
Scientia Iranica E (2017) 24(4), 2082{2094

Sharif University of Technology
Scientia Iranica

Transactions E: Industrial Engineering
www.scientiairanica.com

Minimizing maximum earliness in single-machine
scheduling with 
exible maintenance time

F. Ganjia, Gh. Moslehib and B. Ghalebsaz Jeddic;�

a. Department of Industrial Engineering, Golpayegan University of Technology, Golpayegan, P.O. Box 87717-65651, Iran.
b. Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, P.O. Box 84156-83111, Iran.
c. Faculty of Engineering, Department of Industrial Engineering, Urmia University, Urmia, P.O. Box 57561-15311, Iran.

Received 15 August 2015; received in revised form 15 April 2016; accepted 28 June 2016

KEYWORDS
Scheduling;
Flexible maintenance;
Branch-and-bound;
Earliness.

Abstract. We consider minimizing the maximum earliness in the single-machine
scheduling problem with 
exible maintenance. In this problem, preemptive operations are
not allowed, the machine should be shut down to perform maintenance, tool changing or
resetting takes a constant time, and the time window inside which maintenance should
be performed is prede�ned. We show that the problem is NP-hard. Afterward, we
propose some dominance properties and an e�cient heuristic method to solve the problem.
Also, we propose a branch-and-bound algorithm, in which our heuristic method, the lower
bound, and the dominance properties are incorporated. The algorithm is computationally
examined using 3,840 instances up to 14,000 jobs. The results impressively show that the
proposed heuristic algorithm obtains the optimal solution in about 99.5% of the cases using
an ordinary processor in a matter of seconds at most.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, scheduling problems with availability con-
straints have found vast applications in many pro-
duction and service systems. Machines and other re-
sources may often be unavailable during the scheduling
horizon due to breakdown, preventive maintenance,
etc. in some time periods. Deterministic machine
unavailability problems fall into four categories of:
�xed unavailability constraint, periodic unavailability
constraint, 
exible maintenance (the subject of our
study here), and periodic 
exible maintenance. In
all of these problems, it is assumed that the length
of unavailability period or maintenance is known in
advance. In scheduling problems, with one or periodic
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�xed unavailability constraints, it is assumed that the
starting time of the unavailability period or periods
is determined in advance, but in scheduling problems
with a 
exible maintenance, the starting time of main-
tenance(s) is(are) a decision variable(s).

With regard to the single-machine scheduling
problems with �xed single-period unavailability, Adiri
et al. [1] proved that, for the objective of minimizing
the total completion time, this problem (i.e. 1; h1k�Ci)
is NP-hard. Lee and Liman [2] showed that the
SPT (Shortest Processing Time) rule for this problem
has a tight worst-case error bound of 2/7. Sad� et
al. [3] proposed an improved version of the SPT rule,
called Modi�ed SPT (MSPT), for the same problem,
and they proved that the worst-case error bound for
their MSPT algorithm is 3/7. Kacem and Chu [4]
aimed to minimize the weighted sum of completion
times for the problem (i.e. 1; h1k�wiCi) and proposed
a branch-and-bound algorithm based on a set of im-
proved lower bounds and heuristics. They claimed
that their improved algorithm is able to solve instances
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of 6000 jobs in a reasonable amount of computation
time.

Kacem et al. [5] developed a Mixed Integer
Programming (MIP) model for the problem with the
objective of minimizing the total completion time (i.e.,
1; h1k�Ci) and used two methods of dynamic program-
ming and a branch-and-bound algorithm. Molaee [6]
studied the problem with other separate objectives
of minimizing the maximum earliness and minimizing
the number of tardy jobs (respectively denoted by
1; h1kEmax and 1; h1k�Ui). They proposed a heuristic
algorithm and an exact branch-and-bound method to
solve 1; h1kEmax after showing that the problem is NP-
hard. By proving a number of theorems and lemmas,
they developed a lower bound and some e�cient dom-
inance rules, and so presented heuristic algorithm with
O(n log(n)) which was additionally used to calculate
the upper bound. Computational results for 2400
instances showed that the branch-and-bound procedure
is capable of optimally solving 98.79% of the instances.
Then, for 1; h1k�Ui problem, by proving a number
of theorems, they developed a heuristic procedure to
solve the problem. They also proposed a branch-and-
bound approach which includes e�cient upper and
lower bounds and dominance rules. They claimed
that \computational results for 2400 problem instances
show that the branch-and-bound approach is capable of
optimally solving 97.4% of the instances. The proposed
heuristic procedure is then evaluated for the problems
with large sizes, and it is observed that this procedure
has good performance to solve these problems. Results
also indicate that the proposed approaches are more
e�cient when compared to other methods" [6].

Later on, Molaee et al. [7] considered the objec-
tives of reference [6] simultaneously (i.e. a bi-criterion
objective to simultaneously minimize maximum earli-
ness and number of tardy jobs), and they proposed a
mathematical optimization model and a branch-and-
bound algorithm to solve it.

As for the second group of single-machine schedul-
ing problems where we deal with two or more �xed
periods of unavailability, Liao and Chen [8] considered
minimizing the maximum tardiness (i.e. 1; hikTmax) by
providing a heuristic algorithm with O(n2�pi) com-
plexity and also by using a branch-and-bound method.
Ji et al. [9] considered minimizing the makespan for
this class of problems (i.e. 1; hikCmax), and they proved
that the worst case ratio of the classical LPT (Longest
Processing Time) algorithm is 2. Chen [10] studied
this problem to minimize the number of tardy jobs
(i.e. 1; hik�Ui), and he proposed a branch-and-bound
algorithm as well as a heuristic algorithm to solve it
with complexity of O(n2�pi).

The focus of this study is on the single-machine
scheduling problem with 
exible unavailability con-
straint (the previously mentioned third group of

scheduling problems). Yang et al. [11] proved that
solving the problem to minimize makespan is NP-hard,
and they proposed a heuristic algorithm to solve it
with complexity of O(n log(n)). Chen [12] studied
this problem to minimize the total tardiness (i.e.,
1; h1jfaj�Ti) and proposed two mixed Binary Integer
Programming (BIP) models to solve it. Also, Chen [13]
proposed two mixed BIP models for this problem
with the objective of minimizing the makespan (i.e.,
1; h1jfajTmax). In another work, Chen [14] developed
two mixed BIP models for solving 1; h1jfajF problem
to minimize average 
ow time F for two cases of
preemptive (i.e., job splitting is allowed) and non-
preemptive jobs.

As for the fourth group of the aforementioned
problems, Low et al. [15] considered the single-machine
scheduling problem with 
exible periodic maintenance
to minimize the makespan (i.e., 1; hijfpajCmax, where
fpa stands for 
exible periodic activity/maintenance)
and proposed a heuristic algorithm to address it.
Qi [16] studied 1; hijfpaj�Ci and 1; hijfpajLmax prob-
lems for the objectives of minimizing the total comple-
tion time and maximum lateness, respectively, where
the number and the starting time of unavailability
constraint are decision variables. They showed that
these problems are NP-hard. Sbihi and Varnier [17]
presented a heuristic method for the single-machine
scheduling problem with several maintenance periods.
Speci�cally, two situations were investigated in their
study: �rst, maintenance periods were periodically
�xed (i.e. 1; hijpaTmax); second, maintenance periods
were not �xed, but the maximum permitted con-
tinuous working time of the machine was �xed (i.e.
1; hijfpajTmax).

Few researchers have considered the objective
of minimizing maximum or total earliness. Such
objectives can be appropriate in industries like those
producing deteriorative products whose earliness cost
can be a major cost of the system. Valente [18]
presented a heuristic algorithm for the single-machine
scheduling problem to minimize the total weighted
earliness (i.e. 1k�wiEi). Moslehi and Mahnam [19]
considered the problem of scheduling jobs on a single
machine to minimize the sum of maximum earliness
and tardiness (i.e. 1k�ETmax) using e�cient lower
and upper bounds and some dominance rules. They
also utilized branch-and-bound algorithm for solving
the problem. In a more recent study, Moslehi and
Rohani [20] considered the single-machine scheduling
problem to obtain the Pareto optima for minimizing
three objectives of maximum tardiness, maximum ear-
liness, and number of tardy jobs using the branch-and-
bound algorithm.

In this paper, we consider the single-machine
scheduling problem with 
exible maintenance (with
constant duration), and we are to minimize maximum
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earliness, Emax, among all earliness, Ei. It is assumed
that there is a �xed period inside which maintenance
shall be performed, but the starting time of mainte-
nance is 
exible (denoted by fa) and is a decision
variable; unforced idle time is not allowed and the
jobs are non-preemptive, so the problem is denoted as
1; h1jfajEmax where Emax = max1�i�nfEig.

The remainder of the paper is organized as fol-
lows: Section 2 elaborates on the problem and presents
some lemmas and theorems used to develop solution
procedures later on. A heuristic algorithm and a
branch-and-bound scheme are presented to solve the
problem in Section 3. Section 4 presents numerical
examples and computational results to analyze the
performance of the heuristic and branch-and-bound
algorithms. Section 5 provides the concluding remarks
and directions for future studies.

2. Problem properties

Notation
Trying to keep it as close as to the notations in the
literature (e.g., [21]), we use the following notations
throughout the paper:
J Set of all jobs
n Number of jobs
pi (Integer valued) processing time of job

i
di (Integer valued) due date of job i
u The earliest maintenance starting time
v The latest maintenance completion

time
W Maintenance interval, i.e. W = v � u
w Fixed (integer valued) maintenance

time
Ci Completion time of job i
Ei Earliness of job i calculated as

Ei = maxf0; di � Cig = (di � Ci)+

Si Partial sequence i
p(Si) (Integer valued) processing time of all

jobs in Si
si Slack of job i where si = di � pi
� Set of partial sequence consisting of

arranged jobs
�0 Set of non-arranged jobs

(complementary set of �)
�before Group of arranged jobs before the

maintenance
�after Group of arranged jobs after the

maintenance whose sequence is known,
but their starting time is unknown,
and � = �before [ �after

Figure 1. Notional form of the problem at hand.

C(�) Completion time of any set of jobs, e.g.
�before or �after

� Immediate (and the only) idle time
before the maintenance

Ei(�) Earliness of job i in any sequence

Figure 1 depicts the notations of problem 1; h1jfaj
Emax.

The decision variables are the sequence of the
jobs, which also de�nes the starting time of any job
and starting time of the maintenance operation.

Major assumptions of the study are as follows:
All jobs are of single operation, and preemption or job
splitting is not allowed (i.e. jobs are nonpreemptive),
and they are simultaneously available at the beginning
of the planning horizon; all data are integer including
the processing times; unforced idle time is prohibited
at any point including before the maintenance (i.e.,
it is not allowed to create an idle time that can be
completely or partially occupied by a job; in other
words, � < minfpiji 2 �afterg); the period [u; v], in
which the maintenance should be performed, has been
arranged in advance and clearly maintenance time, w,
is smaller than v � u.

It is important to note that if an unforced idle
time was allowed, all jobs could be processed after
the maximum due date with an arbitrary arrangement
so that the maximum earliness becomes zero although
other criteria, which we do not consider here, may be
hurt. However, it is not rational to create such idleness
due to the highly valuable machine time.

Furthermore, in the problem at hand, all jobs
cannot be processed before the maintenance (i.e.,
�pi > v � w); otherwise, the problem reduces to
the case of scheduling without maintenance, where the
Minimum Slack Time (MST) sequence is the optimal
solution as d[1] � p[1] � d[2] � p[2] � � � � � d[n] � p[n],
where brackets indicate the rankings of the jobs in the
sequence [22]. The problem 1; h1jfajEmax has not been
addressed in the literature. It is suitable to comment on
the complexity of the problem at this point. Molaee [6]
showed that the single-machine scheduling problem
with a �xed unavailability constraint (1; h1kEmax)
along with the assumption of allowed idle time is
NP-hard. Thereby, in a particular situation when
w = v � u, the problem 1; h1jfajEmax converts to
1; h1kEmax, so the complexity of 1; h1jfajEmax is at
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least as much as the complexity of 1; h1kEmax, so the
problem at hand is NP-hard.

In this section, we present a few theorems and
lemmas to establish two-solution procedures for the
problem. Before discussing the theorems, note that
the starting time of jobs in �after is not �xed since
we do not yet know when the maintenance will start
and end; however, we will show that the MST rule
is the basis (with some modi�cation) for providing its
optimal sequence. Also, note that the starting time of
maintenance in this problem is a decision variable so
that we cannot assume, by default, that maintenance
service starts at �rst or ends at the last position of the
maintenance time window (in that case, 1; h1jfajEmax
converts to 1; h1kEmax).

Lemma 1: In problem 1; h1jfajEmax, there is an
optimal sequence where jobs in �before and jobs in �after
are ordered according to MST rule.

Proof: We know that the MST rule is the optimal
solution to 1kEmax problem [22]. Jobs are divided
into groups of `before' and `after' maintenance in this
problem, where one of them starts processing at time
zero (the beginning of the planning horizon) and the
other starts right after maintenance. Therefore, each
of them shall be ordered with respect to MST rule. �

Based on this lemma, we introduce some methods
here to solve 1; h1jfajEmax problem. The MST se-
quence may generate a feasible sequence for 1; h1kEmax
and 1; h1jfajEmax problems; however, care should be
taken because it is not necessarily optimal.

Dominance property 1: Sequences, in which the
starting time of a job in �before is not in [u; v�w], are
a dominant set for 1; h1jfajEmax problem.

Proof: Denote the last job in �before by job i, and
if its starting time is in period [u; v � w] (and conse-
quently, it is completed before v�w), then by changing
the position of job i and maintenance activity, the
completion time of job i increases; therefore, objective
function, Emax, will not get worse. �

Theorem 1: In the problem 1; h1jfajEmax, MST
sequence is optimal if it generates a feasible solution,
no matter where the maintenance is located in [u; v]
window, and Emax is of a job from �before.

Proof: Denote a feasible solution, S, obtained by
MST rule as (S1, i, S2, w, S3, S4) where Emax is of job
i and Sj is a partial sequence of S, see Figure 2. We
shall now show that no replacement decreases Emax.

By exchanging the positions of an arbitrary job
from S1 with an arbitrary job from �after due to the

Figure 2. Sequence S in Theorem 1.

Figure 3. Sequence S0 in Theorem 1.

regularity of MST rule in both �before and �after , the
replaced jobs are set in the �rst position of �after and
in the last position of �before, respectively. Thereby,
the jobs in set �before located after the replaced job in
sequence S are shifted to the left and their starting
time decreases; therefore, Emax will not improve.
Additionally, by changing the position of a job from S2
and an arbitrary job from �after, Emax will not increase
because the starting time of job i has not changed. By
exchanging job i with an arbitrary job k from �after,
sequence S0 as (S1, S2, k, w, i, S3, S4 � fkg) is
obtained, see Figure 3. Without loss of generality, it
is assumed that job k is located at the �rst position
of S4; two situations may occur: the partial sequence,
S2, is not empty, or it is empty.

Assume that partial sequence, S2, is not empty
and job j is the �rst one in S2. Then, the earliness
values of jobs i, j, and k in two sequences, S and S0,
after switching jobs k and i are as follows:

Ei(S) = maxf(di � p(S1)� pi); 0g;
Ek(S0) = maxf(dk � p(S1)� p(S2)� pk); 0g;

and:

Ej(S0) = maxf(dj � p(S1)� pj); 0g;
where, by MST rule, we have di�pi � dj�pj . Thus, by
comparing these relations, we conclude that Ei(S) �
Ej(S0).

Now, assume that partial sequence, S2, is empty,
so job i is located in the last position of sequence S;
thereby, regarding MST rule, we have di�pi � dk�pk.
By comparing the above relations, we arrive at Ei(S) �
Ek(S0).

So, the maximum earliness of sequence S is not
always greater than this value in sequence S0, then
by switching jobs i and k in sequence S, maximum
earliness will not diminish. �

Considering the possibility of shifting mainte-
nance service back or forth in time, it might be possible
to transfer a job from �after to �before.
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Figure 4. Sequence S in Theorem 2.

Figure 5. Sequence S0 in Theorem 2.

Theorem 2: In MST sequence, for 1; h1jfajEmax
problem, if Emax is of a job from �after, then the
objective function does not decrease by transferring a
job from set �after to �before.

Proof: The feasible solution, S, is generated by MST
rule which is shown as (S1, S2, w, S3, i, S4) and Emax
is related to job i (see Figure 4); regarding feasibility
of sequence S, the starting time of jobs in set �after
decreases or does not change by transferring a job of
set S3 into set �before due to �lling the idle time before
maintenance. Therefore, the objective function does
not improve (does not decrease).

Also, by transferring job i into �before due to a
decrease in the starting time of job i, the objective
function does not improve. Now, assume that a job in
S4 is transferred to �before. Without loss of generality,
assume that job j is in the �rst position of S4; hence,
sequence S0 is obtained as (S1, S2, j, w, S3, i, S4 �
fjg), see Figure 5.

Only job j can a�ect the maximum earliness in
sequence S0, so earliness values of job i in sequence S
and job j in sequence S0 are calculated according to
the following equations:

Ei(S) = maxf(di �max(C(�before; u))� w
� p(S3)� pi); 0g;

Ej(S0) = maxf(dj � p(S1)� p(S2)� pj); 0g:
With regard to MST rule, we have di � pi � dj � pj .
Now, by comparing these relations, we obtain Ei(S) �
Ej(S0).

Therefore, transferring jobs from �after to �before
does not improve the objective function. �

Theorem 3: If the MST rule generates a feasible
sequence for 1; h1jfajEmax problem, and Emax cor-
responds to a job (e.g. job i) from �after, then this
sequence is optimal only with the following exception:
when in the MST sequence, pk < pj where k =

Figure 6. Sequence S in Theorem 3.

Figure 7. Sequence S0 in Theorem 3 and the 2nd
condition.

Arg min
S3

fpg and j = Arg max
�before

fpg, and exchanging jobs

k and j causes the idle time before maintenance to
become greater than zero (see Figure 6 for S3).

Proof: Assume that Emax is of a job from �after, say
job i. Thus, by switching the positions of an arbitrary
job from �before to an arbitrary job from �after, six cases
may occur as follows (Figure 6 shows job i in primary
sequence S.):

1. It is obvious that pair-wise replacement of jobs in
�before (or �after) will not lead to any improvement
in the objective function because the MST rule has
not been met;

2. By exchanging the positions of jobs m 2 S3 and j 2
�before with the assumption of pm � pj , sequence
S0 (as S1, S2 � fjg, m, w, j, S3 � fmg, i, S4) is
obtained, see Figure 7. Due to regularity of MST
rule in sets �before and �after, jobs j and m should be
located in the �rst position of �after and in the last
position of �before, respectively. The starting time
of jobs in �after, namely job i, does not increase,
and consequently Emax remains unchanged;

3. By exchanging the positions of jobs m 2 S3 and
j 2 �before with the assumption pm � pj , if we
have � = 0 after replacement, then the starting time
of job i does not change; therefore, Emax will not
decrease;

4. By exchanging the positions of job i with an
arbitrary job from �before, the starting time of job i
decreases; therefore, the objective function will not
improve;

5. By exchanging the positions of jobs k 2 S4 and
j 2 �before, we obtain sequence S0 (as S1, S2�fjg,
k, w, j, S3, i, S4� fkg), see Figure 8.

Therefore, job k shifts to the left and jobs in
�after may be shifted either to the right or left; in
both cases, the following relations are true:
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Figure 8. Sequence S0 in Theorem 3 and the 5th
situation.

Ei(S) = maxf(di �max(C(�before); u)� w
� p(S3)� pi); 0g;

Ek(S0)=maxf(dk�p(S1)�p(S2)+pj�pk); 0g:
By comparing the above relations and taking that
into account, due to MST, di � pi � dk � pk,
we obtain Ei(S) � Ek(S0). Consequently, the
maximum earliness in sequence S will not be greater
than this value in sequence S0.

6. By exchanging positions of job m 2 S3 and job
j 2 �before under the assumption of pm � pj , the
maximum earliness may be decreased if � > 0.

Generally, in sequence S, by exchanging positions of
an arbitrary job from �after and a job from �before, the
maximum earliness will not improve in all situations
except in situation (6). This concludes the Theorem. �

This implies that the MST sequence is not always
the optimal sequence for this problem.

The situations of Theorems 1 and 3 are summa-
rized in Table 1.

Now, we present another theorem which provides
us with the best possible value for the objective
function (i.e., a lower bound), which will be helpful
in recognizing the optimal solution.

Theorem 4: In 1; h1kEmax problem when h1 = v�u
(i.e., the machine is unavailable in the whole period of
[u; v]), if jobs are arranged based on MST rule where
unforced idle time is allowed before maintenance, then
its optimal solution is a lower bound for 1; h1jfajEmax
problem.

Proof: Since the maximum earliness is not a regular
objective function, it does not get worse if an unforced

idle time is allowed. Thus, if maintenance is considered
to cover the whole maintenance period [u; v], then
MST sequence can be a lower bound for 1; h1jfajEmax
problem. �

Now, having these fundamental theorems, we
present an e�cient and quick heuristic method, which
provides an optimal solution in a good majority of the
cases and a well near-optimal solution in the rest of
them. Further, we also present a modi�ed branch-
and-bound procedure, which obtains the optimal so-
lution.

3. Problem solution

3.1. A Heuristic algorithm: Flexible MST
In this section, we propose a heuristic algorithm
(named Flexible MST or FMST) to tackle the problem
at hand. Before discussing the algorithm in detail, it
might be useful to provide a brie�ng of it in advance
as follows:

� Order all jobs according to MST rule and �t the
maintenance in a feasible place, and denote this
sequence by �MST. Using Theorems 1 and 3, check
if the optimality conditions are satis�ed. If so, the
problem is solved otherwise,

� Obtain the lower bound of the problem according to
Theorem 4, and then check if any of the jobs from
set �after can be performed in the idle time before
maintenance. If this is feasible, check if the objective
function is equal to the calculated lower bound; if so,
the optimal solution is obtained. Otherwise,

� The obtained sequence might be the optimal solu-
tion or just a near-optimal solution (which would be
helpful as an upper bound for the branch-and-bound
procedure, explained later in Section 3.2).

3.1.1. The algorithm in detail
The steps of FMST are as follows where asterisk sign
(*) identi�es the optimal value of any variable.

- Step 1: Let J be the set of all jobs, i.e. J =
fJ1; J2; � � � ; Jng;

- Step 2: Order and index jobs according to MST
rule, and then insert the maintenance operation in

Table 1. Optimal situations of MST sequence (Theorems 1 and 3).

Position of job
i = Arg maxfEg Theorem Optimality conditions

i 2 �before 1 Always true

i 2 �after 3

Always true, except when pk < pj where

k = Arg min
S3

fpg and j = Arg max
�before

fpg and

� > 0 after replacement
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between so that it begins at u. Denote this sequence
by �MST and its objective function by Emax�MST;

- Step 3: Set �1 = �MST. Let m be a counter
for the number of scheduled jobs after maintenance
and m = 1; 2; � � � ;M , where M is the size of set
�after, created �rstly based on the MST schedule; so,
initially, m = 1. Let i = Arg maxfEg. Calculate
the idle time before maintenance � = u�C(�before).
Calculate a lower bound for Emax using Theorem 4;

- Step 4: Compare � with min
�after
fpig. Then, we will

face three situations:
a) If � < min

�after
fpig and if i = Arg maxfEg 2 �before,

then we have obtained the optimal solution based
on Theorem 1; let �� = �1 and E�max = Emax(�1)
and exit;

b) If � < min
�after
fpig and i = Arg maxfEg 2 �after, go

to Step 5. But;
c) if � > min

�after
fpig and if it is possible to switch

the �rst job of �after to the end of �before, do so
and start Step 4 from the beginning; otherwise,
if switching the �rst job of �after to the end of
�before is not possible, let m = m + 1 and go
to Step 6, unless m = M ; in that case, go to
Step 11 to exit (Note that at the end of this step,
a feasible sequence is obtained.);

- Step 5: Let S3 be a subset of jobs in �after
with indices smaller than i in MST sequence (see
Figure 6). If pk < pj where k = Arg min

S3
fpg and j =

Arg max
�before

fpg, then, according to Theorem 3, swap

jobs j with k, update �1 and Emax(�1), check if new
� � min

�after
fpig, then go to Step 7 if so. Otherwise, the

switching is not possible, and so the optimal solution
is obtained; let �� = �1 and E�max = Emax(�1) and
exit;

- Step 6: By starting from job m and checking every
job forward, if transferring any job from �after to
�before is possible, add that job into �before according
to MST; note that the other jobs are already in MST
sequence. Update �. If � � min

�after
fpig, go to Step7;

otherwise let m = m + 1 and continue this process
until all jobs in �after are checked if they could be
transferred to �before;

- Step 7: If Emax(�) does not correspond to a job
in �before, then go to Step 8. Otherwise, if Emax(�)
corresponds to a job in �before, then (because the
MST sequence is now shu�ed) do the following:
Let m = m + 1, start from job m in �after, if its
transferring to the end of �before is possible, do so and
transfer the job with maximum earliness in �before
into �after, slide maintenance forward if necessary
and possible to �t the job into �before. Update

sequences in �before and �after according to MST rule
separately and calculate �.

By selecting and replacing all jobs in �after,
the objective function is calculated, and the best
sequence among them is selected. If � � min

�after
fpig,

then go to Step 11 to exit; otherwise, let m = m+ 1
and go to Step 9;

- Step 8: Let m = i + 1 where i = Arg maxfEg and
go to Step 9;

- Step 9: If switching job m to �before is not possible,
go to Step 10. Otherwise, add job m (a job after i) to
�before, and then let maintenance in an appropriate
position and update the jobs in �before, �after and
update �. By selecting and replacing every job in
�after, calculate the objective function and select the
best sequence among them. If � � min

�after
fpig, go to

Step 11 to exit; otherwise, let m = m+ 1 and repeat
Step 9 from the beginning;

- Step 10: If m = M , the number of jobs in initial
�after, then go to Step 11 to exit; otherwise, let m =
m+ 1 and go to Step 9;

- Step 11: If Emax(�1) is equal to the lower bound,
then �1 is optimal, let �� = �1 and E�max =
Emax(�1). Otherwise, a solution is obtained which
still might be optimal or just near optimal (This will
be checked by the branch-and-bound algorithm in
Section 3.2.). Exit the algorithm.

3.1.2. Computational complexity of FMST
Based on the steps of FMST algorithm, its complexity
at Step 2, in which the jobs are ordered according
to MST rule, is O(n log(n)). By proceeding in the
algorithm and pair-wise replacement of the jobs in
Steps 7 and 9, the overall complexity of the proposed
FMST is O(n2).

3.2. A branch-and-bound procedure
As shown in the �nal step of the FMST algorithm, in
some cases, the conditions of Theorems 1 and 3 are
not met nor the lower bound of Theorem 4 is reached;
therefore, the algorithm could not obtain the optimal
solution. In such cases, by having a feasible and near-
optimal solution from the FMST algorithm, we proceed
with a branch-and-bound procedure to obtain an exact
optimal solution for the problem.

An upper bound

The quantity of the objective function returned from
execution of the FMST algorithm, which corresponds
to a feasible and near-optimal solution, can be regarded
as an upper bound for our minimization problem.
Having this upper bound will expedite the procedure,
and there is a need to calculate a lower bound in every
step, as discussed below.
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A lower bound

Based on the following theorem, we generate a lower
bound for partial sequences of the procedure obtained
in every node.

Theorem 5: In partial sequence � (consisting of
arranged jobs) for 1; h1jfajEmax problem, the lower
bound is given by:

LB(�) = maxfEmax(�); Emax(�0)g;
where �0 is the set of non-arranged jobs ordered ac-
cording to MST rule and with the assumption that h1
in 1; h1kEmax problem covers the whole [u; v] window,
i.e., h1 = v � u.

Proof: It is clear that jobs in �0 with arbitrary order
will not a�ect the objective function of partial sequence
�. In addition, arranging jobs in �0 based on MST
rule in periods [C(�before); u] and [v;1), assuming
that the unforced idle time is not allowed, yields the
minimum value for the maximum earliness. Therefore,
the objective function for complete sequence will not
be smaller than the aggregate of two values Emax(�)
and Emax(�0). �

The branch-and-bound procedure for the problem
at hand is as a binary tree consisting nodes and
branches, and each node generates two branches based
on locating jobs before or after the maintenance win-
dow. At �rst, before starting the branch-and-bound
procedure, jobs shall be ordered and indexed according
to the MST rule. In every level, new branches are gen-
erated by adding a job from the MST list to the end of
the previous jobs before the maintenance if possible (by
sliding the maintenance back or force if necessary), or
otherwise, to the end of the jobs after the maintenance.
Thus, each node provides a partial sequence (�) for
�before and �after. The search strategy in this procedure
is backtracking (namely, the procedure goes through
every branch all the way until reaching a fathomed
node before moving to another branch at the previous
level). The branching continues until all unfathomed
branches are visited, or the allowed processing time is
over.

The fathoming of a node occurs in three condi-
tions:

1. A complete schedule for all jobs is obtained;
2. Lower bound of the partial sequence, LB(�), calcu-

lated based on Theorem 5, is greater than the upper
bound;

3. A dominated partial sequence is obtained based on
the Dominance Property 1.

In the �rst case, we update the upper bound if new
Emax is less than the current upper bound.

4. Numerical examples and results

To evaluate the performance of the proposed branch-
and-bound and FMST algorithms, we code them in
C++ and carried out plenty of numerical experiments
on a personal computer with a 3 GB RAM, Core 2Duo,
CPU P8400, Pentium 4 under Windows 7 operating
system. We generate parameters of test problems
as used by Kacem, et al. [5], Yang, et al. [11], and
Chen [13] as examples. Our experiment is performed
using 16 di�erent problem sizes of n 2 f10, 20, 30,
50, 100, 200, 300, 500, 700, 1000, 2000, 4000, 6000,
8000, 12000, 14000g. Processing times, p, are randomly
chosen from a discrete uniform distribution over [1; 10],
identically done in some other references, e.g. Sbihi and
Varnier [17], Liao and Chen [8], and Pathumnakul and
Egbelu [23]. Due dates d are uniformly distributed
over [(1 � C � Q=2)�pi, (1 � C + Q=2)�pi], subject
to di � pi, where C and Q take values of 0.2 and
0.6. The start of maintenance window, u, is taken
as the integer part of 1

4�pi, 1
2�pi, and 3

4�pi, subject
to u � max1�i�nfpig, while the end of maintenance
window is v = u + 30. Maintenance times w are all
randomly chosen over w 2 [1; 15] and [16; 30], where
v � u � w.

For any problem with n jobs, we run 10 ran-
dom sampling (replications) for each combination of
parameters. Therefore, a total of 3840(= 10 � 16 �
2 � 2 � 3 � 2) test problems are examined in our
study. For solving these problems, 3600 seconds of
time constraint is applied. Table 2 presents the results,
where the column \Num-opt" shows the number of
problems that is solved optimally by branch-and-bound
or FMST algorithms in less than one hour. Subcolumn
\FMST" shows the number of problems that is solved
optimally by FMST algorithm composed of two parts of
\MST" and \Total". In the MST column, the number
of optimally solved problems using Theorems 1 and
3 and the number of optimally solved problems in
the \Total" column using the heuristic algorithm are
presented. The next subcolumn, titled \BB", shows
the number of problems that is solved optimally by
branch-and-bound algorithm. Column \Cutting nodes
%" shows the average number of cut nodes (because
of lower bound and dominance property) relative to all
traveled nodes in percent. \0.00" in the lower bound
means that the associated problems have reached the
optimal solution merely by cutting the �rst nodes
in less than 0.005 seconds, so they are rounded to
0.00.

Applying the Dominance Property 1 in the struc-
ture of branch-and-bound algorithm helps to discard
plenty of non-optimal solutions, and consequently the
percentage of cutting nodes decreases dramatically. As
shown in Table 2, in the series of odd numbers, all
the problems were solved optimally without entering
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Table 2. Performance of the branch-and-bound and FMST algorithms in 24 series.

Series n

Num-opt
AVG-solution

time (s)

AVG

Series n

Num-opt
AVG-solution

time (s)

AVG

FMST BB

Cutting
nodes
(%)

Num-
Spending

nodes

FMST BB

Cutting
nodes
(%)

Num-
Spending

nodes
MST Total MST Total

1

C = 0:2
Q = 0:2

u = 1
4
P
pi

w 2 [1; 15]

10 10 10 0 0.00 | |

7

C = 0:2
Q = 0:6

u = 1
4
P
pi

w 2 [1; 15]

7 10 10 10 0 | |
20 10 10 0 0.00 | | 20 10 10 0 0.00 | |
30 10 10 0 0.00 | | 30 10 10 0 0.00 | |
50 10 10 0 0.00 | | 50 10 10 0 0.00 | |
100 10 10 0 0.00 | | 100 10 10 0 0.00 | |
200 10 10 0 0.00 | | 200 10 10 0 0.00 | |
300 10 10 0 0.00 | | 300 10 10 0 0.00 | |
500 10 10 0 0.00 | | 500 10 10 0 0.00 | |
700 10 10 0 0.00 | | 700 10 10 0 0.00 | |
1000 10 10 0 0.00 | | 1000 10 10 0 0.00 | |
2000 10 10 0 0.00 | | 2000 10 10 0 0.00 | |
4000 10 10 0 0.00 | | 4000 10 10 0 0.11 | |
6000 10 10 0 0.00 | | 6000 10 10 0 0.00 | |
8000 10 10 0 0.00 | | 8000 10 10 0 0.00 | |
12000 10 10 0 0.00 | | 12000 10 10 0 0.10 | {
14000 10 10 0 0.00 | | 14000 10 10 0 0.19 | {

2

C = 0:2
Q = 0:2

u = 1
4
P
pi

w 2 [16; 30]

10 7 9 1 0.00 0.00 3

8

C = 0:2
Q = 0:2

u = 1
4
P
pi

w 2 [16; 30]

10 8 8 2 0.00 35.70 11.50
20 8 10 0 0.00 | | 20 6 6 4 0.00 77.25 90.75
30 9 10 0 0.00 | | 30 10 10 0 0.00 | |
50 8 10 0 0.00 | | 50 9 9 1 0.00 0.00 13
100 6 10 0 0.00 | | 100 8 8 2 0.00 0.00 23.50
200 7 10 0 0.00 | | 200 9 9 1 0.00 0.00 58.00
300 7 10 0 0.00 | | 300 6 7 3 0.00 0.00 78.67
500 6 10 0 0.00 | | 500 8 8 2 0.00 0.00 127.5
700 7 10 0 0.00 | | 700 9 9 1 0.00 0.03 178
1000 5 10 0 0.00 | | 1000 8 8 2 0.02 0.00 243.5
2000 9 10 0 0.00 | | 2000 9 9 1 0.02 0.00 502.00
4000 5 10 0 0.00 | | 4000 10 10 0 0.00 | |
6000 10 10 0 0.00 | | 6000 10 10 0 0.17 | |
8000 8 10 0 0.00 | | 8000 9 9 0 0.00 | |
12000 8 10 0 0.00 | | 12000 8 8 0 0.00 | |
14000 10000 10 0 0.00 | | 14000 4 5 0 1.87 | |

3

C = 0:2
Q = 0:2

u = 1
2
P
pi

w 2 [1; 15]

10 10 10 0 0.00 | |

9

C = 0:2
Q = 0:6

u = 1
2
P
pi

w 2 [1; 15]

10 10 10 0 0.00 | |
20 10 10 0 0.00 | | 20 10 10 0 0.00 | |
30 10 10 0 0.00 | | 30 10 10 0 0.00 | |
50 10 10 0 0.00 | | 50 10 10 0 0.00 | |
100 10 10 0 0.00 | | 100 10 10 0 0.00 | |
200 10 10 0 0.00 | | 200 10 10 0 0.00 | |
300 10 10 0 0.00 | | 300 10 10 0 0.00 | |
500 10 10 0 0.00 | | 500 10 10 0 0.00 | |
700 10 10 0 0.00 | | 700 10 10 0 0.00 | |
1000 10 10 0 0.00 | | 1000 10 10 0 0.00 | |
2000 10 10 0 0.00 | | 2000 10 10 0 0.00 | |
4000 10 10 0 0.00 | | 4000 10 10 0 0.00 | |
6000 10 10 0 0.00 | | 6000 10 10 0 0.00 | |
8000 10 10 0 0.00 | | 8000 10 10 0 0.00 | |
12000 10 10 0 0.00 | | 12000 10 10 0 0.00 | |
14000 10 10 0 0.00 | | 14000 10 10 0 0.00 | |

4

C = 0:2
Q = 0:2

u = 1
2
P
pi

w 2 [16; 30]

10 7 10 0 0.00 | |

10

C = 0:2
Q = 0:6

u = 1
2
P
pi

w 2 [16; 30]

10 7 7 3 0.00 0.00 5.30
20 7 10 0 0.00 | | 20 9 10 0 0.00 | |
30 9 10 0 0.00 | | 30 8 8 2 0.00 0.00 15.50
50 9 10 0 0.00 | | 50 8 8 2 0.00 0.00 24.00
100 10 10 0 0.00 | | 100 9 9 1 0.00 0.00 50.00
200 10 10 0 0.00 | | 200 9 9 1 0.00 0.00 99.00
300 10 10 0 0.00 | | 300 10 10 0 0.00 | |
500 5 10 0 0.00 | | 500 6 6 4 0.00 0.00 250.50
700 7 10 0 0.01 | | 700 8 9 1 0.00 0.00 345.00
1000 8 10 0 0.01 | | 1000 7 8 2 0.01 0.00 498.50
2000 8 10 0 0.02 | | 2000 9 9 1 0.01 0.00 99.8.00
4000 10 10 0 0.00 | | 4000 8 8 2 0.12 0.00 1994.50
6000 7 10 0 0.19 | | 6000 6 7 0 0.14 | |
8000 6 10 0 0.32 | | 8000 9 9 0 0.00 | |
12000 7 10 0 1.12 | | 12000 9 10 0 0.41 | |
14000 9 10 0 0.54 | | 14000 7 10 0 1.57 | |

5

C = 0:2
Q = 0:2

u = 3
4
P
pi

w 2 [1; 15]

10 10 10 0 0.00 | |

11

C = 0:2
Q = 0:6

u = 3
4
P
pi

w 2 [1; 15]

10 10 10 0 0.00 | |
20 10 10 0 0.00 | | 20 10 10 0 0.00 | |
30 10 10 0 0.00 | | 30 10 10 0 0.00 | |
50 10 10 0 0.00 | | 50 10 10 0 0.00 | |
100 10 10 0 0.0 | | 100 10 10 0 0.00 | |
200 10 10 0 0.00 | | 200 10 10 0 0.00 | |
300 10 10 0 0.00 | | 300 10 10 0 0.00 | |
500 10 10 0 0.00 | | 500 10 10 0 0.00 | |
700 10 10 0 0.00 | | 700 10 10 0 0.00 | |
1000 10 10 0 0.00 | | 1000 10 10 0 0.00 | |
2000 10 10 0 0.00 | | 2000 10 10 0 0.00 | |
4000 10 10 0 0.00 | | 4000 10 10 0 0.00 | |
6000 10 10 0 0.00 | | 6000 10 10 0 0.00 | |
8000 10 10 0 0.00 | | 8000 10 10 0 0.00 | |
12000 10 10 0 0.00 | | 12000 10 10 0 0.00 | |
14000 10 10 0 0.00 | | 14000 10 10 0 0.00 | |

6

C = 0:2
Q = 0:2

u = 3
4
P
pi

w 2 [16; 30]

10 7 10 0 0.00 | |

12

C = 0:2
Q = 0:6

u = 3
4
P
pi

w 2 [16; 30]

10 8 10 0 0.00 | |
20 9 10 0 0.00 | | 20 1 10 0 0.00 | |
30 8 10 0 0.00 | | 30 9 9 1 0.00 0.00 24.00
50 9 10 0 0.00 | | 50 9 10 0 0.00 | |
100 8 10 0 0.00 | | 100 9 10 0 0.00 | |
200 6 10 0 0.00 | | 200 8 10 0 0.00 | |
300 10 10 0 0.00 | | 300 7 9 1 0.00 0.00 219.00
500 9 10 0 0.00 | | 500 5 10 0 0.00 | |
700 8 10 0 0.00 | | 700 1 10 0 0.00 | |
1000 9 10 0 0.00 | | 1000 8 10 0 0.00 | |
2000 9 10 0 0.00 | | 2000 8 10 0 0.01 | |
4000 5 10 0 0.00 | | 4000 8 10 0 0.04 | |
6000 7 10 0 0.00 | | 6000 1 10 0 0.00 | |
8000 10 10 0 0.00 | | 8000 6 10 0 0.00 | |
12000 9 10 0 0.00 | | 12000 7 10 0 0.27 | |
14000 9 10 0 0.00 | | 14000 1 10 0 0.00 | |
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Table 2. Performance of the branch-and-bound and FMST algorithms in 24 series (continued).

Series n

Num-opt
AVG-solution

time (s)

AVG

Series n

Num-opt
AVG-solution

time (s)

AVG

FMST BB

Cutting
nodes
(%)

Num-
Spending

nodes

FMST BB

Cutting
nodes
(%)

Num-
Spending

nodes
MST Total MST Total

13

C = 0:6
Q = 0:2

u = 1
4
P
pi

w 2 [1; 15]

10 10 10 0 0.00 | |

19

C = 0:6
Q = 0:6

u = 1
4
P
pi

w 2 [1; 15]

10 10 10 0 0.00 | |
20 10 10 0 0.00 | | 20 10 10 0 0.00 | |
30 10 10 0 0.00 | | 30 10 10 0 0.00 | |
50 10 10 0 0.00 | | 50 10 10 0 0.00 | |
100 10 10 0 0.00 | | 100 10 10 0 0.00 | |
200 10 10 0 0.00 | | 200 10 10 0 0.00 | |
300 10 10 0 0.00 | | 300 10 10 0 0.00 | |
500 10 10 0 0.00 | | 500 10 10 0 0.00 | |
700 10 10 0 0.00 | | 700 10 10 0 0.00 | |
1000 10 10 0 0.00 | | 1000 10 10 0 0.00 | |
2000 10 10 0 0.00 | | 2000 10 10 0 0.00 | |
4000 10 10 0 0.00 | | 4000 10 10 0 0.00 | |
6000 10 10 0 0.00 | | 6000 10 10 0 0.00 | |
8000 10 10 0 0.00 | | 8000 10 10 0 0.00 | |
12000 10 10 0 0.00 | | 12000 10 10 0 0.00 | |
14000 10 10 0 0.00 | | 14000 10 10 0 0.00 | |

14

C = 0:6
Q = 0:2

u = 1
4
P
pi

w 2 [16; 30]

10 7 7 3 0.00 0.00 7.00

20

C = 0:6
Q = 0:6

u = 1
4
P
pi

w 2 [16; 30]

10 8 8 2 0.00 52.20 23.00
20 9 10 0 0.00 | | 20 7 7 3 0.00 30.10 270.00
30 8 10 0 0.00 | | 30 7 7 3 0.00 0.00 26.00
50 10 10 0 0.00 | | 50 8 8 2 0.00 0.00 14.00
100 10 10 0 0.00 | | 100 9 9 1 0.00 0.00 25.00
200 10 10 0 0.00 | | 200 9 9 1 0.00 0.00 67.00
300 7 9 1 0.00 0.00 70.00 300 8 8 2 0.00 0.00 78.50
500 6 10 0 0.01 | | 500 6 6 4 0.00 0.00 128.75
700 8 10 0 0.00 | | 700 9 9 1 0.00 0.00 169.00
1000 9 10 0 0.01 | | 1000 8 8 2 0.01 0.00 253.00
2000 8 10 0 0.03 | | 2000 9 9 1 0.02 0.00 501.00
4000 9 10 0 0.07 | | 4000 9 9 1 0.06 0.00 1005.00
6000 10 10 0 0.00 | | 6000 9 9 1 0.00 | |
8000 4 10 0 1.25 | | 8000 9 9 1 0.00 | |
12000 8 10 0 0.87 | | 12000 9 9 1 0.00 | |
14000 9 10 0 0.90 | | 14000 10 10 0 0.00 | |

15

C = 0:6
Q = 0:2

u = 1
2
P
pi

w 2 [1; 15]

10 10 10 0 0.00 | |

21

C = 0:6
Q = 0:6

u = 1
2
P
pi

w 2 [1; 15]

10 10 10 0 0.00 | |
20 10 10 0 0.00 | | 20 10 10 0 0.00 | |
30 10 10 0 0.00 | | 30 10 10 0 0.00 | |
50 10 10 0 0.00 | | 50 10 10 0 0.00 | |
100 10 10 0 0.00 | | 100 10 10 0 0.00 | |
200 10 10 0 0.00 | | 200 10 10 0 0.00 | |
300 10 10 0 0.00 | | 300 10 10 0 0.00 | |
500 10 10 0 0.00 | | 500 10 10 0 0.00 | |
700 10 10 0 0.00 | | 700 10 10 0 0.00 | |
1000 10 10 0 0.00 | | 1000 10 10 0 0.00 | |
2000 10 10 0 0.00 | | 2000 10 10 0 0.00 | |
4000 10 10 0 0.00 | | 4000 10 10 0 0.00 | |
6000 10 10 0 0.00 | | 6000 10 10 0 0.00 | |
8000 10 10 0 0.00 | | 8000 10 10 0 0.00 | |
12000 10 10 0 0.00 | | 12000 10 10 0 0.00 | |
14000 10 10 0 0.00 | | 14000 10 10 0 0.00 | |

16

C = 0:6
Q = 0:2

u = 1
4
P
pi

w 2 [16; 30]

10 8 10 0 0.00 | |

22

C = 0:6
Q = 0:6

u = 1
2
P
pi

w 2 [16; 30]

10 7 7 3 0.00 12.96 8.00
20 7 10 0 0.00 | | 20 9 9 1 0.00 35.40 48.00
30 9 10 0 0.00 | | 30 9 9 1 0.00 0.00 14.00
50 7 10 0 0.00 | | 50 7 7 3 0.00 0.00 26.00
100 9 10 0 0.00 | | 100 10 10 0 0.00 | |
200 1 10 0 0.00 | | 200 9 9 1 0.00 0.00 96.00
300 9 10 0 0.00 | | 300 8 8 2 0.00 0.00 152.00
500 8 10 0 0.00 | | 500 9 9 1 0.00 0.00 250.00
700 6 9 1 0.00 0.00 353.00 700 9 9 1 0.00 0.00 351.00
1000 9 10 0 0.00 | | 1000 10 10 0 0.00 | |
2000 9 10 0 0.01 | | 2000 8 8 2 0.03 0.00 1009.50
4000 7 10 0 0.06 | | 4000 9 9 1 0.05 0.00 2010.00
6000 9 10 0 0.08 | | 6000 10 10 0 0.00 | |
8000 9 10 0 0.08 | | 8000 7 7 0 0.00 | |
12000 9 10 0 0.13 { | 12000 7 7 0 0.39 | |
14000 9 10 0 0.42 | | 14000 9 9 0 0.55 | |

17

C = 0:6
Q = 0:2

u = 3
4
P
pi

w 2 [1; 15]

10 10 10 0 0.00 | |

23

C = 0:6
Q = 0:6

u = 1
2
P
pi

w 2 [1; 15]

10 10 10 0 0.00 | |
20 10 10 0 0.00 | | 20 10 10 0 0.00 | |
30 10 10 0 0.00 | | 30 10 10 0 0.00 | |
50 10 10 0 0.00 | | 50 10 10 0 0.00 | |
100 10 10 0 0.00 | | 100 10 10 0 0.00 | |
200 10 10 0 0.00 | | 200 10 10 0 0.00 | |
300 10 10 0 0.00 | | 300 10 10 0 0.00 | |
500 10 10 0 0.00 | | 500 10 10 0 0.00 | |
700 10 10 0 0.00 | | 700 10 10 0 0.00 | |
1000 10 10 0 0.00 | | 1000 10 10 0 0.00 | |
2000 10 10 0 0.00 | | 2000 10 10 0 0.00 | |
4000 10 10 0 0.00 | | 4000 10 10 0 0.00 | |
6000 10 10 0 0.00 | | 6000 10 10 0 0.00 | |
8000 10 10 0 0.00 | | 8000 10 10 0 0.00 | |
12000 10 10 0 0.00 | | 12000 10 10 0 0.00 | |
14000 10 10 0 0.00 | | 14000 10 10 0 0.00 | |

18

C = 0:6
Q = 0:2

u = 3
4
P
pi

w 2 [16; 30]

10 8 9 1 0.00 0.00 8.00

24

C = 0:6
Q = 0:6

u = 1
2
P
pi

w 2 [1; 15]

10 9 10 0 0.00 | |
20 9 10 0 0.00 | | 20 9 10 0 0.00 | |
30 9 10 0 0.00 | | 30 1 10 0 0.00 | |
50 6 10 0 0.00 | | 50 8 9 1 0.00 0.00 41.00
100 8 10 0 0.00 | | 100 1 10 0 0.00 | |
200 8 10 0 0.01 | | 200 8 10 0 0.00 | |
300 7 9 1 0.00 0.00 224.00 300 5 10 0 0.00 | |
500 8 10 0 0.00 | | 500 8 10 0 0.00 | |
700 8 10 0 0.00 | | 700 8 10 0 0.00 | |
1000 1 10 0 0.00 | | 1000 7 10 0 0.00 | |
2000 1 10 0 0.00 | | 2000 1 10 0 0.00 | |
4000 8 10 0 0.04 | | 4000 1 10 0 0.00 | |
6000 8 10 0 0.10 | | 6000 9 10 0 0.06 | |
8000 9 10 0 0.03 | | 8000 9 10 0 0.04 | |
12000 9 10 0 0.09 | | 12000 10 10 0 0.00 | |
14000 6 10 0 0.67 | | 14000 8 10 0 0.31 | |
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the branch-and-bound algorithm, and also satisfactory
results were obtained for the rest of the series. Among
these 24 series, 99.48% (i.e., 3820 out of 3840) of the
problems were solved optimally in a matter of a couple
of seconds at most.

In the series of odd numbers, the ability of FMST
algorithm to obtain the optimal solution is very high.
This might be due to their short-time maintenance
activity, and consequently high 
otation in these series.
Larger u in even series leads to decreasing the number
of early jobs in �after at the optimal solution, and very
likely, the maximum earliness is obtained from the jobs
in �before. Thereby, for large u, it is likely that in MST
sequence, the job with maximum earliness is located
before the maintenance. Thus, due to the large value
of u, the number of problems that is optimal based
on Theorem 1 increases, and also probability of e�ect
of switching a job from �after to �before on maximum
earliness decreases.

In series 2, 8, 14, and 20 where u possesses
the least value, 81.87% of 640 problems were solved
optimally by Theorem 1, 10.81% by FMST algorithm,
and 7.31% by branch-and-bound algorithm. In these
series, 1.71% of the problems were left unsolved.
It is seen in Figure 9 that the performance of the
heuristic algorithm is higher for larger u. So, in
series 6, 12, 18, and 24 where u has the highest
value, e�ciency of the heuristic algorithm has taken
its highest value; in these series, it can solve 99.21%
of the problems optimally, and the proportion of the
times used by the branch-and-bound procedure is
0.78%.

From Table 2, we also observe that the solution
time, among the problems whose optimal solutions
were achieved, has minor changes in terms of u (see
the series 1, 2, 7, 8, 13, 14, 19, 20 for u = 1

4�pi, series
3, 4, 9, 10, 15, 16, 21, and 22 for u = 1

2�pi, and series
5, 6, 11, 12 17, 18, 23, and 24 for u= 3

4�pi).
It is important to further observe how changes in

w a�ect the time until reaching the optimal solution.
According to Table 2, in the series of odd numbers,
(i.e., 1; 3; � � � ; 23) where w is in [1; 15], all problems
were solved in less than 0.005 seconds on average on

Figure 9. Performances of branch-and-bound and FMST
algorithms in terms of u.

all problems in each set. On the other hand, in the
series of even numbers, (i.e., 2; 4; � � � ; 24) where w is
in [16; 30], six of these problem sets were solved in
less than 0.005 seconds on average on all problems
in each set, and six other series were solved between
0.006 and 0.025 seconds. We note that the processing
time is not meaningfully sensitive to such changes
in w.

Analyzing the performance of FMST and branch-
and-bound algorithms in terms of the range of due
dates or Q shows that increasing Q expands upper
bound for due date; hence, the number of early jobs in
these problems increases. Even the maximum earliness
can be related to the jobs in �after, and this fact results
in going through more branches of the branch-and-
bound tree. For this reason, the performance of the
heuristic algorithm is decreased by increasing Q. As
it is depicted in Figure 10, in series 2, 4, 6, 14, 16, 18
of Table 2 where Q = 0:2, the e�ciency of heuristic
algorithm is higher than that in series 8, 10, 12, 20,
22, and 24 with Q = 0:6. In the series of Q = 0:2,
the following fractions of the tested problems (out
of 640 problems) are solved optimally: 71.83% using
Theorem 1, 26.91% using FMST algorithm, and 1.25%
using branch-and-bound algorithm. A tiny fraction of
0.16% of these problems was left unsolved using our
methods. Also, in the series of Q = 0:6, the following
fractions of the test problems are solved optimally out
of 640 problems: 76.97% by Theorem 1, 10.30% by
FMST algorithm, and 12.72% by branch-and-bound
algorithm. In these series, 2.97% of the problems were
left unsolved.

Referring to Figure 10, it is concluded that
by increasing Q, because the number of early jobs
increases, more problems enter into the branch-and-
bound algorithm and more branches are visited. It
is worth mentioning that the branch-and-bound algo-
rithm subjected to time constraint in di�erent series
is not capable of solving some problems with the size
of 6,000 jobs or more. Generally speaking, we observe
that the problem series with higher values of w and Q
and lower values of u are more di�cult to solve than
the other series.

Figure 10. Performance of branch-and-bound and FMST
algorithms in terms of Q.
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5. Conclusion

In this paper, the scheduling problem for a single
machine with a 
exible maintenance to minimize the
maximum earliness was considered. In this problem,
we let the starting time of maintenance be a decision
variable inside a speci�ed time window. All jobs were
nonpreemptive and no unforced idle time was allowed.
First, we showed that it is an NP-hard problem.
Then, we proved several theorems and developed a
heuristic algorithm (denoted by FMST) to solve it.
Also, we proposed a branch-and-bound algorithm along
with a lower bound and e�cient dominance rule. In
this approach, the FMST algorithm was applied as
the upper bound. 3840 classic test problems in the
form of 24 series were generated and solved using
the aforementioned algorithms. Computational results
demonstrated that 97.18% and 2.29% of the problems
were solved optimally by FMST and the branch-and-
bound algorithms, respectively, at most in a matter
of seconds; however, a tiny proportion of 0.52% of
the problems could not be solved. Based on the
results of standard test problems solved here, some
sensitivity analyses on the performance of the proposed
methods in terms of maintenance time, duration, and
starting time of the allowed maintenance window were
presented.
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