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Abstract. This paper studies a simultaneous weekly assignment and scheduling decision-
making problem in operating theaters with elective patients. Because of limited recourses
in hospitals, considering assignment and scheduling decisions simultaneously can help
mangers exploit the available resources more e�ciently and make the work-load uniformly
distributed during the planning horizon. This procedure can signi�cantly reduce hospital
costs and increase satisfaction of patients and personnel. This paper formulates the
mentioned problem as a Mixed Integer Linear Program (MILP) considering applicable
assumptions like �nite recovery beds and limitation of equipment. Since the problem is
NP-hard, in order to solve large-scale instances and deal with the complexity, two e�ective
and e�cient algorithms are designed. Finally, as a practical case of study, a real data set
of a surgery department of a big hospital in Iran (Aalinasab-e Tabriz) is used to solve the
studied problem by the proposed algorithms.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, health care costs have grown signi�cantly
and hospital expenditures account for approximately a
third of this total amount (Centers for Medicare and
Medicaid Services, 2007). Surgery operations incur a
large portion of a hospital's total expenses and revenues
(Healthcare Financial Management Association 2003).
Thus, operating theater as a critical part and the
largest consumer of resources in the hospital requires
e�cient and e�ective planning to use resources and fa-
cilities. Each surgery operation needs a lot of resources,
including operating rooms, sta�s (surgeons, nurses,
anesthesiologists, etc.), recovery beds, and surgery
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equipment. Therefore, due to the increasing demand
for surgery operations, proper management of these
limited resources is highly essential. Furthermore,
attention to the correlations between operating rooms
and other departments, such as recovery room or
Intensive Care Unit (ICU), signi�cantly increases the
importance and complexity of the problem. Figure 1
generally shows a simple 
ow of patients from entrance
to the recovery room in a hospital.

The common procedure for the planning and
scheduling of surgery department in almost all hos-
pitals and medical centers has two main stages: the
assignment of patients to operating rooms and the
sequencing of the assigned patients in each room. In
the �rst stage, a day and a speci�c operating room
are assigned to each patient. Then, in the second
stage, the sequencing of patients in each room is
determined. These two sequential main steps have
been often considered independently in most papers.
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Figure 1. The 
ow of patients in a hospital.

Jebali et al. [1] proposed a two-stage procedure for
the operating room scheduling problem. At the �rst
stage, surgery operations were allocated to the rooms
and, then, in the second stage, the surgery operations
were scheduled and the start time of each surgery
was determined. Cardeon et al. [2] only focused on
the patient sequencing stage in their studied problem.
They formulated the problem as a Mixed Integer Linear
Program (MILP) with some assumptions such as oper-
ating pediatric or priority patients in the beginning of
each day.

In other related works, Denton et al. [3] investi-
gated the problem of determining the number of rooms
to open on each day and daily allocation of surgery
blocks to the rooms in a hospital with several identical
rooms (in terms of equipment). In continuation of
their work, Batun et al. [4] extended the problem to
the case that the daily assignment and scheduling of
elective patients were concerned. They assumed that
the sequence of surgery operations of each surgeon
was predetermined and they only had to schedule the
surgeons. Table 1 classi�es most related papers to the
problem in the literature review.

To the best of our knowledge, there are few studies
in which the assignment and scheduling decisions are
made simultaneously. Furthermore, weekly planning
of the resources in surgery departments and using
both generated and real data in evaluating solution
methodologies have been neglected by most papers
in the literature. On the other hand, the lack of a
comprehensive study incorporating recovery bed and
equipment limitation in weekly operating scheduling
problems can be seen in the existing studies. Therefore,
this paper proposes a mixed integer linear program
to determine the weekly assignment of patients to
the speci�c operating rooms and days in the plan-
ning horizon and the sequencing of patients within
each room on each day simultaneously. Moreover,
the proposed MILP considers the availability of the
equipment in operating rooms and the recovery beds
after the patient's surgery. For large-scale instances
of the problem, two algorithms based on genetic and

simulated annealing meta-heuristics are developed to
solve the studied problem. A set of real test problems
obtained by a hospital in Iran is used to evaluate the
performance of the proposed algorithms.

The remainder of the paper is as follows. Section 2
formulates the studied problem as MILP. The proposed
algorithms are explained in Section 3. Section 4
deals with the computational experiments and, �nally,
Section 5 concludes the paper.

2. The MILP formulation of the problem

This section formulates the problem as a mixed integer
linear program. Tables 2 and 3 represent the sets,
indices, parameters, and decision variables used in the
proposed MILP. The proposed MILP of the problem is
given in the following:

Min
5X
i=1

wi �Obji

Obj1 =
X
d2D

X
r2R

X
p2P

COp;d � xp;r;d;

Obj2 =
X
d2D

X
r2R

COT � Otr;d
Otmax

;

Obj3 =
X
d2D

CLC � Ctd
Ctmax

;

Obj4 =
X
p2P

CRO � zp
zmax

;

Obj5 =
X
p2P

CE � maxf0; StRp � PTg
Devmax

;

5X
i=1

wi = 1
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Table 1. Overview of the research on scheduling of operating rooms.
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Mixed Integer Programming (MIP), Discrete Event Simulation (DES), Goal Programming (GP), Tabu Search (TS),

Dynamic Programming (DP), Linear Programming (LP), Analytical Procedure (AP), Simulated Annealing (SA),

Stochastic Linear Programming (SLP), Column Generation (CG), Quadratic Programming (QP), Branch and Price (B&P),

Heuristic, Hybrid Genetic Algorithm (HGA), Sample Average Approximation (SAA), Value Iteration Algorithm (VIA),

Mathematical Programming (MP), Integer Programming (IP).
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Table 2. Sets, indices, and parameters used in the proposed MILP model.

P A set of elective patients

R A set of operating rooms

B A set of recovery beds

D A set of days in planning horizon

S A set of surgeons

p; p0 Indices for the patients (p; p0 2 P )

r Index for an operating room (r 2 R)

s Index for a surgeon (s 2 S)

d Index for a day (d 2 D)

b Index for a recovery bed (b 2 B)

DDp The deadline for surgery of patient p

HDp Hospitalization date of patient p

Surp;s A parameter taking 1 if patient p is assigned to surgeon s and 0 otherwise

Opr;d A parameter taking 1 if operating room r is opened on day d and 0 otherwise

Eqp;r A parameter taking 1 if room r has essential equipment for the surgery of patient p and 0 otherwise

Expp A parameter taking 1 if an experiment before the operation is needed for patient p and 0 otherwise

Prep The preparation time for patient p

PSTp Surgery duration of patient p

PRTp Recovery duration of patient p

Durr;d The available time of operating room r on day d

Clp The required time to clean the operating room after the surgery of patient p

SR Daily opening time of operating rooms

RefT Reference time for the surgery of patients with incomplete records

ATs;d The presence time of surgeon, s on day d

CLC The cost of operating room's occupation

CRO The cost of spending recovery in operating room

COT The cost of operating room's overtime per excessive work-hour

CE The cost of eliminating a patient from the planning horizon

COp;d The cost of operating patient p on day d

PT
A predetermined time indicating that the surgery with start time greater than that are eliminated

from current planning horizon

Otmax The maximum possible overtime

Ctmax The maximum possible completion time

Zmax The maximum recovery time incurring in operating room

Dev The maximum possible deviation from PT

M A big number

DDpX
d=1

X
r2R

xp;r;d = 1 8p; (1)

X
r2R

xp;r;d = 0 8p; d � HDp; (2)

xp;r;d � opr;d + Eqp;r
2

8p; r; d; (3)

OSep;p0;r;d +OSep0;p;r;d � xp;r;d + xp0;r;d
2

8p; p0 > p; r; d; (4)
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Table 3. Decision variables used in the proposed MILP model.

xp;r;d

8<:1 If patient p is assigned to room r on day d

0 Otherwise

OSep;p0;r;d

8<:1 If the surgery of patient p precedes that of patient p0 in room r on day d

0 Otherwise

RSep;p0;d

8<:1 If the recovery of patient p precedes that of patient p0 on day d

0 Otherwise

DSep;p0;d

8<:1 If the surgery of patient p precedes that of patient p0 on day d

0 Otherwise

yp;b

8<:1 If patient p is assigned to recovery bed b

0 Otherwise

StSp The starting time for the surgery of patient p

StRp The starting time for the recovery of patient p in the recovery room

zp The portion of the recovery time for patient p elapsed in the operating room

Otr;d The overtime of roomr on day d

Ctd The completion time of all the surgery and recovery of all patients on day d

OSep;p0;r;d +OSep0;p;r;d � xp;r;d + xp0;r;d � 1

8p; p0 > p; r; d; (5)
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(9)
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�M
�

3�DSep;p0;d � Surp;s � Surp0;s
�

8p; p0 6= p; r; d; (10)
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r2R

xp;r;d)

8p; s; d; (11)

StRp0 � StRp + PRTp � zp

�M
�

3�RSep;p0;d � yp;b � yp0;b
�

8p; p0 6= p; b; d; (12)

StRp0 � StRp �M(1�RSep;p0;d) 8p; p0 6= p; d; (13)

StRp = StSp + Prep + PSTp � zp 8p; (14)

zp � PRTp 8p; (15)X
b2B

yp;b = 1 8p; (16)

StSp +M
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d2D
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� SR 8p; (17)
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StSp + 2M

 
1�X

r2R

X
d2D

xp;r;d

!
� RefT

�M(1� Expp) 8p; (19)

StSp0 � StSp + Prep + PSTp + CLp + zp

�M(1�OSep;p0;r;d)
8p; p0 6= p; r; d; (20)

Ctd +M(1�X
r2R

xp;r;d) � StRp + PRTp � zp

8p; d; (21)

StSp ; St
R
p ; zp � 0 8p; (22)

Otr;d � 0 8r; d; (23)

xp;r;d; yp;bOSep;p0;r;d; RSep;p0;d; DSep;p0;d 2 f0; 1g
8p; p0; b; r; d: (24)

The objective function consists of �ve terms. The
�rst term is related to minimizing the surgery costs of
patients, which is directly associated with the patients'
priorities and the day of surgery. In this term, the
value of COp;d for each patient is usually di�erent
from one day to the next day. If the patient's health
is in a dangerous situation, COp;d increases from the
�rst day of the planning horizon to the last one,
indicating that more delay in surgery imposes more
costs. The second term minimizes the overall overtime
in operating rooms. The third term tries to complete
all patients' surgery as soon as possible. The fourth
term minimizes the part of the patients' recovery times
spent in the operating rooms as a result of the assigned
recovery bed's occupation. Finally, the last term tries
to minimize the overall cancelation cost of surgery.
According to the latter term, the model tries to start
surgery before a prede�ned time. It should be noted
that, as there are both monetary and time-based terms
in the objective function, all terms are normalized.
Furthermore, the same values of w for the objective
terms are assumed.

Constraint (1) ensures that each patient is as-
signed to only one operating room and one day.
Constraint (2) guarantees that the surgery of each
patient is operated after his/her hospitalization date.
Constraint (3) says that each patient can be assigned
to an operating room only if it is opened and has the
required equipment. Constraints (4) and (5) determine
the precedence relation between each pair of surgery
operations assigned to the same operating room on

the same day. Constraints (6) and (7) determine the
precedence relation between the recoveries of patients
assigned to the same day. Constraints (8) and (9)
state that a precedence relation exists between the
start times of the surgery operations of the same
surgeon on each day. Constraint (10) implies that
a surgeon can only do surgery on one patient at a
time. The presence of the surgeon at the hospital after
preparing the patient for his/her surgery is ensured
by Constraint (11). Constraint (12) says that each
recovery bed cannot be occupied by more than one
patient at a time. Constraint (13) relates the starting
times of recovery of the consecutive patients assigned to
the same day. The relation between the starting times
of surgery and recovery for each patient is determined
by Constraint (14). Constraint (15) implies that for
each patient, the recovery time spent in the operating
room has to be less than the total recovery time
required for him/her. Assigning only one recovery
bed to each patient is enforced by Constraint (16).
Constraint (17) ensures that all the surgery operations
begin after the opening time of the operating theater.
The overtime for each operating room is calculated by
Constraint (18). In Constraint (19), a reference time is
used to provide a time for patients who need to do some
speci�c tests and experiments before their surgery.
Constraint (20) represents the relation between start-
ing times of the surgery for the consecutive patients.
In this constraint, the cleaning time of the operating
room between successive surgery operations is also
considered. Constraint (21) computes the completion
time of all the surgery on each day. Constraints (22)
to (24) de�ne the decision variables.

3. Algorithmic approach

The studied problem in this paper is placed in the
category of the NP-hard problems and exact solution
methods cannot be used to solve it, even in medium
sized instances. Therefore, in order to solve the
real-size instances of the problem, two meta-heuristic
methods based on genetic and simulated annealing
algorithms are developed. Since both the proposed
algorithms utilize the similar solution representation
and neighborhoods, these subjects are described at �rst
and, then, the algorithms will be explained.

3.1. Solution representation
The solution to the studied problem is represented
with a �ve-row matrix in which the �rst row de�nes
the sequence of patients for surgery. The second to
the fourth rows indicate the day, the room, and the
recovery bed assigned to the patients, respectively.

To determine the sequence of the surgery from
solution matrix, �rst, we should �nd the patients with
the same assigned day and room, i.e. �nd the patients
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Figure 2. The solution matrix of the given example.

whose corresponding entries in the second and third
rows are similar. The sequence of patients is in the
similar order with the numbers in the �rst row of the
solution matrix.

For example, assume that we have 10 patients
that should be scheduled in 3 days and 3 rooms.
Furthermore, 5 recovery beds and 4 surgeons are
supposed. Figure 2 gives the solution matrix for this
example.

According to the solution matrix shown in Fig-
ure 2, for example, the surgery of patients 3, 7, and 2
will be performed in the same room on the same day
of planning horizon and the surgery sequence of them
is 3! 7! 2.

3.2. Neighborhoods de�nition
This paper uses well-de�ned mutation and crossover
operators exploiting the structure of the problem to
�nd the adjacent solutions described in the following.
It should be noted that in the de�nition of the neigh-
borhoods, a chromosome means a solution matrix.

3.2.1. Mutation operator
The mutation is a way to enlarge the search space
and prevent the algorithm from falling into a local
optimum. In this paper, three types of mutation
operators are used as follows:

1. Depending on the size of the problem, select a
number of patients randomly and regenerate their
days, rooms, and recovery beds randomly;

2. Select a number of patients randomly and regener-
ate their days, rooms, or recovery beds randomly;

3. Select two patients randomly and replace their
days, rooms, and recovery beds with each other.

3.2.2. Crossover operator
A well-de�ned crossover operator is the one that
maintains the e�cient part of parent chromosomes
and has enough freedom to provide searching within a
larger portion of the solution space. This subsection
introduces a hybrid crossover operator that keeps
the Longest Common Subsequence (LCS) of parents

in children chromosomes. Using this operator, the
algorithm can search in a larger solution space while
retaining the good part of the parent chromosomes.
The following explains how the LCS works on given
solutions:

1. Find the LCS in either parents. Put the patients of
the common subsequence in the �rst child with the
same place as Parent 1;

2. Find the �rst patient of Parent 2 which is not a
member of the LCS and copy it in the �rst available
location in the �rst child;

3. Repeat the same process de�ned in step 2 with
the other components of Parent 2 which are not
members of the LCS until the �rst row of the �rst
child is completed;

4. Repeat steps 1-3 in order to create the �rst row of
the second child.

To clarify how the proposed crossover works, the
following example is given. Consider the �rst row
of two chromosomes of a problem with 4 patients as
follows:

Parent 1 = 4 6 9 3 7 2 8 1 5
Parent 2 = 1 7 4 2 9 3 8 6 5

Longest common sub-sequence = 4 9 3 8 5

Child 1 = 4 9 3 8 5
Child 2 = 4 9 3 8 5
Child 1 = 4 1 9 3 7 2 8 6 5
Child 2 = 6 7 4 2 9 3 8 1 5

In this way, the �rst row of each child chromosome
is formed as it was explained before. To complete the
next rows of the children's matrices, two approaches
are considered. In the �rst approach, for the �rst
child, the components of rows corresponding to the
LCS take values from Parent 1 and other components
are taken from the corresponding ones in Parent 2. In
the second approach, for the �rst child, the components
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Figure 3. The approaches for crossover operator.

of all rows corresponding to the LCS are taken from
Parent 2, and for the second child, they are taken from
Parent 1. Figure 3 represents these two approaches for
the mentioned example.

In the following subsections, two algorithms are
developed in accordance with the problem under study.

3.3. Simulated annealing algorithm
Simulated annealing approach is a form of local search
heuristic. For minimizing problems, traditional local
search methods usually use reduction strategies that
always move in reduction direction and often lead
to convergence on the local optimum solution. To
escape from the local optimum, the algorithm must
also have some restricted and controlled uphill moves.
In simulated annealing algorithm, if the objective
function increases with an uphill movement, the new
state is accepted with the probability obtained by
equation p = exp

���F
T

�
> r. In this equation, r

is a random number from uniform distribution in the
interval [0,1]. The acceptance probability of uphill
move is a function of both temperature and changes
in the objective function. When the temperature of
the system decreases or reaches zero, just the best
movements will be accepted. Elements of simulated
annealing algorithm are presented as follows:

� Initial temperature (T0): The initial temperature
must be large enough so that in T0 more unfavorable
transfers are accepted;

� Temperature reduction function: The geometric
functions can be used to reduce the temperature as

follows:

Tk+1 = �Tk; 0:8 � � � 0:99;

where � represents the temperature reduction and
remains constant throughout the algorithm;

� Period length as a balance condition: Period length
is the number of repetitions that take place at a
constant temperature to reach equilibrium. This
number is constant for all temperatures;

� Stop condition: Stop condition can be expressed in
di�erent ways. Two of the known conditions are
presented in the following:

1. To achieve a predetermined �nal temperature
(Tf ), which is a very small fraction of the initial
temperature (Tf = �T0 � � 0:01);

2. To reach a maximum value of a predetermined
number of iterations.

The procedure of the simulated annealing algo-
rithm to solve the studied simultaneous scheduling and
assignment problem is as follows.

At �rst, the initial parameters are given as input
of the algorithm. Then, an initial solution is randomly
generated. The overall structure of generating initial
solutions is to produce a randomized sequence of
patients. After that, the available days, rooms, and
beds are randomly assigned to each patient. It should
be noticed that the procedure applied in this paper
produces only feasible solutions in terms of assigned
rooms and days to each patient. At the next stage, the
objective function of the initial solution is calculated.
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Afterwards, the algorithm enters into two loops,
which control two parameters including the temper-
ature and the number of repetitions in each temper-
ature, respectively. In each run of the �rst loop,
the second loop produces N solutions. In the second
loop, according to the current temperature range, one
of the designed neighborhood structures is applied to
the current solution to produce a new solution and
its corresponding objective function is computed. It
should be noted that some of these adjacent solutions
are infeasible. Therefore, a function is required to check
the feasibility of the solutions and modify them if it is
necessary.

In the next stage, the objective function is com-
pared with the best objective function. In case of
improvement, the current solution and its objective
function are replaced by the best solution. Otherwise,
if the current solution is worse than the best solution,
a random uniform number between zero and one (r)
is generated. If exp

���F
T

�
> r, in spite of the fact

that the current solution is worse than the best, it is
replaced by the best solution. At the end of this phase,
the number of iterations increases by one and the
inner loop is repeated with the corresponding designed
neighborhood structures (the de�ned mutations and
LCS crossover). This procedure will continue until
the number of inner iterations reaches N . Then, the
temperature decreases by the reduction rate and the
process is repeated again until the �nal temperature is
reached.

Neighborhood structures in the high temperatures
are generated in order to increase the diversi�cation
and to search a vast solution space. For low temper-
atures, structures with less perturbation are used to
make intensi�cation. Figure 4 shows the 
owchart of
the proposed simulated annealing algorithm schemati-
cally.

3.4. Genetic algorithm
This subsection designs another solution method, Ge-
netic Algorithm (GA), and compares it with the devel-
oped simulated annealing algorithm. In general, GA is
comprised of the following components:

� Chromosomes: Chromosome represents a feasible
solution to the problem in the search space. In
Subsection 3.1, the solution to the studied problem
was represented;

� Population: A set of chromosomes make up a
population. Through the e�ect of performing the
de�ned mutation and crossover operators on a pop-
ulation, a new population with the same number of
chromosomes is formed;

� Fitness function: For each chromosome, �tness func-
tion returns a non-negative integer that represents

the objective function of the individual chromo-
somes;

� Genetic operators: In genetic algorithms, operators
are used during the reproduction stage. By imple-
menting these operators on a population, the popu-
lation of the next generation is produced. Selection,
crossover, and mutation operators have the most
usage in genetic algorithms. These operators are
introduced in the following separately:
1. Selection: By performing the selection operator,

a number of chromosomes in the current popula-
tion are selected for reproduction. More graceful
chromosomes have more chances to be selected
for reproduction. A roulette wheel selection is
used as the selection operator in this paper;

2. Crossover: The crossover operator is applied to
a pair of chromosomes in the current generation
and produces a new pair of chromosomes for the
next generation. This operator is implemented
on each pair of chromosomes with a pre-de�ned
probability (Pc). See Subsection 3.2.2 for more
details on the used crossover;

3. Mutation: After performing the crossover op-
eration, mutation operator is implemented on
the chromosomes with a probability (Pm). This
operator is used to avoid trapping into the local
optimal solutions. See Subsection 3.2.1 for more
details on the used mutations.

The following steps give a brief description of the
GA's procedure:

- Step 0: Initialize parameters;
- Step 1: Generate an initial population randomly;
- Step 2: Evaluate the �tness for each individual in

the current population;
- Step 3: De�ne selection rule and choose the best

individuals to produce a new population;
- Step 4: Call the crossover operator for the selected

individuals with probability Pc to generate new
individuals;

- Step 5: Call the mutation operator for each member
with probability Pm;

- Step 6: Call a repair function for each member if
the solution is infeasible;

- Step 7: Calculate a�nity function, i.e. the simi-
larity degree to the best individual of the previous
generation, for each individual and transfer the
individuals whose a�nities are less than Pa�nity. In
our proposed genetic algorithm, the a�nity function
is de�ned as follows:

Aff =
1

1 + k=n
;

where k is the number of gens that have the same
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Figure 4. The 
owchart of the proposed simulated annealing algorithm.
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Table 4. The information of the surgical ward of the hospital.

Surgical
specialties

Surgery of
each specialty

The range of
operation time

The number of
surgeons in

each specialty

Urology

Removal of the bladder 360-480 minutes

5

Lithotripsy 30-120 minutes
Prostate surgery 60-180 minutes
Varicocelectomy 30-90 minutes
Prostatectomy 90-120 minutes

Hernia 60-90 minutes

Brain and nerves Disk 120-300 minutes 3
Brain tumor 180-360 minutes

General

Appendix 30-90 minutes

6
Gallbladder 45-90 minutes

Hernia 60-180 minutes
Stomach tumor 180-300 minutes

Esophagus tumor 180-360 minutes

Ear, Nose, and Throat (ENT)
Mastoidectomy 120-240 minutes

4Tonsil 30-90 minutes
Rhinoplasty 180-300 minutes

Orthopedics

Total knee 180-240 minutes

4Total hip 180-240 minutes
Plaque removal 60-180 minutes

Knee ligament repair 180-240 minutes

Eye Eye 15-30 minutes 2

contents and n denotes dimension of the chromo-
somes;

- Step 8: If the termination condition is met, stop;
otherwise, repeat Steps 2-8.

4. Computational study

The proposed MILP was coded in Lingo 11.0 and
was solved using CPLEX 12.1 solver. The proposed
solution algorithms were implemented in MATLAB
R2011b and run on a PC with 2.66 GHz Intel Core
i5 and with 4 GB of RAM memory.

4.1. Description of the real data
The required data of the studied problem have been
collected from a hospital in Iran (Aalinasab-e Tabriz).
These data are used as a basis to create the problem
instances in this paper.

The studied hospital has six operating rooms
shared among all specialties in all days of the week.
Most of the surgery operations can be performed in all
rooms. Just some eye and orthopedic surgery can be

done only in speci�c rooms due to the requirement of
special equipment. There are 9 recovery beds in the
operating theater. The recovery may take, on average,
between twenty to forty minutes, depending on each
patient. The time required to prepare a patient for
a surgery operation usually takes an average of ten
minutes. Finally, the total cleaning and sterilizing
time of the operating room is taken between 15 and
30 minutes depending on the duration of the surgery.
Table 4 summarizes the information of the surgery
performed in surgical ward of the hospital.

4.2. Taguchi design of experiments
Meta-heuristic algorithms have a random nature and,
as a result, the diversity of the obtained solutions might
be high. Thus, an e�ective and e�cient algorithm is
one that its solutions converge on the global optimal
solution. In this case, the solutions of the algorithm
can be trusted. One of the most important factors to
achieve an e�cient algorithm is the appropriate tuning
of parameters. Therefore, in this paper, the Taguchi
design of experiments has been applied to tune the
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Table 5. Parameter tuning of the genetic algorithm.

Parameter Value

Number of generations 150

Population size 70

Mutation probability 0.35

A�nity 0.9

Table 6. Parameter tuning of the simulated annealing
algorithm.

Parameter Value

Maximum number of iterations 150

Initial temperature 150

Reduction rate of the temperature 0.95

Final temperature 20

parameters at their proper values and to achieve a good
performance of GA and SA algorithms.

Taguchi design of experiments has some prede-
termined patterns, each of which applies a di�erent
number of factors and di�erent levels for each factor.
Therefore, the investigator must select one of these
predetermined patterns to de�ne his/her tests. In this
paper, the pattern of L9(43) is used. This pattern
shows that the algorithm has four factors, each at
three levels such that the combination of them forms
9 orthogonal scenarios. Tables 5 and 6 show the
levels considered for each parameter of the proposed
algorithms after applying the Taguchi method.

In order to evaluate the performance of designed
algorithms, a Relative Deviation Percentage (RDP) is
de�ned as follows:

RPD =
ALGsol �OPTsol

OPTsol
� 100;

where ALGsol is the solution obtained from algorithm
and OPTsol is the optimal solution of the MILP.

The mathematical model and the proposed al-
gorithms have been implemented on three instances
of the problem: the �rst sample consists of planning
and scheduling 10 patients for one day, the second
instance schedules 15 patients for two days, and the
third instance considers 20 patients for two days.

It should be noted that for each problem instance,
algorithms are run �ve times and the average of RDPs
is taken for comparisons. Table 7 presents the average
RDPs obtained by the proposed algorithms.

As it is obvious from the above table, both
algorithms perform very well in small-size instances
and reach the optimum solution.

4.3. The comparative studies
This subsection applies the proposed algorithms to
�ve di�erent sized instances of the problem created
based on real data collected from the Alinasab-e Tabriz
Hospital in Iran. Each of the algorithms has been
run �ve times for each sample and the results of the
comparison are presented in Table 8. In this table,
best-known solutions of the algorithms from di�erent
runs are used instead of optimal solution in calculating
RDPs.

Figures 5 and 6 show the comparison of the av-
erage RDPs and average CPU times obtained by both
developed algorithms for di�erent sizes of the problem.
As it is obvious from these �gures, both algorithms
have good performance in small-size instances; but,
as the size of the problem gradually increases, GA

Table 7. The CPU times and average RDPs of the two proposed meta-heuristic algorithms.

Problem size
MILP SA GA

CPU time
(s)

CPU time
(s)

Average RDPs
(%)

CPU time
(s)

Average RDPs
(%)

10 0.5 16 0.00 38 0.00
15 3 8 0.00 104 0.00
20 1095 10 0.00 71 0.00

Table 8. Comparison results of the proposed algorithms.

Problem
instance

Number of
patients

Number of
days

Average RDPs (%) Average CPU times (s)
SA GA SA GA

1 15 2 0.00 0.00 7.808 104.16
2 30 2 0.10 0.19 13.356 189.114
3 50 3 0.29 1.01 25.138 381.38
4 100 4 1.58 26.93 53.48 959.772
5 250 7 4.34 36.28 190.462 3582.8
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Figure 5. The average RDPs obtained by the algorithms.

Figure 6. The average CPU times obtained by the
algorithms.

loses its e�ciency, but simulated SA indicates better
performance in terms of time and accuracy measures.

In order to have a better comparison, a single
factor analysis of variance (ANOVA) is used to examine
the e�ectiveness of the algorithms. For this analysis,
the equality of the average solutions obtained from the
two levels of treatments (GA and SA) is considered
as hypothesis testing. For each level, �ve observations
have been collected and the con�dence level of 95% is
considered. The analysis of variance has been applied
for four di�erent sized samples of the studied problem
including 30, 50, 100, and 250 patients, respectively.
The summary of the obtained results is shown in Ta-
ble 9 and, as an example, the details of the ANOVA for
the instance with 100 patients are shown in Table 10.

Table 9. The obtained results of ANOVA.

Problem instance p-value
30 0.429917
50 0.391644
100 0.000247
250 0.004193

According to the p-values of Table 9, for a con�-
dence level of 95%, there is no signi�cant di�erence be-
tween the proposed algorithms for small-size instances,
but for larger problems, there is signi�cant di�erence
between two algorithms and the proposed SA algorithm
provides better performance than the GA does.

5. Conclusion and future research

This paper studied operating room scheduling problem
for elective patient. The contributions of this paper
were threefold. First, for the �rst time in the litera-
ture, a comprehensive Mixed Integer Linear Program
(MILP) was provided to formulate the simultaneous
weekly assignment and scheduling operating room
problem. Second, in order to represent the problem
more realistically, recovery bed limitations, equipment
requirements, and priorities of patients based on their
health conditions were incorporated in the modeling
procedure. Finally, two well-de�ned and e�ective so-
lution procedures with appropriate diversi�cation and
intensi�cation mechanisms were proposed, which were
able to solve real large-size instances of such a complex
problem. The e�ciency of the proposed algorithms
was evaluated by comparing their solutions with the
exact solutions obtained by solving the MILP on a set
of small-size test problems. Although both methods
performed well in small sizes of the problem, the
developed simulated annealing algorithm outperformed
genetic algorithm in terms of CPU-time and accu-
racy measures in real-case based instances. Su�cient
amount of analysis, including an analysis of variance
(ANOVA), was carried out to show the superiority of
the proposed SA method in solving large-size problems.
For future studies on the studied problem, the following
recommendations can be made:

� Extension of the problem to the case that includes
emergency patients as well as elective patients;

� Consideration of the uncertainty in the arrival time
of patients and the duration of surgery;

� Developing a more realistic model that takes some
other constraints into account related to the nursing
sta�, correlation between the operating theatre and
other wards like intensive care unit, etc.

Table 10. The detailed results of ANOVA for an instance with 100 patients.

Groups Count Sum Average Variance
Algorithm (100) 5 222811 44562.2 394698.7

Error 5 278400 55680 15442571
Source of variation SS df MS F p-value

Between groups 3.09E+08 1 3.09E+08 39.02361 0.000247
Within groups 63349079 8 7918635

Total 3.72E+08 9
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