the
points that are feasible subject to constraint t3 � t1.
Figure 3 shows the feasible region of the grid network
for the current problem. The set of feasible solutions
is marked by the small dots in this �gure. After
that, all the feasible solutions in the grid network are
evaluated by the simulator, and the �tness values are
estimated. Here, we can identify the local optimal
solutions by �nding the points with greater �tness
values among their neighbors. In Figure 3, the arrows
show the directions where the �tness value of the
feasible solutions increases. The local optimal solutions
found so far are depicted by large dots in the grid
network of Figure 3. These solutions are utilized as the
initial solutions for the neighborhood search process.
To this end, the smaller grid is formed around the local
optimal solutions to further investigate the solution
space.

For further analysis of the grid network, we
consider two extreme cases in the solution space. Let
us �rst consider a case in which t1 = 0 and t3 > 0. On
the grid network, the corresponding point of this case
lies on the vertical axes. In such a case, we have no
shortage during the inventory cycle, and hence t1 = t0
and t3 = T . This case occurs when the shortage cost is
much greater than other cost parameters in the model.
Figure 4 depicts the inventory curve for the �rst case.

As another extreme case, assume that t1 = t3
with a value greater than zero. It means that we have
no holding cost during the inventory cycle. On the
grid network, the corresponding points of this case lie
on 45-degree line. This case occurs when the holding
cost is much greater than other cost parameters in the
model. Figure 5 depicts the inventory curve for the
second case.

4.2. Neighborhood search process
As described in the previous section, the simulation-
based optimization initializes the local optimal solution
and feeds it into the neighborhood search process as
a starting point. Indeed, for each local solution, the
algorithm utilizes the neighborhood search procedure
and updates the best solution through an iterative

Figure 5. Inventory level for the case with t1 = t3.

Figure 6. The neighborhood search process.

search procedure. For this purpose, neighborhood
grids are established around each solution to search for
better solutions. A neighborhood grid is a smaller grid
network inside the master grid network whose center is
placed on the current solution and includes new points
on the interstitial points between the points around
the current solution. As an example, Figure 6 shows a
neighborhood grid. The green circles show new points
found on the grid network to be further investigated.
These interstitial green points are obtained by adding
�=(2Iter) to the current solution where Iter represents
the total number of iterations. Whenever the current
solution is replaced by a new better solution, a neigh-
borhood grid is established around the new solution. If
there is no better solution than the current one on the
neighborhood grid, a new narrower neighborhood grid
is established around the current solution for further
investigation.

4.3. Evaluation by simulation
This step uses simulation to estimate the total pro�t
of a given set of solutions. As mentioned before, the
complicated relationships and the uncertainty existing
in the problem make it di�cult to achieve the total
pro�t via an analytical approach. In such a situa-
tion, simulation can reasonably estimate the objective
function for each solution in the grid network and
evaluate the quality of the solutions generated by the
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Figure 7. The simulation-based optimization procedure.

grid search. The simulation experiments are con-
ducted several times. In each experiment, the demand
function is randomly generated from the associated
distribution and the total pro�t is estimated for the
current solution. This brings about the conversion of
the problem into a special deterministic one at each
iteration. After all the experiments are implemented,
the expected value of the total pro�t is calculated as the
average amount of the special total pro�ts estimated.
Figure 7 depicts a general scheme of the simulation-
based optimization procedure.

5. Experimental results

This section aims at discussing some experiments that
have been carried out to investigate the performance
of the proposed approach for the production-inventory
problem. As mentioned earlier, it is rarely possible
to analytically solve the current production-inventory
problem for perishable products with shortage and
stochastic stock-dependent demands. For further anal-
ysis, the shape of TP function is investigated for an
instance problem. Figures 8 and 9 show the behavior
of TP in terms of variables t1 and t3. These �gures
reveal that the Total Pro�t, TP, is neither concave nor
convex globally. Moreover, as can be seen, it is not
di�erentiable in some potentially optimal points, which
makes the problem more intractable.

5.1. A numerical example
In this sub-section, we aim at presenting a numerical

Figure 8. The total pro�t surface in terms of t1 and t3.

Figure 9. The total pro�t plot in terms of t1 and t3.

example in order to illustrate the procedure of the
suggested approach step by step. The data considered
in this example are as follows: production rate, P =
300; constant term of the demand function, A = 50;
variable term of demand function, B = 8; deterioration
rate, � = 0:01; selling price, k = 100; holding cost,
h = 2; shortage cost, b = 20; production cost, c = 50;
setup cost, R = 300; and " follows the standard normal
distribution, N(0; 1). To construct the mathematical
model for this example, the inventory levels at cycle T
are obtained by substituting the above values. Then,
to implement the simulation-based grid search, the
inventory levels are used to compute the total pro�t
function. The results of experiments for divider factor
� = 10; 25; 40; 60 are shown by Tables 1-4 . As can be
seen, increasing divider factor leads to increasing the
total pro�t for a �xed number of iterations (Iter =
100) in this example. The best obtained solution is
t1 = 0:0000, t3 = 87:9802 with TP = 2974233.2264
which is resulted from the algorithm with divider factor
� = 60. Moreover, Figures 10-13 show the convergence
curves of the algorithm with di�erent divider factors.
As shown by these �gures, the convergence behavior
of the algorithm with the divider factor � = 60 is
outstandingly faster than other values.

5.2. Sensitivity analysis
This subsection aims at performing a sensitivity
analysis on the various parameters using the numerical
example discussed in the previous subsection. We set
divider factor at � = 60 in this subsection. The results
of analysis are presented in Table 5.

The output of the system considered here is
the Total Pro�t, TP. The last column calculates the
range of variations for the total pro�t by changing the
parameters from {20% to +20%. As the results show,
the total pro�t is less sensitive to changes in h, b, and
D. It is moderately sensitive to changes in P;A;B; �,
and c, and highly sensitive to changes in k. Moreover,
it reveals that there is an increase in the Total Pro�t,
TP, value when P;A;B; �, and k increase, and there
is an increase in the Total Pro�t, TP, value when h,
c, and D decrease.



2146 H. Mokhtari et al./Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 2138{2151

Table 1. Results with divider factor, � = 10.

Iteration Total pro�t Variables
t1 t2 t3 T

1 1288565.709 20.0000 79.7763 80.0000 180.0000
2 1393075.336 17.5000 79.7763 80.0000 167.5000
3 1471213.485 15.8333 79.7763 80.0000 159.1667
4 1535048.367 14.5833 79.7763 80.0000 152.9167
5 1589772.141 13.5833 79.7763 80.0000 147.9167
6 1638123.893 12.7500 79.7763 80.0000 143.7500
7 1681737.761 12.0357 79.7763 80.0000 140.1786
8 1721672.883 11.4107 79.7763 80.0000 137.0536
9 1758657.993 10.8552 79.7763 80.0000 134.2758
10 1793217.683 10.3552 79.7763 80.0000 131.7758
...

...
...

...
...

...
99 2964436.736 0.0499 79.7763 80.9368 81.1863
100 2964447.433 0.0499 79.7763 80.9868 81.2363

Table 2. Results with divider factor � = 25.

Iteration Total pro�t Variables
t1 t2 t3 T

1 1604837.228 12.5000 74.7763 75.0000 137.5000
2 2093205.03 6.2500 74.7763 75.0000 106.2500
3 2609685.109 2.0833 74.7763 75.0000 85.4167
4 2622819.157 2.0833 77.9013 78.1250 88.5417
5 2632677.207 2.0833 80.4013 80.6250 91.0417
6 2640487.929 2.0833 82.4846 82.7083 93.1250
7 2921187.196 0.2976 82.4846 82.7083 84.1964
8 2922291.842 0.2976 84.0471 84.2708 85.7589
9 2923240.496 0.2976 85.4360 85.6597 87.1478
10 2924068.796 0.2976 86.6860 86.9097 88.3978
...

...
...

...
...

...
99 2973050.195 0.0069 87.5423 87.5697 87.8743
100 2973062.647 0.0069 87.5660 87.5847 87.9993

Table 3. Results with divider factor � = 40.

Iteration Total pro�t Variables
t1 t2 t3 T

1 2186325.369 5.0000 69.7763 70.0000 95.0000
2 2238488.721 5.0000 76.4430 76.6667 101.6667
3 2973114.378 0.0000 76.4430 76.6667 76.6667
4 2973545.887 0.0000 80.4430 80.6667 80.6667
5 2973874.085 0.0000 83.7763 84.0000 84.0000
6 2974135.348 0.0000 86.6335 86.8571 86.8571
7 2973907.711 0.0000 84.1335 84.3571 84.3571
8 2974110.704 0.0000 86.3557 86.5794 86.5794
9 2973928.490 0.0000 79.7763 84.5794 84.5794
10 2973942.596 0.0000 86.1739 86.3975 86.3975
...

...
...

...
...

...
99 2974215.932 0.0000 87.5664 87.5880 87.7780
100 2974221.210 0.0000 87.6043 87.6080 87.9780
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Table 4. Results with divider factor � = 60.

Iteration Total pro�t Variables
t1 t2 t3 T

1 1091489.606 25.0000 29.7763 30.0000 155.0000
2 2959577.777 10.0000 29.7763 30.0000 80.0000
3 2964025.517 0.0000 29.7763 30.0000 30.0000
4 2966479.443 0.0000 37.2763 37.5000 37.5000
5 2968060.581 0.0000 43.2763 43.5000 43.5000
6 2969177.433 0.0000 48.2763 48.5000 48.5000
7 2970015.778 0.0000 52.5620 52.7857 52.7857
8 2970672.806 0.0000 56.3120 56.5357 56.5357
9 2971204.563 0.0000 59.6454 59.8690 59.8690
10 2971645.770 0.0000 62.6454 62.8690 62.8690
...

...
...

...
...

...
99 2974203.723 0.0000 86.6066 87.6272 87.8172
100 2974233.226 0.0000 86.5896 87.6402 87.9802

Figure 10. Convergence curve with divider factor � = 10.

Figure 11. Convergence curve with divider factor � = 25.

5.3. Comparisons
In order to investigate the quality of the solutions
obtained by the suggested approach, the performances
of a Genetic Algorithm (GA) and a full enumeration

Figure 12. Convergence curve with divider factor � = 40.

Figure 13. Convergence curve with divider factor � = 60.

algorithm are compared with our approach in this
subsection. To this end, the GA structure is devised as
follows. The chromosome is designed by a string with
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Table 5. Sensitivity analysis results.

Parameter
change (%)

{20% {10% 0 +10% +20% Percentage of
change in TP

P 2973165.148 2973725.195 2974233.226 2974698.943 2975129.723 0.0661%
A 2973165.148 2973725.195 2974233.226 2974698.943 2975129.723 0.0661%
B 2973441.233 2973880.747 2974233.226 2974518.737 2974761.020 0.0444%
� 2973165.148 2973725.195 2974233.226 2974698.943 2975129.723 0.0661%
k 1898099.363 2406273.687 2974233.226 3601977.979 4289507.947 125.989%
h 2974245.672 2974239.449 2974233.226 2974227.003 2974220.780 {0.0008%
b 2974233.226 2974233.226 2974233.226 2974233.226 2974233.226 0.0000%
c 2975729.412 2975729.412 2974233.226 2972737.040 2971240.854 {0.1508%
D 2974233.908 2974233.567 2974233.226 2974232.885 2974232.544 {0.0000%

Table 6. The result of comparisons among full enumeration, genetic algorithm, and grid search.

Problem
no.

Selling
price
(k)

Production
cost
(c)

Full enumeration Genetic algorithm Grid search
Grid size = 2 Grid size = 5 Grid size = 10

TP CPU
(s)

TP CPU
(s)

TP CPU
(s)

TP CPU
(s)

TP CPU
(s)

1 50 15 99398 206.14 99398 49.67 99398 26.34 99398 113.14 99398 55.29
2 30 106234 218.87 106200 52.19 106254 25.75 106232 112.41 106234 53.65
3 45 68726 207.80 68719 48.92 68702 25.05 68678 112.36 68726 53.84
4 60 780597 208.57 780430 48.56 780115 25.64 780044 112.25 780597 53.54
5 100 15 399398 205.12 399398 49.53 399398 25.24 399434 112.82 399408 52.79

6 30 598812 211.74 598823 49.87 598771 26.05 598652 112.63 598887 55.10
7 45 715025 231.49 714953 60.07 714834 27.57 714287 112.53 715034 54.07
8 60 1079243 216.11 1079100 49.10 1078935 25.67 1078965 113.08 1079251 55.41
9 150 15 966655 207.03 966620 52.55 966570 27.60 966414 112.50 966664 52.74

10 30 1780862 209.45 1780600 52.06 1780400 25.33 1779383 113.13 1780875 56.18
11 45 2445542 209.27 2445200 59.48 2444700 25.69 2443134 112.60 2445582 56.21
12 60 3407145 215.63 3406800 50.23 3406262 26.16 3404735 112.71 3407182 55.63
13 200 15 1823903 209.11 1823800 49.69 1823641 26.15 1823271 112.54 1823933 56.85

14 30 3435516 209.27 3435210 48.64 3434634 25.87 3432534 115.68 3436627 56.77
15 45 4868174 225.93 4867528 58.58 4866575 26.57 4864035 114.90 4868541 55.04
16 60 6666234 218.17 6665517 52.81 6664475 26.93 6659767 114.97 6666764 56.14

Average 1827592 213.11 1827394 52.00 1827104 26.10 1826185 113.14 1827731 54.95

two genes ft1; t3g. The initial population is produced
by assigning a random real number to each gene. The
crossover operates on two parent solutions, P1 and P2,
in order to create new o�spring solutions. For this
purpose, a random number, � 2 [0; 1], is generated
and the o�springs are obtained as �P1 + (1��)P2 and
�P2 + (1 � �)P1. The mutation alters the value of
the genes in order to make a random change to the
solution. For this purpose, random binary number, 
,
is generated and the mutation operator sets, t1 = 0,
if 
 = 0, and t3 = t1; otherwise, the current solution
(t1; t3) is transmitted to the boundary of the feasible
region (t3 � t1). For example, if we have (2.5,4.0)
as the current solution, mutation turns it to (0.0,4.0)
if 
 = 0, and to (2.5,2.5) if 
 = 1. The standard

features of the GA algorithm used in this subsection
are as follows: crossover rate = 0.3, mutation rate =
0.1, population size = 40, generation number = 300,
and replication number = 5. In order to implement the
algorithms, we need a wide range of test problems. To
this end, we generate the instances using the uniform
distribution. We categorize the instances based on
selling price, k, and production cost, c, as the most
sensitive parameters.

Table 6 summarizes the results of the comparison
for the suggested grid search with the genetic algorithm
and the full enumeration algorithm in terms of the
Total Pro�t (TP) and the CPU time. Since the per-
formance of the full enumeration algorithm is greatly
dependent on the grid size, we examine three values for
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the grid size f2; 5; 10g. As expected, among the three
full enumeration algorithms, Grid size = 2 obtained
better solutions than the two others. As the results
presented in this table reveal, the suggested grid search
algorithm obtains better solutions compared to both
the full enumeration and genetic algorithms with less
computational time.

6. Conclusions

As marketing researchers have recognized, the demand
for many products is directly proportional to the
amount of stock displayed. It is usually observed
by the practitioners that a large amount of goods
displayed in a supermarket attracts more customers,
and conversely, low inventory of goods might make
the perception that they are not fresh, and therefore
decrease the demand. Consequently, building up the
inventory level often has a positive impact on sales
and pro�ts. Therefore, in such a case, the demand
has no longer a constant rate, but it depends on the
stock level. Hence, this paper dealt with a stock-
dependent demand for an EPQ model. The products
are perishable and the shortage is permitted and fully
backordered. In order to determine the appropriate
production-inventory policies, the inventory level was
formulated at di�erent time horizons, and then the
total pro�t function was derived. Since the problem
is mathematically intractable, designing an analytical
approach was a challenging task. Therefore, this paper
developed a simulation-based optimization algorithm
where a grid search was combined with a simulation
model. The grid search plays the role of an optimizer
to determine the values of the model variables, and the
simulation model is utilized to evaluate the quality of
the solutions obtained by the optimizer within an it-
erative procedure. A numerical example was discussed
and a sensitivity analysis was carried out with respect
to the parameters of the model. The results showed
that the total pro�t is highly sensitive to changes in
k and moderately sensitive to changes in P;A;B; �,
and c. Moreover, the results of a comparison study
demonstrate that the suggested approach is superior
to genetic algorithm and full enumeration algorithms
in terms of both accuracy and e�ciency features.

As for future study, it would be interesting to
consider joint pricing and inventory policy. We also
can extend the model by considering both stock- and
price-dependent demand functions. As for another
extension, the partial backordering can be investigated.
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