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Abstract. This study is concerned with how the quality of perishable products can
be improved by shortening the time interval between production and distribution. Since
special types of food, such as dairy products, decay fast, the Integration of Production
and Distribution Scheduling (IPDS), is investigated. This article deals with a variation
of IPDS that contains a short shelf life product; hence, there is no inventory of the
product in the process. Once a speci�c amount of the product is produced, it must be
transported with the least transportation time directly to various customer positions within
its limited lifespans to minimize the delivery and tardy costs required to complete producing
and distributing of the product to satisfy the demand of customers within the limited
deadline. After developing a mixed-integer nonlinear programming model of the problem,
because it is NP-hard, an Improved Particle Swarm Optimization (IPSO) is proposed.
IPSO performance is compared with commercial optimization software for small-size and
moderate-size problems. For large-size ones, it is compared with the genetic algorithm
existing in the literature. Computational experiments show the e�ciency and e�ectiveness
of the proposed IPSO in terms of both the quality of the solution and the time of achieving
the best solution.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Production and distribution operations are two impor-
tant operational functions in a supply chain. To achieve
optimal operational performance in a supply chain, it is
signi�cant to integrate these two functions and schedule
them jointly in a coordinated manner. However,
most of the proposed integrated and synchronized
approaches focus on the tactical decision level of supply
chains [1,2]. In recent years, integrated scheduling
has attracted much interest among researchers. In
contrast to classical scheduling, this type of schedul-
ing problem involves not only the production part
but also distribution. The objective of integrated
scheduling is to obtain a simultaneous optimization
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of both parts. The obtained procedure will become
a detailed schedule that provides an e�cient solution
for operation management. In this paper, a class of
integrated scheduling problems is considered, which
includes production and distribution.

In many applications involving make-to-order or
time-sensitive (e.g., perishable) products, �nished or-
ders are often delivered to customers immediately
or shortly after the production to restrict quality
reduction. In such a supply chain, product quality is
determined not only by the production processes but
also through the coordination of the production and
distribution decisions. In this situation, the delivery
of the products must be done within a strictly limited
time after their production. The non-inventory pro-
duction and transportation problem is routine in many
industries, in which a time-sensitive product cannot be
in storage due to its short shelf life. The delivery of



2106 F. Marandi and S.H. Zegordi/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 2105{2118

the product must be made within a tightly limited time
after its production. Therefore, the production and dis-
tribution operations must be highly integrated. When
the production plant has a limited production rate
and the transportation time is not instantaneous, any
ine�ciency in the integrated schedule may either cause
the product to expire before it reaches the customers or
cause the delivery not to satisfy a customer's delivery
deadline. Then, the production and distribution oper-
ations must be highly linked and integrated because
any ine�ciency in the integrated schedule causes a
decrease in product quality, expiration before delivery,
extra expenses, and lack of customer satisfaction. To
ease this coordination, production sites are usually
directly connected to customers by a 
eet of vehicles [3].
Consequently, there is little or no �nished product
inventory in the supply chain such that production and
outbound distribution are very closely linked, which
must be scheduled jointly in order to achieve a desired
on-time delivery performance at a minimum total cost.
However, the analysis of practices in case studies
show that, currently, the production and distribution
operations are done separately, which cause operational
and customer dissatisfaction [4]. Thus, this paper
investigates integrating production and distribution
decisions at a trade-o� among customer satisfaction,
quality of delivered products, and total costs. Research
on integrated scheduling models of production and
distribution is relatively new, but it is growing very
rapidly.

This study was motivated by a practical schedul-
ing problem encountered by a leading manufacturer
of various industries, in which a limited number of
vehicles were available, where the departure time after
production in 
owshop scheduling was not �xed and
needed to be determined in order to minimize tardy and
delivery costs to satisfy the customers' deadline. The
di�erences and contributions of this paper compared
with IPDS's literature can be summarized as follows:

1. A new problem is de�ned. The Integrated
Production-Distribution Scheduling (IPDS) prob-
lem is considered, of which the �rst stage con-
tains permutation 
ow shop scheduling and the
second stage involves the distribution problem that
requires designing vehicle routes for picking up
�nished goods and delivering them from the manu-
facturer to customers;

2. A new mixed integer nonlinear programming model
is developed, which simultaneously considers both
production and distribution scheduling in an inte-
grated manner. The exact solution to the problem
is provided by solving the model. This model is
practical in large scales for real cases, such as the
dairy product industry, which is motivated by a case
study from a dairy manufacturer in Tehran;

3. An Improved Particle Swarm Optimization (IPSO)
is proposed to deal with the problem. The improv-
ing operator, 1-exchanged and 2-opt, is added to
prevent premature convergence;

4. New test problems are created, which can be used
for future studies.

This paper studies the integrated production and dis-
tribution scheduling problem and extends features such
as non-negligible transportation time and delivery con-
solidation. Comparison of this problem with previous
works shows the combination of the product's limited
lifespan, machine scheduling decisions, and the vehicle
routing decisions as critical features that make it di�er-
ent, which leads to the possibility of expiration before
it reaches a customer. The problem is complicated by
limited transportation capacity, a customer's demand
size and location, and the departure time that must
be determined and are not �xed. On the other hand,
these complications also make the resulting integrated
scheduling problem challenging and interesting. The
particular variation that is considered involves a single
production plant with multiple production machines
in 
owshop scheduling, a 
eet of delivery trucks, and
a given set of customers at di�erent locations over a
geographic region.

The aim of this research is integrating scheduling
in a mathematical model, which is developed to in-
vestigate the e�ect of integrated production scheduling
and distribution decisions on the total costs. This
is similar to various real-world environments such as
food, dairy products, and chemical industries, which
are highly perishable. Since this problem has an NP-
hard structure [5], a meta-heuristic method is used to
solve it. An Improved Particle Swarm Optimization
(IPSO) is proposed in this study that improves the
operator, while 1-exchanged and 2-opt is added to
prevent premature convergence.

The remainder of this paper is organized as
follows. Section 2 presents results from previous works
on integrated supply chain scheduling. In Section 3,
the problem is described and the mathematical model
of the problem is presented. In Section 4, an improved
particle swarm optimization is proposed to solve the
problem. In Section 5, the experimental results of
the proposed IPSO and managerial implications are
presented. At the end, Section 6 elaborates concluding
remarks and some suggestions for future research.

2. Literature review

In this section, the literature that explicitly involves
both production and transportation activities in in-
tegrated supply chain scheduling is presented. Inte-
grating production and outbound delivery scheduling is
very critical and common in the supply chain of time-
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sensitive products [6,7]. For example, Buer et al. [8]
focus on the newspapers printing and distribution, and
mail processing and distribution provided by Wang
et al. [9], and industrial adhesive materials produc-
tion and delivery provided by Devapriya et al. [10].
Therefore, how to e�ectively integrate the production
and delivery stages at the operational level so as to
decrease the operational costs and improve customer
service becomes very important for the success of a
company. However, most of the existing models on
the production-distribution scheduling problems only
study strategic or tactical levels of decisions, and
very few have addressed integrated decisions at the
operational level. Chandra and Fisher [11] emphasize
the need for studying these integrated scheduling issues
at the operational level. They consider an integrated
scheduling problem where a plant produces and stores
the products until they are delivered to the customers
by a 
eet of trucks. They provide two solutions.
The �rst solution solves the production scheduling and
vehicle routing problems, separately, but the second
one solves the problem in a coordinated manner. Their
computational results show that the total operating
cost decreases in the coordinated one. Chen and
Vairaktarakis [12] and Pundoor and Chen [13] also
show that there is signi�cant bene�t by using the
optimally integrated production-distribution schedule
compared to the schedule generated by a separate and
sequential scheduling approach in the context of the
models that are considered in their research. They
emphasize that integration is a prior approach to
improve the total performance in decreasing costs that
is investigated in this paper.

Chen [6,14] reviews papers that deal with in-
tegrated production scheduling and outbound distri-
bution. He focuses on two main areas of direct
delivery (one destination) and vehicle routing (multi
destinations). He also provides a survey of models
and results in the area of integrated scheduling of
production and distribution. He presents a uni�ed
model representation scheme, classi�es existing models
into several di�erent classes, and, for each class of the
models, gives an overview of the optimality properties,
computational tractability, and solution algorithms
for the various problems studied in the literature.
In his survey on the relevant literature, he states
that although there is a huge amount of research on
integrated production and distribution models, the
need for focusing on more studies in this realm is
required. In his research, he notes a gap in the
consideration of a due date and distribution by vehicle
routing for practical situations. Lee and Chen [15]
study the machine scheduling problems with explicit
transportation considerations. They identify two types
of transportation situations in their models. The �rst
type involves transporting a semi-�nished job from one

machine to another for further processing. The second
type involves transporting a �nished job to the cus-
tomer or warehouse. Both transportation capacity and
transportation time are taken into account explicitly in
their model. They classify the computational complex-
ity of various scheduling problems by either proving
their NP-hardness or providing polynomial algorithms.
Chang and Lee [5] consider an extension of Lee and
Chen's work where each job is assumed to occupy a
di�erent amount of storage space in the vehicle during
delivery. They show the problem that jointly considers
production and delivery with the consideration that
each job may require a di�erent amount of space
during intractable transport and provide heuristics for
some cases of the problem. Zhong et al. [16] study
the similar problem as the one studied by [5] with
the objective of minimizing the makespan. In the
practical cases, focusing on the type of transportation,
Hajiaghaei-Keshteli and Aminnayeri [17] present inte-
grated production and rail transportation scheduling
by emphasizing the application of rail distribution.
Saidi-Mehrabad et al. [18] present a new integrated
model in scheduling and routing by automated guided
vehicles that focus on new methods of transportation.
In some research, the types of products are more
important than the types of transportation in practical
models investigated in integrated modelling. Chen et
al. [19] and Farahani et al. [3] propose a production and
distribution scheduling for perishable food products.
Liu et al. [20] present an integrated scheduling to
improve the operation of production and delivery in
ready-mixed concrete plants. Algorithms for solving
these problems include approximation algorithms [21]
and intelligent algorithms [4,22,23]. As mentioned, the
type of product and transportation is important in
practical cases and industries that is emphasized in this
paper, as follows.

To the best of our knowledge, it seems that
no research considers both permutation 
ow shop
scheduling with due date and tardy cost in the pro-
duction stage, and vehicle routing with consideration
of deadline to satisfy customers. Few studies consider
the transportation 
eet in their models. This study is
extended by assuming that the �rst stage of the supply
chain is composed of m machines as the 
ow shop
environment in the production stage, and v vehicles
involved in designing vehicle routes for picking up and
delivering �nished goods in the second stage. It can be
practical in real cases to serve a number of customers
in various geographical zones.

3. Problem description

3.1. Assumptions
As mentioned previously, the scheduling of products
and vehicles in a two-stage supply chain is investigated
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here. The �rst stage contains permutation 
ow shop
scheduling with m machines and n jobs, and the
second stage is composed of v vehicles with di�erent
speeds and transportation capacities that transport n
jobs from the manufacturing company to c customers
distributed in various geographical zones. All vehicles
are available upon completion of all jobs (i.e., Cmax).

The problem is described as follows. There is a set
of jobs (N = f1; 2; � � � ; ng) to be processed by a set of
machines (M = f1; 2; � � � ;mg) at the production stage,
which is permutation 
ow shop scheduling. All jobs
have to be processed in an identical order on a given set
of machines. The processing of each job is continuous
once the processing begins. After processing, the
�nished jobs need to be delivered by a set of vehicles,
V = f1; 2; � � � ; vg, which has a distinct capacity, Qk,
to a set of customers, C = f1; 2; � � � ; cg, that aims to
�nd a set of tours for several vehicles from a depot
(i.e. manufacturer site) to a lot of customers. They
return to the depot without exceeding capacity and
deadline constraints. Each customer is visited only
once by a single vehicle. Delay is not allowed, i.e.
the jobs have to be delivered to the customers before
the deadline. Moreover, when the last job terminates
(i.e., makespan) after the due date, it will incur the
tardy cost. The objective is to �nd an integrated
production and distribution to minimize the sum of
jobs' delivery cost and tardy cost that refers to the due
date violation.

At the beginning of the horizon, customers re-
quire a set of jobs and send the requirements to the
manufacturer. At the subsequent delivery stage, a

eet of capacitated vehicles delivers the �nished jobs
to the pre-speci�ed customers. The capacity of the
transporter is measured by a certain volume. Each
customer is visited only once by a single vehicle. Only
one vehicle is allowed to visit each customer.

3.2. Mathematical model
A mathematical formulation of the proposed Integrated
Production-Distribution Scheduling (IPDS) problem
is presented in this section. The parameters are as
follows:
n Number of jobs
m Number of machines
c Number of customers
v Number of vehicles
i Job index, i = 1; 2; � � � ; n
p Job position index, p = 1; 2; � � � ; n
r Machine index, r = 1; 2; � � � ;m
j; l Customer index
k Vehicle index
vk Speed of vehicle k

Tri Operation time of job i on machine r
djl Distance between customer j and

customer l
eij Physical space of customer j's demand

i
ddk Deadline for vehicle k to deliver to

customers
Qk Capacity of vehicle k for transporting

job from manufacturing company to
customers

du Due date for production stage
cd Transportation cost per unit of

distance
cp Violation due date cost in production

stage
M A su�ciently large number

Variables of the model are as follows:

Brj Start time of job j on machine r
uj Number of customers visited at

customer j
rk Ready time of vehicle k representing

the latest completion time
cmax Maximum completion time of all jobs

(makespan)
zij 1 if job i in position j is processed;

zero otherwise
xkjl 1 if customer l is served after customer

j by vehicle k; zero otherwise
y 1 if cmax is after due date; zero

otherwise

Miller et al. [24] propose a mathematical pro-
gramming formulation to prevent sub-tours in the
vehicle routing problem. Kyparisis and Koulamas [25]
propose a de�nition to consider the vehicle velocity and
distance instead of time. All the above assumptions are
used to develop the following model for the Integrated
Production-Distribution Scheduling (IPDS) problem:

Min cd
vX
k=1

cX
l=0

cX
j=0

dljxklj + cp:y(cmax � du);

nX
p=1

Zip = 1 1 � i � n; (1)

nX
i=1

Zip = 1 1 � p � n; (2)

B1p +
nX
i=1

T1iZip = B1;p+1 1 � p � n� 1; (3)

B11 = 0; (4)
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Br1 +
nX
i=1

TriZi1 = Br+1;1 1 � r � m� 1; (5)

Brp +
nX
i=1

TriZip � Br+1;p

1 � r � m� 1 2 � p � n; (6)

Brp +
nX
i=1

TriZip � Br;p+1

1 � p � n� 1 2 � r � m; (7)

cmax = Bmn +
nX
i=1

TmiZin; (8)

vX
k=1

cX
l=1

xkjl = 1 j = 1; 2; � � � ; c; (9)

vX
k=1

cX
j=1

xkjl = 1 l = 1; 2; � � � ; c; (10)

cX
l=0

xklh �
cX
j=0

xkhj = 0

k = 1; 2; � � � ; v; h = 1; 2; � � � ; c; (11)

cX
j=1

xk0j = 1; k = 1; 2; � � � ; v; (12)

uj + 1 � ul + c(1� xkjl) k = 1; 2; � � � ; v;
l = 1; 2; � � � ; c; j = 1; 2; � � � ; c; (13)

vX
k=1

cX
j=1

xk0j = v; (14)

vX
k=1

cX
l=1

xkl0 = v; (15)

nX
i=1

cX
j=0

cX
l=0

eijxklj � Qk k = 1; 2; � � � ; v; (16)

rk � cmax k = 1; 2; � � � ; v; (17)

rk +
cX
l=1

cX
j=0

djl=vkxkjl � ddk k = 1; 2; � � � ; v;
(18)

cmax � du�M(1� y); (19)

cmax � du+My: (20)

The aim is to minimize the sum of delivery and tardy

costs. Constraint sets (1) and (2) represent the assign-
ment that guarantees to assign every job to one position
and every position to one job. Constraint sets (3)-(5)
ensure the permutation 
ow shop scheduling property
in which there is no idle time on the �rst machine
and the �rst job is processed on all machines without
delay. Constraint set (6) guarantees that the start of
each job on machine r + 1 is not earlier than its �nish
time on machine r, which prevents the simultaneous
processing of jobs on one machine. Constraint set (7)
ensures that the job processes in position p + 1 in the
sequence do not start until the processing of the job in
position p on that machine is completed. Constraint
set (8) represents makespan. Constraint sets (9) and
(10) are common constraints for the vehicle routing
problem that causes every customer to be serviced
by only one vehicle. Constraint set (11) is the 
ow
conservation constraint for each customer and when
the vehicle serves the customer, it must depart the
current customer to service the next ones. Constraint
set (12) ensures that every vehicle must serve the
customer once. Constraint set (13) prevents the sub
tour that is disconnected to the depot. Constraint
sets (14) and (15) con�ne the number of vehicles to
serve the customers to v vehicles. Constraint set
(16) guarantees that the maximum 
ow in any arc
leaving the root is equal to Qk and the maximum
vehicle k capacity is con�ned to Qk. The relation of
the production and distribution stages is important
in the IPDS problem. Constraint set (17) focuses on
integration of the production and distribution stages,
which emphasizes the ready time of vehicles upon
completion of all jobs. Constraint set (18) focuses
on satisfying the deadline to serve the customer in
order to increase customer satisfaction. Constraint
sets (19) and (20) determine variable y to get 1 or 0
that is dependent on makespan violation of the due
date.

It should be mentioned that as the objective
function contains non-linear terms, the mathematical
model is a Mixed-Integer Non-Linear Programming
(MINLP) model. The model could be solved with
commercial software packages such as LINGO.

Lemma 1. The Integrated Production-Distribution
Scheduling (IPDS) problem is NP-hard.

Proof. Chang and Lee [5] proved a problem with
only one geographical zone, one manufacturer, and one
vehicle as NP-hard. According to [26,27], the 
ow shop
scheduling problem with Cmax minimization objective
is also NP-hard. As the IPDS problem is an extension
of two NP-hard problems, i.e. the 
ow shop scheduling
and vehicle routing problem, the integrated problem
must be NP-hard in the strong sense. �
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NP is not equal to P problems, so there is no
algorithm to �nd global optima in polynomial compu-
tational time. Therefore, meta-heuristics or heuristics
must be applied to solve large-scale problems within
reasonable computation time. After introducing the
particle swarm optimization algorithm, the improved
algorithm, IPSO, is proposed in Section 4. In Section 5,
it is validated by the generated test problems.

4. Meta-heuristic algorithms

Each of the integrated production and distribution
scheduling problems is strongly NP-hard [4,5]. There-
fore, an Improved Particle Swarm Optimization is
proposed to deal with the proposed problem in this
research. For validation of IPSO, a genetic algorithm
emanated by [4] is applied.

4.1. Improved Particle Swarm Optimization
(IPSO)

Various approaches have been proposed to solve
scheduling problems. Among them, PSOs have been
greatly adopted during recent years in practical do-
mains [28,29]. The Particle Swarm Optimization
(PSO) is a population-based optimization algorithm
based on the benchmarking of social interactions such
as bird 
ocking or �sh school. It is developed by [30]
in which the members of the whole population are
maintained through the search procedure, so that
information is socially shared among individuals to
guide the search towards the best position in the search
space. PSO is an evolutionary algorithm, which is ini-
tialized with a population (swarm) of random solutions
(particles) that 
y in the search space. It searches
for optima by updating generations. Individuals or
potential solutions are named particles. They 
y in
the problem space with a velocity dynamically updated
according to the 
ying experiences of every particle and
the whole population.

The PSO algorithm has been successfully used for
various applications such as neural network training,
task assignment, supplier selection, ordering problem,
permutation 
ow shop sequencing problems, lot sizing
problem, and single machine total weighted tardiness
problems [31,32]. The advantages of a PSO algorithm
are observable not only in the wide applications, but
also in the simple structures, immediate accessibil-
ity for practical applications, ease of implementation,
speed to get the solutions, and robustness.

The basic elements of the PSO algorithm are
summarized as follows:

� Particle: Xt
i is the ith particle at iteration t with

a D-dimensional vector, which is located at Xt
i =

(xti1; xti2; � � � ; xtiD) in the searching space;
� Population: Consists of P particles with D dimen-

sions in the swarm, iteratively;

� Particle velocity: The ith particle's velocity
is also a D-dimensional vector as V ti = vti1; vti2;� � � ; vtiD, which is updated iteratively;

� Inertia weight and acceleration coe�cients:
! is a parameter to control the impact of previous
velocities on the current velocity. c1 and c2 are
constant parameters called acceleration coe�cients
to control the maximum step size that the particle
can carry out;

� Personal best: The best position of the ith
particle with the best �tness value until iteration t is
P ti = (pti1; pti2; � � � ; ptiD) that means the best position
associated with the best �tness value of the particles
so far. It is updated iteratively for each particle;

� Global best: The best position of the popula-
tion obtained so far in the whole swarm is P tg =
(ptg; ptg; � � � ; ptg) at iteration t;

� Termination criterion: It de�nes a condition to
stop searching the solution space. It is optional
according to the max generation or CPU time.

The velocity of each particle based on the current
velocity, the best experience of the particle, and that
of the entire population are updated as follows:

vti =!:vt�1
id +c1:r1(ptid�xtid)+c2:r2(ptgd�xtid): (21)

Eq. (1) describes the velocity of a particle at iteration
t. It is determined by the previous velocity of the
particle, the cognition part, and the social part. c1
is the cognition factor, c2 is the social learning factor,
and ! is inertia weight to control the impact of
previous velocities on the current velocity, calculated
in Eq. (2). The position of each particle is updated in
each iteration in Eq. (3):

! =
2���2� '�p'2 � 4'

��� ;
' = '1 + '2 > 4;

c1 = !'1;

c2 = !'2;

xtid = xt�1
id + vtid: (22)

In order to control excessive 
ying of particles outside
the search space, the velocity values are con�ned to the
range [�vmax; vmax].

4.1.1. Proposed IPSO algorithm
In this section, a particle swarm optimization algorithm
named Improved Particle Swarm Optimization (IPSO)
algorithm is proposed. The procedure of the IPSO is
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Figure 1. Process 
ow of proposed IPSO.

shown in Figure 1. For this purpose, among many
di�erent kinds of neighbourhood structures in the
literature, a local improvement procedure, namely (1-
exchange, 2-opt), is added to improve the solution's
quality. It is randomly selected for each iteration
to extend solution search. The following two types
are considered to improve solution quality and widen
search space:

� 1-exchange: Select two tours; then, omit one
customer in one of two tours and add it to the other
tour;

� 2-opt: Select two tours; then, interchange two
customers of one tour with two of the other.

When a particle is going to stagnate, the improving
operators are used to search its neighbourhood to pre-
vent premature convergence. The improving structures
can in
uence quality of the solution. Numerical results
show how these procedures prevent the algorithm from
getting stuck in a local optimum.

4.2. Computational procedure
The complete computational procedure of the IPSO is
summarized as follows:

- Step 1: Initialization:
� Initialize P particles randomly as a population

with (D = n + c + v � 1)-dimensions; n, c,
v, respectively refer to the numbers of jobs,

customers, and vehicles. In the production stage,
customers are randomly assigned to a de�nite
number of v vehicles. There is a capacity violation
cost in order to guarantee the vehicle capacity
constraint and time violation cost to satisfy the
deadline constraint by minimizing violation costs.
In the distribution stage, the permutation of jobs
is considered in the initial population with con-
sideration of better �tness value (lower objective
function). First, calculate each particle's �tness
value of the initialization population and, then,
rank them. Choose the smaller one that is P ti .
Choose the particle with the best �tness value of
the whole population as P tg ;

� Set t = 1; generate the position of particle
i, X1

i (i = 1; 2; � � � ; p) randomly, where X1
i =

(x1
i1; x1

i2; � � � ; x1
iD) for the whole population;

� Generate velocity of particle i, V 1
i (i = 1; 2; � � � ; p)

randomly, where V 1
i = v1

i1; v1
i2; � � � ; v1

iD for the
whole population;

� Compute the performance measurement, i.e. the
total delivery and tardy cost, and set it as the
�tness value f1

i of x1
i (i = 1; 2; � � � ; p);

� For each particle in the swarm, P 1
i = (p1

i1 =
x1
i1; p1

i2 = x1
i2; � � � ; p1

iD = x1
iD) for i = 1; 2; � � � ; p;

� Find the best �tness value in the population P 1
g =

min(f1
i ) for i = 1; 2; � � � ; p.

- Step 2: Update iteration:

� t = t+ 1.

- Step 3: Apply improving operator:

� Apply one of two improving operators randomly
at each iteration to search the solution space
widely and achieve various solutions.

- Step 4: Update P ti and P tg :

� For i = 1; 2; � � � ; p calculate the �tness value; if
f ti < P t�1

i , put P ti = f ti ; otherwise, P ti = P t�1
i ;

� For i = 1; 2; � � � ; p calculate �tness value; �nd the
minimum �tness value in the swarm; if min(f ti ) <
P (t�1)
g , put P tg = min(f ti ); otherwise, P tg = P t�1

g .

- Step 5: Update velocity:

� vti = !:vt�1
id + c1:r1(ptid � xtid) + c2:r2(ptgd � xtid);

'1 and '2 are equal to 2.05; r1 and r2 are random
numbers uniformly distributed in [0,1], and c1 and
c2 are random numbers in [0,2].

- Step 6: Update position

� xtid = xt�1
id + vtid.

- Step 7: Termination criterion

� The termination criterion is determined when
the number of iterations is achieved by the max
generation; otherwise, go to Step 2.
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Figure 2. The particle encoded as the number of jobs and customers.

4.3. Solution representation in an illustrative
example

In an integrated production and distribution scheduling
problem, the information of both problems is stored in
one particle instead of de�ning two separate particles.
Hence, the encoding scheme contains real numbers.
Each particle is consisted to have (n + c + v � 1)
dimensions, in which n, c, and v are, respectively, the
numbers of jobs, customers, and vehicles.

In this section, an illustrative example has been
included to show the e�ciency of the proposed ap-
proach. After completion of jobs (Cmax) in the pro-
duction stage, which contains permutation 
ow shop
scheduling, vehicles deliver customers' orders with re-
strictions of vehicles capacity and deadline constraint.
An instance of the problem with three jobs, eight
customers, and three vehicles is given in Figure 2 as an
example of the encoding integrated problem. A particle
in this encoding system is a feasible sequence of jobs
that are assigned to machines in spite of the sequence
of customers that are assigned to vehicles with respect
to vehicle capacity.

5. Computational results

In this section, the computational experiments are
performed to test the performance of the proposed
algorithm. The IPSO algorithm is tested on di�erent
scale instances and compared with the recently pro-
posed e�cient algorithms. As there are no benchmark
solutions to compare with the solution of the proposed
algorithm, for small-size and moderate-size instances,
the IPSO algorithm is compared with the optimal
solution calculated by a commercial optimization soft-
ware, LINGO 13.0. For large-size instances, it is
compared with the genetic algorithm of the similar
problem [4]. All the algorithms in this paper are
coded in MATLAB 8.3. They are implemented on a
computer with Intel Core 2Duo 2.5 GHZ and 3 GB
RAM.

5.1. Test problems generation
Test problems are randomly generated as follows.
25 random instances for each problem size are created
based on the following parameter settings:

� The job processing time on the machine is randomly
generated from the uniform distribution in the range
of [1; 99];

� The volumes of di�erent jobs are randomly gener-
ated from the uniform distribution in the range of
[1; 10];

� The distance between di�erent customers is ran-
domly generated from the uniform distribution in
the range of [1; 100];

� The vehicle capacity is randomly generated from
the uniform distribution in the range of [

Pc
j=1Pn

i=1 eij=v,
Pc
j=1

Pn
i=1 eij ];

� In this paper, a new and practical range is ap-
plied with consideration of velocity and distance,
the deadlines of which are randomly generated
from the uniform distribution in the range of
[�
Pm
r=1

Pn
i=1 Tri, �(Tmin + Tmax)=2 + (dmin +

dmax)=2v], where Tmin and Tmax are minimum and
maximum job processing times, respectively, and
dmin and dmax are the minimum and maximum
distances, respectively in which � = 0:2 and � =
1:5 by numerical experiments. It is di�erent from
Pundoor and Chen's [13] research;

� The due dates are randomly generated from the
uniform distribution in range of [du(1�R=2), du(1+
R=2)] that du =

Pm
r=1

Pn
i=1 Tri(1 � �), R = 0:6,

� = 0:2 [33].

Problems are classi�ed into three groups of small,
moderate, and large sizes in order to compare exact
procedures, IPSO, and GA, for each test problem that
is described in the next section.
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Table 1. Results of random instances with small sizes.

Instance
no.

Size IPSO LINGO
PD

Machine Job Vehicle Customer Value CPUT
(s)

Value CPUT
(s)

1 2 5 2 6 29493 22 29493 4 0
2 2 10 3 6 38736 19 38736 17 0
3 2 15 3 6 39937 20 39937 42 0
4 5 5 2 6 32967 19 33517 12 0
5 5 15 2 6 42337 20 42234 60 0.002
6 2 5 3 7 30043 21 29993 38 0.001
7 2 10 3 7 32586 20 32586 27 0
8 2 15 3 7 32837 21 32837 51 0
9 5 5 2 7 29467 19 29467 15 0
10 5 15 2 7 38101 22 38184 52 0
11 2 5 3 8 29943 17 32443 23 0
12 2 10 3 8 39886 17 39886 160 0
13 2 15 3 8 40154 21 40137 129 0.0004
14 5 5 2 8 34467 21 34467 107 0
15 5 15 2 8 43984 17 43834 136 0.003
16 2 5 3 9 30143 17 33843 116 0
17 2 10 3 9 40236 19 40236 160 0
18 2 15 3 9 40637 20 40487 92 0.004
19 5 5 2 9 33417 19 33417 72 0
20 2 5 3 10 24983 19 24943 59 0.001
21 2 10 2 10 34236 16 33936 67 0.009
22 2 15 2 10 37187 17 37237 153 0
23 5 5 2 10 28417 21 28317 37 0.003
24 5 10 2 10 34759 20 34759 90 0
25 5 15 2 10 43034 16 43147 548 0

Average 19.2 83 0.0009

5.2. Validation and veri�cation of the IPSO
In this section, the outcomes of the model in the exact
procedure, IPSO, and GA for each test problem, in the
way of randomized block design [34], are reported. The
tables consist of three parts: the objective function,
running time (CPUT), and percentage deviation. The
indicator PD (Percentage Deviation) is de�ned as
PD = 100 � (IPSOs � LINGOs)=LINGOs to assess
the quality of the obtained solution. It measures
the amount of improvement in terms of the objective
function. In the PD formula, LINGOs and IPSOs
represent the LINGO solution and IPSO solution,
respectively. It should be mentioned that LINGO �nds
the optimal solution for all small-size instances.

For comparison, the MINLP model is solved with
the mathematical software LINGO 13.0. It is used
to exactly solve the model with small-size instances.
Since the complexity of the problem is categorized in
the NP-hard class, only small-size problems can be

solved. All PD percentages and the total average of
the small-size problems shown in Table 1 are less than
0.9%. The average running time of the IPSO is less
than that of the optimal approach. For moderate-size
problems, LINGO returns a local optimal solution in
a limitation of 2000 seconds for running time. Table 2
shows the solutions of the proposed IPSO algorithm,
which are better than the local optimal solutions found
by LINGO. The gap of the local solution is 9.5% on
average for all moderate-size instances. For moderate-
size problems, the PD formula is rewritten as PD =
100�max(0; IPSOs� LINGOs)=LINGOs.

It is shown that the IPSO runs much faster than
the LINGO solver. Although the LINGO solver �nds
the optimal solution, the computational time of LINGO
grows exponentially as the instance size increases.
Moreover, the IPSO cannot obtain optimal solutions
for moderate sizes, but can �nd locally optimal solu-
tions in the limitation time of 2000 seconds.
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Table 2. Results of random instances with moderate sizes.

Instance
no.

Size IPSO LINGO
PD

Machine Job Vehicle Customer Value CPUT
(s)

Value CPUT
(s)

1 2 100 10 10 118481 21 122976 2000 0
2 2 50 20 10 96522 23 96706 2000 0
3 2 50 10 20 89117 22 96535 2000 0
4 5 10 10 100 169617 29 141113 2000 0.20
5 4 20 10 50 98768 25 135901 2000 0
6 4 200 10 10 214359 29 218871 2000 0
7 4 50 40 10 125039 26 122600 2000 0.02
8 5 100 10 20 150885 26 133666 2000 0.12
9 5 200 5 20 220857 28 211838 2000 0.04
10 6 100 5 40 159283 20 121982 2000 0.30
11 7 100 4 50 173507 29 131489 2000 0.21
12 7 20 20 50 127811 26 137781 2000 0
13 7 80 5 50 149301 22 113730 2000 0.31
14 7 20 10 100 19727 23 73188 2000 0
15 6 60 10 50 164775 22 174470 2000 0
16 5 100 10 30 167996 21 181159 2000 0
17 6 30 10 100 216093 24 171509 2000 0.25
18 5 50 10 60 164422 22 158756 2000 0.03
19 5 60 10 50 158729 22 164456 2000 0
20 6 30 20 50 117182 22 171450 2000 0
21 3 50 40 15 128993 22 143768 2000 0
22 4 150 10 20 188416 22 162631 2000 0.16
23 5 30 10 100 211993 23 178145 2000 0.19
24 6 40 10 75 174108 22 141551 2000 0.23
25 6 20 20 75 159411 24 120766 2000 0.32

Average 23.76 2000 0.095

The superiority of the suggested IPSO is ex-
amined by analysis of variance and Tukey pairwise
comparisons [34]. The statistical model presented in
Eq. (4) is the same for both response variables, i.e.
objective function and running time. Consequently,
Yij can be the objective function or time duration
of the ith test problem solved by the jth algorithm
(LINGO, IPSO, or GA). The size of the test problem
is considered as the block e�ect (pi) in I levels and the
algorithm is determined as the main factor (aj) in J
levels. The statistical model is as follows:

Yij = �+ pi + aj + "ij ;

i = 1; 2; � � � ; I; j = 1; 2; � � � ; J: (23)

In order to show that the proposed IPSO converges on
the optimal solution in a polynomial time for solving
small-size and moderate-size test problems, the results
of Tables 1 and 2 are utilized. As mentioned before,

the executions are based on a randomized block design
with I = 50 and J = 2.

Tables 3 and 4 report the analysis results of
variance obtained by a statistical software package,
MINITAB 17. Moreover, the results of the Tukey
test are reported in Tables 5 and 6. According to
Table 3, the equivalence hypothesis of LINGO and
IPSO solutions in terms of objective function is not
rejected. Furthermore, based on Table 5, both LINGO
and IPSO algorithms are categorized in the same
group. As a result, the convergence of IPSO on
the optimal solution, i.e., the veri�cation of IPSO, is
statistically proven.

Tables 4 and 6 represent results of the ANOVA
and Tukey test for CPU times, respectively. As the
P -value of Table 4 for the algorithm is about zero,
LINGO and IPSO solutions are di�erent in terms
of running times. With di�erent categories of the
Tukey test in Table 5, it is proven that the running



F. Marandi and S.H. Zegordi/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 2105{2118 2115

Table 3. Results of comparing exact solutions and IPSO solutions with respect to objective function.

Source DF SS MS F -value P -value
Algorithm 1 174952471 174952471 0.88 0.354
Problem 49 387824000000 7914775129 39.64 0.000
Error 49 9784033151 199674146
Total 99 397783000000

Table 4. Results of comparing exact solutions and IPSO solutions with respect to running time.

Source DF SS MS F -value P -value
Algorithm 1 26208553 26208553 56.29 0.000
Problem 49 23030099 470002 1.01 0.487
Error 49 22813714 465586
Total 99 72052366

Table 5. Tukey results of comparing exact solutions and
IPSO solutions with respect to objective function.

Tukey grouping Mean N Algorithm

A 92947.6 50 LINGO

A 90302.2 50 IPSO

Table 6. Tukey results of comparing exact solutions and
IPSO solutions with respect to running time.

Tukey grouping Mean N Algorithm

A 1045.34 50 LINGO

B 21.45 50 IPSO

time of IPSO is much less than that of the LINGO
solver.

As LINGO cannot solve large-size problems, for
these instances, the proposed IPSO algorithm is com-
pared with the genetic algorithm proposed by [4] for
the similar integrated scheduling problem. This is done
to assess the e�ciency of the proposed algorithm in
solving real cases. The PD indicator is not de�ned
here because the optimal solutions are not available.
Table 7 presents the results of IPSO and GA in terms
of the objective function and the CPU time. The IPSO
algorithm is capable of generating solutions with good
quality and within a reasonable amount of CPU time,
which is less than that in the GA algorithm on average.

Using the ANOVA procedure and Tukey test,
both IPSO and GA are compared with each other.
Results of the statistical model with MINITAB 17,
where I = 25 and J = 2, are reported in Tables 8-
11. According to Tables 7 and 9, the algorithms are
signi�cantly di�erent in terms of the solution's quality.
Therefore, IPSO is greatly superior to GA.

In addition to the objective function, the com-
parison made between the two algorithms in terms of
CPU time is reported in Tables 9 and 11. It shows
that running times of both IPSO and GA do not

di�er signi�cantly because the P -value is larger than
5% and they are in the same category of the Tukey
test. However, this comparison is not worth mentioning
because IPSO and GA are both meta-heuristics which
solve problems in polynomial time.

From the above test results, it is found that the
proposed IPSO algorithm can solve IPDS e�ciently,
providing reliable solutions. It is more e�ective and
better than the other compared algorithms, i.e. GA and
LINGO software. The e�ciency of the IPSO makes it
suitable for solving real cases, which are normally large
in scale.

5.3. Managerial implication
This paper discusses the practical implications of man-
agerial decisions to integrate production and distribu-
tion scheduling. The focus of this study is to show
the practical implication of the integrated model to
consider simultaneous 
owshop scheduling and vehicle
routing decisions. The integrated scheduling problems
studied in this paper are based on the models for
production and distribution that are applied to a wide
range of practical applications. The integrated ap-
proach prevents decrease in product quality, expiration
before delivery, extra expenses, and lack of customer
satisfaction. It is practical in many industries involving
make-to-order or time-sensitive (e.g., perishable, dairy)
products, where �nished orders are often delivered to
customers immediately or shortly after the production
to restrict quality reduction.

6. Conclusion and future research

This paper has dealt with practice-oriented integrated
production and distribution scheduling. IPDS focuses
on products with a short lifespan that include 
owshop
scheduling decisions in a single plant, a 
eet of limited-
capacity trucks for delivering customers' demand with
consideration of vehicle routing, and a number of
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Table 7. Results of random instances with large sizes.

Instance
no.

Size IPSO GA

Machine Job Vehicle Customer Value CPUT
(s)

Value CPUT
(s)

1 200 20 20 200 648781 69 937723 73
2 200 30 30 200 697987 79 1052365 68
3 200 50 50 200 773656 121 1151122 150
4 200 20 50 200 815652 120 1283420 109
5 200 30 50 200 761005 110 1353470 88
6 200 50 50 300 841468 126 1064971 139
7 200 50 30 500 1058764 129 1557706 116
8 200 40 50 400 1006698 152 1186959 181
9 300 20 20 300 964474 90 1363511 153
10 300 30 30 300 1080526 106 1279986 200
11 300 50 50 200 968308 111 1649322 86
12 300 20 50 300 1039654 138 1299667 177
13 300 30 50 300 1146759 138 1533116 121
14 300 50 50 300 1151689 136 1476345 150
15 300 50 30 500 1255513 137 1484446 103
16 300 40 50 400 1250807 164 1537098 99
17 500 20 20 500 1700525 130 1932005 160
18 500 30 30 500 1715614 157 2033918 188
19 500 50 50 400 1688019 183 2245663 180
20 500 20 50 500 1980044 210 2663903 199
21 500 30 50 500 1809463 201,4 2483166 190
22 500 50 50 500 1788781 211 2311044 201
23 500 50 30 500 1755100 157 2250077 190
24 500 40 50 400 1733551 174 2818420 189
25 400 50 50 400 1378299 174 2913846 178

Average 132.8 147.5

Table 8. Results of comparing exact solutions and IPSO solutions with respect to the objective function.

Source DF SS MS F -value P -value
Algorithm 1 2809460000000 2809460000000 61.48 0.000
Problem 24 11278000000000 469918000000 10.28 0.000
Error 24 1096650000000 45693786706
Total 49 15184100000000

Table 9. Results of comparing exact solutions and IPSO solutions with respect to the CPU time.

Source DF SS MS F -value P -value
Algorithm 1 545.2 545.2 1.00 0.326
Problem 24 67577.0 2815.7 5.19 0.000
Error 24 13023.5 542.6
Total 49 81145.7

customers with de�ned locations and demands. The
goal was to design routes that serve all customers
within each trip and to schedule production in order
to minimize the total tardy and delivery costs while
ful�lling the vehicle capacity and deadline for each trip
in order to meet lifespan constraints. In the perishable

products industry, costs are perhaps the most promi-
nent feature. They are strongly in
uenced by the two
interrelated stages of production and distribution. In
this paper, a scheduling problem in a two-stage sup-
ply chain environment is proposed with the objective
function of minimizing the sum of delivery and tardy
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Table 10. Tukey results of IPSO and GA with respect to
the objective function.

Tukey grouping Mean N Algorithm

A 1714531 25 GA

B 1240445 25 IPSO

Table 11. Tukey results of IPSO and GA with respect to
the CPU time.

Tukey grouping Mean N Algorithm

A 147.536 25 GA

B 140.932 25 IPSO

costs. The production and distribution scheduling
is integrated into 
ow shop environment and vehicle
routing. This model is still a good representation of
the real-world cases such as the dairy product industry.
After presenting the IPDS problem as a mixed integer
nonlinear programming model, since the problem is
NP-hard in the strong sense, an Improved Particle
Swarm Optimization (IPSO) algorithm was proposed
to schedule the integrated problem. 1-exchange and
2-opt improving operators enhanced quality of the
solution in IPSO. Since this is the �rst study of this
problem, a new data set was generated.

Results of the numerical survey indicated de-
creasing costs and, as a result, increasing customer
satisfaction and product quality. All of the 25 small-
size instances were optimally solved by the proposed
IPSO. The mean relative deviation from the optimum
of 0.9% was close to zero. The gap of the local
solution was 9.5% on average for all moderate-size
instances. The superiority of the suggested IPSO was
examined by analysis of variance and Tukey pairwise
comparisons. As a result, the convergence of IPSO on
the optimal solution, i.e. the veri�cation of IPSO, was
statistically proven. Moreover, for large-size instances,
the proposed IPSO algorithm was compared with
the genetic algorithm proposed by [4] for the similar
integrated scheduling problem. Using the ANOVA
procedure and Tukey test, both IPSO and GA were
compared. Results of the statistical model reported
that the e�ciency of the IPSO made it suitable for
solving real cases, which were normally large in scale.
An investigation of large-size instances indicated that
the IPSO was able to provide relatively good results
within an acceptable computation time.

Future research is needed to investigate an inte-
grated scheduling problem where the machine con�g-
urations and distribution are more complex, such as
batch scheduling, two-stage vehicle routing, or multi
plants which are distributed in various geographic
regions. Integration of di�erent decision levels, like
tactical or strategic, helps in optimizing the whole
supply chain. Tightening the gap between theory and

practical applications would be highly worthwhile for
more research.
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