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Abstract. SPH method is one of the most used numerical mesh-free methods in CFD
simulations which can easily model problems with free surfaces. Considering the importance
of surface tension in most engineering applications and the capability of SPH method
in simulating free surfaces, a single-phase method for implementing surface tension is
introduced in this study. Unlike time-consuming multi-phase simulations, this method
does not need to model the second lighter uid, which reduces the CPU-time and memory
requirements substantially. Mirror imaginary particles are used near the free surface to
obtain surface properties such as surface normal vector and curvature, which are required in
surface tension calculation. The advantages of using these imaginary particles are explained
qualitatively through the use of some examples of droplet dynamics. This method is applied
to several benchmark problems in surface tension simulations, and acceptable results are
obtained.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

For uid ow simulations, where sharp interfacial cur-
vatures are present, surface tension plays an important
role in shaping and maintaining the interface between
the immiscible phases. Surface tension is the main
driving force in the formation of rain droplets, bubbles,
guttation, and water beading on the leaves and is of
signi�cance in technological processes such as spray
coating, fuel spray, painting, and ink-jet printing.

Generally, one can study interfacial phenomena
based on two approaches: macroscopic and microscopic
viewpoints. In the former, the analyst is concerned
with the macroscopic e�ects and properties such as
uid density, viscosity, and surface tension coe�cient.
In the latter, properties, such as molecular mass and
molecular interactions, are the main variables which
de�ne the total surface tension force. The properties
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in both viewpoints are related to each other, but each
viewpoint requires di�erent numerical procedures. In
this study, macroscopic view is of signi�cance.

Di�erent methods have been used to implement
surface tension in the grid-based numerical methods.
The most utilized method is the Continuum Surface
Force (CSF) method proposed by Brackbill et al. [1].
The calculation of surface curvature and normal vectors
is required in CSF, which is traditionally accomplished
through the use of a color function requiring a second
phase near the interface. A macroscopic force is then
calculated for the cells near the interface proportional
to the surface curvature. The other popular method is
the Continuum Surface Stress (CSS) method [2]. The
surface force is calculated from a capillary pressure
tensor which, in turn, is calculated from the surface
normal. There is no need to determine the curvature
explicitly in this method, making it less error-prone
near sharp and under-resolution corners. CSS method
also requires a color function to obtain the surface
normal vectors.
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Smoothed Particle Hydrodynamics (SPH) is one
of the most popular mesh-free methods used excessively
in simulating uid ow and computational uid dy-
namics. There is no need to track the surface in SPH,
making it a desirable scheme in simulating free surface
ows [3] in contrast to the grid-based methods which
require a multi-phase solution or the use of moving
mesh algorithms for modeling such problems. This
inherent property of SPH also makes it attractive in
simulating interfacial phenomena and surface tension,
resulting in di�erent implementations of the surface
tension e�ects on SPH. Surface tension is generally
applied in two ways in the SPH formulation. The �rst
method is the use of macroscopic point of view such
as CSF [4]. The second method is the use of inter-
particle attraction and repulsions and/or van der Waals
equation of state [5].

The �rst method requires calculation of surface
normal vectors and surface curvature explicitly. The
surface tension force is obtained from the surface ten-
sion coe�cient and surface curvature in the direction
of surface normal. Morris [4] used CSF method in
conjunction with SPH for simulating surface tension.
He used a color function similar to the one used in grid-
based schemes to obtain surface normal and curvatures
of interface between phases having low density and
viscosity ratios. Hu and Adams [6] extended this
two-phase method to simulate surface tension for high
density and viscosity ratios. Yeganehdoust et al. [7]
enhanced this method to simulate droplet dynamics for
high density and viscosity ratios; they also proposed a
method to model di�erent problems including static
and dynamic contact angles.

The second method involves the use of molecular
data in simulating surface tension, but that needs to
be calibrated for the simulation of real uids. A van
der Waals equation of state is used in this method for
calculating the pressure �eld. A cohesive pressure term
is present in this equation of state, which cancels out
the inner particles of the uid, but has a net value
normal to the interface corresponding to the surface
tension e�ects [8,9]. Tartakovsky and Meakin [10]
added an interparticle attractive and repulsive force to
this model to make it capable of modeling di�erent
wetting e�ects. This method is a suitable choice
for modeling surface tension in free surface ows,
but it requires cumbersome calibrations for physical
properties.

For most practical two-phase applications without
shear gas ow, where surface tension is important, the
e�ect of the gas phase is negligible. Hence, the use of
a single-phase method is desirable in such cases due
to considerable lower memory requirement and CPU
time. A multi-phase SPH simulation requires days to
run, but a single-phase simulation can give comparable
results in hours.

There are very limited free surface applications of
the CSF method in SPH formulations compared to the
vast multi-phase studies conducted on particle meth-
ods. Zhang [11] used geometric interface reconstruction
to obtain surface normal and curvatures to calculate
surface tension using CSF formulation in single-phase
SPH simulations having free surfaces. This method
requires complicated programming and di�ers from
the traditional CSF method in a sense that surface
properties are not calculated from the derivatives of the
color function. Another rather recent study on single-
phase simulation of surface tension in particle methods
was proposed by Khayyer et al. [12,13] in which they
wisely obtained the curvature from direct second-order
derivation of color function resulting in a Laplacian
formulation with relevant approximation of boundary
integrals. Tsuruta et al. [14] proposed the use of
MPS and ISPH for free-surface boundary conditions.
They implemented projection-based particle methods
for moving particle semi-implicit along with the in-
compressible SPH methods to handle the free surface.
Their new method, called Space Potential Particle
(SPP), reproduced physical motions of particles around
free surface through a particle-void interaction. In
this way, the issue of incomplete compact support is
answered. Terissa et al. [15] presented a basic approach
for simulating liquid droplet with surface tension in
three dimensions using SPH method. They applied
the surface tension on the boundary particles of liquid
using Free-Surface Detection algorithm in which the
particle on the boundary was detected dynamically.
They simulated droplet phenomena with the basic
method of SPH for uid modeling along with the
combination of 3D Free-Surface Detection algorithm
with MLS method. Aly et al. [16] simulated surface
tension and an eddy viscosity using incompressible
smoothed particle hydrodynamics method. In addi-
tion, they presented a source term for pressure Poisson
equation as a stabilizer for robust simulations in which
a smoothed pressure distribution was generated and
kept the total volume of uid constant. For decreasing
computational costs, surface tension force in the free
surface ow was considered without a direct modeling
of surrounding air. They simulated the e�ects of the
eddy viscosity with a uid-uid interaction. They
concluded that the surface tension model can handle
free surface tension problems including high curvatures.

In this study, an alternative new single-phase SPH
method is proposed to calculate surface tension from
CSF formulations suitable for free surface simulations
with the use of some imaginary mirror particles near
the surface. The use of this kind of imaginary or
mirror particles near the interface has been previously
used in SPH literature for other applications [17,18],
but their e�ects on simulating surface tension have
not been studied. Some 2D benchmark problems
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are solved to check the applicability of the developed
method, including the oscillation of a square droplet
into a circle, head-on and o�-center coalescence of two
circular droplets, and the impact of a water droplet on
a wet bed. The results are compared with analytical
as well as VOF results of interFoam solver available in
the OpenFOAM program. Good agreement is observed
between the results.

2. Governing equations

SPH method is a Lagrangian mesh-free method; hence,
the governing equations are all written in the La-
grangian frame of reference. Governing equations in
this study are the conservation of mass and momentum.
Conservation of mass equation is as follows:

D�
Dt

= ��r:~V ; (1)

where � is the density, and ~V is the velocity vector.
The momentum equation in � direction for an incom-
pressible ow is written in Lagrangian form as follows:

Du�

Dt
= �1

�
rp+r��r:~V �+

1
�
F�; (2)

where p is the local static pressure, � is the kinematic
viscosity, and F� is the summation of all external forces
per unit volume in � direction, including gravity and
surface tension.

In CSF method, the surface tension force per unit
volume is calculated from [1]:

~Fs = (��n̂+rs�) �s; (3)

where � is the coe�cient of surface tension, � is the
surface curvature, n̂ is the unit normal vector to the
interface, rs is the surface gradient, and �s is the
surface Dirac delta function with peak value on the
surface. The second term on the right-hand side of
Eq. (3) is due to the spatial surface tension variations
which give rise to the Marangoni e�ect. For simulations
with constant surface tension values, this term is zero.

In multi-phase simulations, each phase is given a
color function value c. For example, the gas phase has
color function value equal to 1, and the liquid phase
has a value equal to 0. Surface normal vector is then
obtained from:

~n = rc: (4)

Unit normal vector and surface curvature are also
obtained, respectively, as follows:

n̂ =
~n
j~nj ; (5)

� = �r � n̂: (6)

Considering the fact that rc is theoretically zero far
from the interface and has a maximum value near
this region, surface Dirac delta function can also be
obtained from:

�s = j~nj: (7)

3. SPH method

The main idea behind SPH mesh-free method is to use
integral representation of a function as follows:

f (~x) =
Z



f (~x0) � (~x� ~x0) d~x0; (8)

where 
 is the domain of the integration, and � is
the Dirac function. Although Eq. (8) holds exactly
true, it cannot be used from a computational point of
view, because the entire physical domain contributes
to the value of any function at any point in the space.
In order to compensate for this problem, the Dirac
function is approximated by a normalized function,
called the kernel function, W (~x � ~x0; h), which is a
function of the distance from the point at which the
value is to be calculated and smoothing length, h.
The smoothing length is related to the distance at
which particles a�ect each other and is held constant in
most SPH simulations, usually equal to 1.2 times the
initial particle spacing. By approximating the Dirac
function by a kernel function, integral representations
of a function and its derivative can be shown below [3]:

f (~x) �
Z



f (~x0)W (~x� ~x0; h) d~x0; (9)

r � f (~x) � �
Z



f (~x0) � rW (~x� ~x0; h) dx0: (10)

A kernel function should satisfy some conditions in its
support domain �h (the support domain of a kernel is
the distance in which particles can a�ect each other)
in order for Eqs. (9) and (10) to be as accurate as
possible. For example, it should be a normalized, even
and decreasing function which should converge to the
Dirac function as h ! 0 [19]. For the simulations
conducted in this study, Quintic kernel function gave
e�cient and stable results. This kernel, also called the
Wendland function, is shown below [20]:

W (~x� ~x0; h)

=

(
�D(1 + 2q)

�
1� q

2

�4 if 0 � q � 2
0 else

(11)

where q = j~x�~x0j
h and �D = 7

(4�h2) in 2D simulations.
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The physical domain is then discretized by the use
of some material points or particles. These particles
usually have constant mass and move according to
the local ow velocity at each time-step and carry
the physical properties of the uid such as density,
pressure, temperature, etc. By applying this particle
approximation to Eqs. (9) and (10), SPH represen-
tation of a function and its derivative is obtained as
follows:

f (~xi) =
NX
j=1

mj

�j
f (~xj)Wij ; (12)

r � f (~xi) = �
NX
j=1

mj

�j
f (~xj) � rWij ; (13)

where i is the particle at which the function is being
discretized, j corresponds to all the particles in the
support domain of i, including particle i itself, mj is the
mass of particle j and Wij = W (~xi�~xj ; h). The above
relations are the most straightforward SPH representa-
tions of a function and its derivative. Considering the
physical aspects of the function being discretized, with
some simple algebraic operations, other forms can be
obtained by these equations. For example, the pressure
gradient in the momentum equation can be discretized
in an asymmetric form which ensures conservation of
linear momentum as follows:

rp (~xi) = �i
NX
j=1

mj

 
pi
�2
i

+
pj
�2
j

!
riWij : (14)

The other important term that should be discretized
in the momentum equation is the viscous di�usion
term, which contains the second derivatives of velocity
components. The second derivative can be either
discretized directly from Eq. (13) which introduces
the second derivative of the kernel function or be
approximated with the combination of SPH and �nite
di�erence operations [21]. The use of the second
derivatives of the kernel function can cause spatial
instabilities and reduce the accuracy of the solution,
especially for the lower degree kernel functions. Hence,
it is a common practice in SPH literature to discretize
the second derivatives from the latter method. Viscous
di�usion term used in this study is the one proposed
by Cleary and Monaghan [22] shown below:

r � ��r~V �
i
=

NX
j=1

mj

 
8
�i + �j
�i + �j

~Vij � ~rij
~r 2
ij + �2

!
riWij :

(15)

With the use of Eqs. (14) and (15), one can easily solve
momentum equation considering pressure to be known.
Pressure is obtained by two methods in SPH simu-
lations for incompressible ows. The �rst and more

traditional method is called the Weakly Compressible
SPH (WCSPH), which considers the uid to be slightly
compressible and assigns to it a weakly compressible
equation of state [3,23]. The pressure can then be
obtained directly from this equation of state which is
a function of density alone. The small compressibility
is added to the ow by assigning an arti�cial speed of
sound lower than the real value. For most SPH simula-
tions, the speed of sound is calibrated to allow around
1% compressibility. In the other method called the
Incompressible SPH (ISPH), projection method is used
to obtain the pressure Poisson equation. The solution
to this equation guarantees the exact incompressibility.

ISPH method is proved to be more spatially
stable, accurate, and computationally e�cient [24-
26], while WCSPH is very simple to program and
requires no solution to an elliptical partial di�erential
equation. WCSPH method is used in this study since
the lower accuracy of the pressure �eld is not of any
major consequence for the surface tension simulations
conducted.

The weakly compressible equation of state used in
this study is the one used by Monaghan [3] as follows:

Pi = B
��

�i
�0

�
� 1
�
; (16)

where B is a constant parameter which decides the
maximum density uctuation or compressibility, �0 is
the reference density, and  is a constant number equal
to 7 in most SPH studies [3,19]. B is obtained from:

B =
c20�0


; (17)

in which c0 is the speed of sound at reference density
and is usually set to 10 times the maximum ow
velocity in order to limit the compressibility of the
ow to %1. Morris et al. [27] proposed considering the
viscous and body forces in conjunction with the above
condition for approximating the value of c0. Hence, the
reference speed of sound is:

c20 = max
�
V 2

�
;
�V
�L

;
FL
�

�
; (18)

where V is the reference velocity, � is the maximum al-
lowable compressibility (%1), L is the reference length
scale, and F is the acceleration corresponding to the
reference body force.

In order to obtain the pressure �eld from the
equation of state, one should �rst calculate the density
of each particle. Density can be either calculated
directly by discretizing Eq. (1) or by using the SPH
representation of density from Eq. (9), which are called
the continuity density and summation density methods,
respectively [19]. Summation density method conserves
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mass exactly, while continuity density method cannot
generally conserve mass [23] even though some correc-
tions, such as di�erent density �lters, can be used to
circumvent this problem [28-30]. On the other hand,
the continuity density method is generally more stable
and accurate in problems containing high velocity free
surface ows and impact, such as the Dam break
problem, due to the underestimation of density at free
surfaces in summation density method originated from
the truncated support domain of kernel function. Some
kernel correction methods are also proposed to tackle
this problem [31].

Even though the use of density �lter in continuity
density method can lower the inaccuracy instances
concerning the conservation of mass, more stable re-
sults are obtained using the summation density method
(especially, in problems with very low velocities and
inertial forces); hence, this method is used throughout
the present study.

Using summation density method, density of each
particle at each time step can be obtained from:

�i =
NX
j=1

mjWij : (19)

By applying kernel normalization in order to circum-
vent the truncation at free surfaces, density of each
particle can be obtained from [31]:

�i =

NP
j=1

mjWij

NP
j=1

�
mj
�j

�
Wij

: (20)

To reduce the truncation errors associated with gra-
dients of kernel function in the momentum equation,
gradient of the kernel function is corrected, which
also ensures the conservation of angular momentum.
Complete derivation and formulation of this correction
is explained in [31].

4. New free surface CSF implementation
scheme

In this section, the new method to simulate surface ten-
sion in SPH free surface ows is introduced. The goal of
this study is to devise and implement a technique to use
CSF method in conjunction with SPH scheme without
changing much of the conventional CSF formulations.
The �rst step in achieving the goal is to use an e�cient
and accurate surface tracking algorithm to �nd the
particles located at the free surface. The next step
is to �nd an approach to obtain the surface properties,
such as smoothed color function, normal vector, and
curvature near the free surface, in the absence of the

second phase. Eventually, the surface tension force can
be obtained using Eq. (3). In the following subsections,
each of the above steps is explained thoroughly.

4.1. Surface tracking
One of the most important steps in simulating surface
tension in free surface ows is to �nd all the particles
located at the free surface at each time step. That re-
quires an explicit interface tracking, unlike multiphase
simulations where the interface between the phases is
implicitly obtained from the gradient of color function.

One of the most straightforward interface tracking
methods is to split a circular area around the particle in
question into equal sectors. Then, each of these sectors
is checked for uid particles. If all sectors have at least
one particle inside, then the particle in question is not
located on the free surface; otherwise, the particle is
marked as one of the free surface particles [11,32]. In
this study, area around each particle is divided into 8
sectors, shown schematically in Figure 1.

In most SPH studies, the radius of particle search-
ing is equal to the support domain of the kernel, that
is, k0 = k [11,32]. This radius gives acceptable results
in simple surface tension simulations, but for impact
problems, such as the coalescence of two droplets,
where large particle distortion occurs, it was concluded
that an increase in this value is required. In the cases
investigated in this study, a radius twice the size of
kernel support domain (k0 = 2k = 4) gave accurate
results. Henceforth, this method is called the geometric
interface tracking in this study.

Even though the above interface tracking algo-
rithm is adequately accurate; however, the correspond-
ing CPU e�ort increases exponentially with the number
of uid particles, that is, decreasing the e�ciency of
simulation signi�cantly. In order to decrease the CPU
time, this algorithm is combined with another more
e�cient, but less accurate interface tracking method.

Figure 1. Sectors around a particle for interface tracking.
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This method is based on the fact that the absolute
value of the divergence of position vector of a particle
is approximately equal to 2 if the particle is surrounded
completely by other particles; this means that it is not
on the free surface [24]. One can easily obtain the
divergence of position vector from:

(r � ~r)i =
NX
j=1

mj

�j
~rij � riWij : (21)

Now, if:

jr � ~rji � "; (22)

then particle i is located on free surface, where " is a
user-de�ned number lower than 2. In this study, " is
set equal to 1.7, which gives both accurate and e�-
cient results. This method is called the mathematical
interface tracking in the rest of this study.

As explained, the �rst interface tracking algo-
rithm is accurate but slow; the second method is not
as accurate but is relatively more e�cient. By combing
these two methods, an accurate and e�cient interface
tracking method is obtained as follows.

First, mathematical interface tracking is per-
formed and particles which satisfy Eq. (22) will be
marked. Afterwards, geometric interface tracking is
performed only on the particles marked in the last step.
By doing so, more time-consuming geometric interface
tracking is only performed on a small fraction of parti-
cles which decreases the total CPU time signi�cantly.

It is apparent that only particles which can be
detected as the interface particles must have satis�ed
Eq. (22) in the �rst place. It was observed that for
some simulations with very large particle distortion,
the value of jr �~rj of interface particles can have larger
values than pre-speci�ed " value. In such cases, " value
should be increased accordingly.

4.2. Smoothed color function
As mentioned in Section 2, for multi-phase simulations,
the interface can be tracked via a color function as-
signed to each phase. Other properties of the interface,
such as surface normal vector and curvature, are then
obtained from this color function. It is noted in [4] that
smoothing the color function can give more accurate
results of the surface normal vector, and hence surface
curvature. The smoothing is done using the SPH
interpolation of the color function as:

ci =
NX
j=1

mj

�j
c0jWij ; (23)

where c0j is the color function of particle j before any
smoothing (either 0 or 1). In a single-phase simulation,
the e�ect of free surface can be simulated by assigning

Figure 2. Void creation inside the uid in binary
coalescence of two droplets.

the color function of the liquid to 1. By doing so,
the smoothed color function obtained for the single-
phase simulation from Eq. (23) will be identical to
a multi-phase simulation if the color function of the
gas phase is equal to zero. In other words, support
domain truncation in Eq. (23) takes into consideration
the existence of an imaginary gas phase, automatically.

The use of the above method in smoothing the
color function will detect a free surface wherever a num-
ber density of particles is low, regardless of the interface
tracking algorithm explained in the last subsection. In
most impact problems, some voids can appear inside
the uid due to the particle distortion, which can
induce invalid free surfaces. Unphysical surface tension
forces will then appear in these regions and cause the
simulation to break-up completely. An example of the
aforementioned particle disorder is shown in Figure 2
of the binary coalescence of two droplets. To remedy
this problem, integer variable N is introduced for each
particle. This variable can be either 0 or 1. At the
start of each time-step, this variable is initialized to
0 for all particles. After the completion of interface
tracking, all particles are checked to see if they have any
free surface particles inside their support domain (with
radius of 2h); if a particle has a free surface neighbor,
its N value is changed to 1. All the remaining particles
with no free surface particles will retain their initial
value equal to zero. Now, for all particles, Eq. (23) is
modi�ed as follows:

ci =

8>>><>>>:
NP
j=1

mj
�j c

0
jWij N = 1

1 else

(24)

4.3. Normal vector
The next step in calculation of surface tension is
obtaining normal vectors of each particle. Normal
vector is obtained from the gradient of color function,
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as shown in Eq. (4). In this study, due to the fact that
the color functions of the lighter and denser uids were
substituted as explained in Subsection 4.2, the normal
vector is obtained as follows:

~n = �rc: (25)

The above equation is discretized in the format used
by Morris [4] as follows:

~ni = �
NX
j=1

mj

�j
(cj � ci)riWij : (26)

The use of the di�erence of color functions in the above
equation guarantees that the normal vector will be
exactly zero in regions far away from the free surface.

For a single-phase simulation with free surface,
Eq. (26) can be used for simple surface geometries with
no sharp corners and high curvatures. The curvature
can then be computed from Eq. (6) with no further
modi�cations. But, for most practical problems, large
curvatures will appear during the simulation. In
these regions, the kernel support domain is highly
truncated which will give very small values of the
normal vector, which in turn results in small surface
tension values. This di�culty will be more severe in
the calculation of curvature, where two consecutive
derivations of color function are required. To solve this
problem and increase the accuracy in the calculation of
curvature and surface tension, some imaginary particles
are assumed near the free surface which will contribute
to the calculation of normal vector and curvature of
particles near the free surface. The methodology for
locating and implementing these imaginary particles is
explained next.

Consider particle i in Eq. (26) with its neighbors
presented by j index. Considering if particle i itself
is located on the free surface or not, the procedure
will be slightly di�erent. First, imagine that particle
i is located on the free surface. For any particle j in
the support domain of i, which is not itself located on
the free surface, the position vector between particles
i and j is mirrored in the opposite direction. This
new vector with its base at i will mark the position
of imaginary particle j0. This imaginary particle will
have a contribution in Eq. (26) for particle i, with
color function equal to 0, density and mass equal to
those of particle i, and riWij0 = �riWij . In this
case, imaginary particle j0 is guaranteed to be inside
the support domain of particle i.

Now, consider that particle i is not located on the
free surface, but has at least one neighboring particle
located on the surface (Ni = 1). For each particle j
located on the free surface inside the support domain
of i, vector

�!
ij is again constructed. Now, vector

�!
jj0 is

constructed equal in magnitude and direction to vector

Figure 3. Treatment of imaginary particles near the free
surface.

�!
ij , so that

�!
ij0 =

�!
ij +

�!
jj0. Due to the fact that the

length of vector
�!
ij0 is twice the length of

�!
ij , it must

be ascertained that imaginary particle j0 is also inside
the support domain of particle i. If j0 is also inside
the support domain of i, then the contribution of this
imaginary particle to Eq. (26) for particle i is applied.
It must be noted that in contrary to the previous case,
the gradient of kernel function must be evaluated again
in this case.

The above procedure for the two di�erent scenar-
ios is shown schematically in Figure 3.

It must be pointed out that no extra memory is
allocated to the imaginary particles; their contributions
are immediately applied to the relevant relations when
the internal loop calculates the contribution of parti-
cle j.

4.4. Surface curvature and surface tension
Surface curvature can be obtained from the divergence
of unit normal vector discretized in SPH format as
follows:

(r � n̂)i =
NX
j=1

mj

�j
(n̂j � n̂i) � riWij : (27)

The use of the above relation for all particles without
any modi�cation can cause some problems since the
unit normal vector is used. The magnitude and direc-
tion of normal vector is accurate near the free surface,
but has very small values in other regions inside the
uid as illustrated in Figure 4(a). The direction of
normal vector is not of signi�cance in these regions
where its value is small. The problem arises when
the curvature is being calculated, in which the unit
normal vector is required and has been normalized by
the magnitude of the normal vector. The direction of
unit normal vector can be completely erroneous further
away from the interface as shown in Figure 4(b). This
fact will lower the accuracy in curvature calculation
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Figure 4. Normal vectors at the interface of a circular
droplet: (a) Normal vectors, (b) unit normal vectors, and
(c) �ltered unit normal vectors.

of the particles near the interface substantially. To ad-
dress this issue, only particles with the accurate normal
vectors can be used in the calculation of curvature, and
the other particles will be �ltered out [4].

To �nd particles with reliable normal vectors,
integer variable R is de�ned as follows:

Ri =

8><>:1 j~nij > "0

0 j~nij � "0
(28)

in which "0 is equal to 0:01=h. Now, an intermediate
approximation for curvature can be obtained from:

��i = � (r � n̂)�i

= �
NX
j=1

min(Ri;Rj)mj

�j
(n̂j � n̂i) � riWij : (29)

By using the above �lter, the kernel support domain
of particles will be highly truncated. To circumvent
this problem, a kernel gradient correction is applied to
Eq. (29) as follows:

�i = ��i =Li; (30)

where:

Li =
NX
j=1

min(Ri;Rj)mj

�j
Wij : (31)

In the calculation of curvature from Eqs. (29)-(31), the
imaginary particles introduced in Section 4.3 are also
used to improve the accuracy further. The direction
of unit normal vector of the imaginary particles is
calculated in the following manner.

If particle i is located on the free surface and have
neighbor j not on the surface, an approximate for the
unit normal vector of imaginary particle j0 is obtained
from:

n̂�j0 = 2n̂i � n̂j ; (32)

and the unit normal vector is:

n̂j0 =
n̂�j0
jn̂�j0 j : (33)

Now, consider the case when particle i is not located
on the free surface. An approximate unit normal vector
for the imaginary particle is:

n̂�j0 = 2n̂j � n̂i; (34)

and the unit normal vector is again obtained from
Eq. (33).

After calculation of surface normal vectors and
curvature, the acceleration of each particle associated
with the surface tension is obtained from:

(~as)i =
�
�i
�~ni: (35)

4.5. E�ects of imaginary particles
As mentioned before, one can simply attempt to model
surface tension for free surface ows without the use
of introduced mirror particles and just follow the
procedure explained in the last subsections. The re-
sults obtained might prove accurate enough for simple
interfaces, with no sharp corners and sudden changes
in the curvature. Nevertheless, for most practical
and interesting problems, one is faced with complex
geometries. In this part of the study, e�ects of
using imaginary particles are explained and portrayed
through some simple visual examples.

First, imagine the interface of a circular droplet.
Surface tension must have a maximum value on the
surface, should decrease in magnitude by moving away
from the free surface, and its direction should be
towards the center of the droplet. The surface tension
vectors of a section of a circular droplet, with and
without the use of imaginary particles, are compared
in Figure 5(a) and (b). It should be stated that
the magnitudes of these vectors have been rescaled in
the two �gures. As it is evident from these �gures,
albeit the direction of the surface tension is acceptable
for both cases, the magnitude of the surface tension
does not decrease noticeably by moving away from
the surface for the simple scheme with no imaginary

Figure 5. Surface tension vectors of a circular droplet:
(a) No imaginary particles used, and (b) with imaginary
particles.
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particles, while this decrease is observable in the
presented scheme. The reason is that the particles on
the free surface have a smaller number of uid particles
in their support domain; hence, the surface tension
obtained without the use of any imaginary particles
is much smaller.

Next, the surface tension vectors near the sharp
corner of a square droplet are inspected for the two
methods. Near a sharp corner, surface tension should
have the highest value at the tip of the corner and
should be smaller further away. The direction of
these vectors should be inwards for a convex interface.
The surface tension vectors obtained from the simple
simulation and the introduced scheme are compared in
Figure 6.

It is observed that the magnitude and direction of
surface tension vectors are completely erroneous near
such a sharp corner if no imaginary particle is used.
The direction and magnitude of the vectors for the
current scheme is acceptable even though the maximum
tension does not occur at the corner. This is due to the
fact that the particle exactly located on the corner has
a smaller number of imaginary particles associated with
it due to its smaller number of uid neighbors.

Furthermore, to quantitatively compare the use
of the imaginary particles, the curvature values of
particles immediately located on a free surface of a
circular droplet with respect to horizontal coordinate
are calculated and illustrated in Figure 7. Because the

Figure 6. Surface tension vectors near the corner of a
square droplet: (a) No imaginary particles used, and (b)
with imaginary particles.

Figure 7. The comparison of curvature values on the
droplet surface.

circular shape was obtained from the �nal deformation
of a square droplet, some small disturbances are visible
for the particles initially located at the sharp corners.
The improvement in curvature calculation with the use
of mirror particles is quite considerable, as illustrated
in this �gure.

5. Results and discussion

In this section, transient computations of some 2D
surface tension benchmarks are presented to further
evaluate the e�ectiveness and practicality of the pro-
posed single-phase scheme. The �rst problem is the
transformation and evolution of an initially square-
shaped droplet into a circle. The steady-state pressures
of the drops are compared with the exact solution,
while the transient shape of the droplet is compared
with the multi-phase VOF results of OpenFOAM 3.2,
available for free in the public domain. Next, results
for the head-on and o�-center coalescence of two
circular droplets are presented, and transient data are
compared to the results obtained from VOF simulation.
For all the multi-phase simulations, the gas phase is
considered to be air.

5.1. The square droplet
One of the most elementary and common benchmarks
in the numerical simulation of surface tension is the
transformation of a square-shaped droplet into a cir-
cular one. In most of the studies in the literature,
the physical properties associated with this problem
are non-dimensionalized into two numbers: the Weber
and Reynolds numbers. A characteristic velocity is
needed in the calculation of both of these dimensionless
numbers, which is not well-de�ned in the problem at
hand. In order to generalize the simulation and omit
any uncertainties, the Ohnesorge number is used for
this problem. The problem is solved for three Oh
numbers of 0.1, 0.2, and 0.5 for two particle spacings of
2:5e�4 m (1640 particles) and 5:0e�4 m (441 particles).
The Ohnesorge number, Oh, is a dimensionless number
equal to:

Oh =
p

We
Re

=
�p
�0�L0

; (36)

where L0 is the characteristic length, Re = �0UL0
� , and

We = �0U2L0
� ; U is the characteristic velocity. It is

apparent that in the Ohnesorge number, the unknown
characteristic velocity is omitted.

The initial problem setup is shown schematically
in Figure 8, and the relevant physical properties and
dimensions for the three aforementioned Oh numbers
are presented in Table 1. In the �fth column of this
table, r is the approximated radius of the �nal circular
droplet which is obtained by assuming that the total
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Table 1. Physical properties and dimensions for the square droplet problem.

Ohnesorge number �0 (kg/m3) � (m2/s) L0 (m) r = L0=
p
� (m) � (N/m)

0.1 1000 1:0e�4 0.01 0.00564 0.1
0.2 1000 1:0e�4 0.01 0.00564 0.025
0.5 1000 1:0e�4 0.01 0.00564 0.004

Figure 8. Initial setup for the square droplet problem.

volume of the droplet will be constant throughout the
solution. The external solid wall boundary is simulated
in the VOF solution with LB = 10L0.

The steady-state pressure of the �nal circular
droplets is presented and compared with the pressure
obtained from Laplace equation (p = �=r) in Table 2.
It is observed that the accuracy of the �nal central pres-
sures is acceptable. To ensure that the time-dependent
evolution of the droplet is also correct, the oscillations
of the droplet at some time intervals are compared
to the results of the VOF simulation conducted via
the interFoam solver in the OpenFoam package. The
general shape of the droplet in the Ohnesorge number
of 0.1 is compared to the volume fraction contours
of the VOF simulation in Figure 9. Considerable
similarity is observed between these methods at all the
instances displayed.

The steady-state pressure pro�les on the horizon-
tal centerline of the droplet with the Ohnesorge number
equal to 0.1 are shown in Figure 10. The small pressure
uctuations near the free surface are due to the use of
summation density method in calculation of the density

Table 2. Steady-state pressure at the center of the �nal
droplet.

Oh Pexact

(Pa)
Psimulation (Pa)

dx0 = 5:0e�4 m dx0 = 2:5e�4 m

0.1 17.72 18.35 17.83
0.2 4.43 4.57 4.53
0.5 0.71 0.72 0.73

Figure 9. Evolution of a square droplet into a circle for
Oh = 0.1. Left: current study, right: VOF simulation.

Figure 10. Final centerline pressure of the droplet for Oh
= 0.1.

�eld. Although corrected Eq. (20) is used, the support
domain truncation still causes such small discrepancies
near the surface. The transient oscillations of the
average pressure of particles for the Ohnesorge numbers
of 0.1, 0.2, and 0.5 are also shown in Figure 11.

It is apparent from Figure 11 that the vibrations
of droplets with Oh numbers of 0.1 and 0.2 are under-
damped. When Oh is increased to 0.5 though, the
vibrations show over-damped characteristics.

The slight o�set present between the two spatial
resolutions for all Ohnesorge numbers is due to the fact
that a larger fraction of particles is located on the free
surface in the cases with higher particle spacings. By
inspecting Figure 11(a), one can note some small uc-
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tuations after t = 0:20 sec for the �ne resolution. These
unphysical uctuations are due to the parasitic currents
which appear in both CSF and CSS methods due to the
imbalances induced in the momentum equations [1,2].
Harvie et al. [33] obtained some correlations to predict
the maximum value of these currents for volume of uid

Figure 11. Transient average pressure of an initially
square shaped droplet for various Ohsenorge numbers.

simulations. Their correlations can well be extended
to other methods if expressed qualitatively. They
approximated the magnitude of parasitic currents from
the balances between inertia, advection and viscous
terms with the surface tension. It is shown that the
maximum value of these currents is related to:

Parasitic currents /
�

Surface tension e�ects
Viscous e�ects

�
;�

Surface tension e�ects
Inertia e�ects

�
;�

Surface tension e�ects
Advection e�ects

�
:

Hence, by decreasing the Ohnesorge number, the e�ects
of these currents increase. Also, it is apparent from
the above relation that by approaching the steady-state
stationary condition, these currents will prevail. It is
also shown in the relations given in the above study [33]
that by increasing the spatial resolution, the e�ects of
parasitic currents increase.

According to the above observations, a CSF
method (regardless of the numerical implementation
method) is error-prone in low velocity simulations of
uids with very small Ohnesorge numbers. Also, it
is not recommended to increase the spatial resolutions
higher than a problem-dependent value.

5.2. Binary head-on collision and coalescence
of two circular droplets

Another problem in surface tension studies is the head-
on coalescence of two circular droplets at zero gravity
conditions. This speci�c problem di�ers from the
previous case due to the fact that at some time during
the simulation, negative curvatures will occur at the
bridge formed between the two droplets, as illustrated
in Figure 12. At these regions, the surface tension will
be directed outwards. A reliable surface tension scheme

Figure 12. Negative curvature at the liquid bridge in
binary coalescence of two droplets.
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Figure 13. Initial set-up of head-on coalescence problem.

should be able to capture these spatial variations in
curvature on the free surface.

In this study, the head-on coalescence of two
circular droplets, each with radius of 0.0056 m and
0.0046 m apart, is simulated. Density, kinematic
viscosity, and surface tension coe�cient of the droplets
are 1000 kg/m3, 0.0001 m2/s, and 0.025 N/m, respec-
tively. The circular droplets are created from a square
droplet of length 0.01 m which is considered to be the
characteristic length of this problem. The two droplets
approach each other with relative velocity of 0.04 m/s,
corresponding to the Reynolds and Weber numbers of
4.0 and 0.64, respectively. The initial distances and
velocities are shown schematically in Figure 13.

The coalescence of these two droplets is compared
to the multi-phase results of OpenFOAM over some
time intervals in Figure 14. Excellent agreement is ob-
served between the two methods at all of the presented
time snapshots. After the initial impact of the droplets,
a narrow liquid bridge is formed between them which
has larger local pressure. This pressure gradient causes
the bridge to spread in vertical directions creating an
elliptical shape. The surface tension will overcome the
inertia forces at some point and prevent the droplet
from further expansion and will make it contract. The
center pressure will increase and the drop will start

Figure 14. Head-on coalescence of two circular droplets.
Left: current study, right: VOF simulation.

Figure 15. Horizontal and vertical spans of the head-on
coalescence.

to expand horizontally, and the cycle repeats itself in
vertical and horizontal directions. After each cycle, the
maximum elongation in each direction decreases until a
circular droplet is formed. The transient horizontal and
vertical di�erences between minimum and maximum
limits of the droplets (Delta X and Delta Z) are shown
in Figure 15. The decay in amplitudes of the vibrations
stated above is apparent from this �gure. The �nal
stable droplet is formed slightly earlier by the VOF
method due to the viscous loss associated with the
gas phase. It is also observed in the VOF results
that some air is trapped between the two droplets
after the impact. Of course, this air entrapment
phenomenon cannot be modeled in the proposed single-
phase simulation.

The simulation of this problem using the proposed
scheme shows the reliability and practicality of the
method in surface tension simulations where sharp
and negative curvatures appear. Still, it should be
mentioned that by increasing the spatial resolution
beyond a certain value, the parasitic currents will make
the coalescence of droplets asymmetrical and unstable.
The fact that there is no gaseous phase to dampen
these currents makes this instability more signi�cant
compared to other multiphase simulations.

5.3. O�-center coalescence of two circular
droplets

The last problem is the o�-center collision and co-
alescence of two circular droplets, each with radius
of 0.0056 m. The center-to-center vertical distance
of the two droplets is equal to 0.0056 m, and they
are approaching each other with a relative horizontal
velocity of 0.04 m/s. The schematic of this problem
is shown in Figure 16. The physical properties are
similar to the last problem; hence, the corresponding
Reynolds and Weber numbers are also 4.0 and 0.64,
respectively. The coalescence process is compared with
the results of VOF simulation in Figure 17. Good
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Figure 16. Schematic of the o�-center coalescence of two
circular droplets.

Figure 17. O�-center coalescence of two circular
droplets. Left: current study, right: VOF.

agreement is visible between the two methods, albeit
some distortions are visible on the free surface of the
SPH results.

Due to the presence of initial angular momentum
in the system, the droplets will begin to rotate around
the center of mass of the system. This rotation is
illustrated via the velocity vectors at t = 1:00 sec in
Figure 18. When the droplet is surrounded by air, such
as the VOF simulation, this rotation will eventually
decay until the �nal droplet reaches stationary condi-
tion. In the present single-phase simulation though,
this rotation will continue with no resistance. Hence,
we can calculate the angular velocity of the system from
the conservation of angular momentum:

2� Vdroplets

(do�Center=2)
� Id = ! � Itotal; (37)

where Vdroplets is the horizontal magnitude of the
velocity of each droplet, do�Center is the center-to-center
vertical distance of the two droplets, Id is the moment
of inertia of each circular droplet before impact, Itotal is
the moment of inertia of the �nal circular droplet, and
! is its angular velocity. The angular velocity of the

Figure 18. Velocity vectors for the o�-center coalescence
showing the rotation of the �nal droplet at t = 1:00 sec.

�nal droplet calculated from Eq. (37) is 3.58 rad/sec,
while this value is obtained to be 3.26 rad/sec from
the current simulation at t = 1:00 sec. Aside from the
apparent numerical errors, this small deviation is due
to the fact that CSF method does not conserve linear
and angular momenta exactly [2,4].

Like the previous problem, in the VOF results,
some air is again entrapped between the droplets,
but, unlike the last case, this entrapped air will be
eventually gathered at the center of the droplet in a
small circular region due to the rotation of the �nal
droplet. Of course, this entrapment does not happen
in our free surface simulation.

5.4. Drop impact on a water bed
So far, all the problems, which have been simulated,
contained droplets with high viscosities that prevent
the occurrence of some phenomena such as splashing
and spray formation. In order to briey illustrate the
capability of the proposed surface tension method in
low viscosity conditions, the impact of a water droplet
on a water surface is also simulated and compared with
the studies of Leng [34] and Khayyer et al. [12]. The
Laplacian-based surface tension modelling of Khayyer
et al. has been explained with more details in [13]. In
this case, a water droplet of diameter 2.33 mm collides
with the water surface at the velocity of 3.65 m/s
resulting in We = 395 and Fr = 639. The droplet
breaks up into smaller droplets and splashes o� the
surface. Two instantaneous snapshots are displayed
in Figure 19. Great agreement is observed and the
splashing and breaking up of the droplet are also
visible. As it can be seen in the second snapshot,
some particles will get separated from the rest of
the water. This will induce some arti�cial and large
surface tensions for these singular particles. In order to
stabilize the method in such situations, when a particle
does not have enough uid particles in its support
domain, surface tension is not computed and is equated
to zero.
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Figure 19. Droplet splashing over a water bed: (a)
Current study, (b) Leng [34], and (c) Khayyer et al. [12].

6. Conclusions

In this study, a single-phase implementation of CSF
method in simulating surface tension e�ects for free
surfaces in SPH method is proposed. Unlike the other
multi-phase studies where the whole physical domain
should be discretized by both liquid and gas particles,
in this study, only the liquid domain is needed to
be discretized, lowering the memory requirements and
CPU time signi�cantly. Naturally, if the problem at
hand is to analyze phenomena, such as shear e�ects
of the gas phase or air entrapment, a multi-phase
simulation is required and this study cannot address
these issues.

After an accurate and e�cient surface tracking,
imaginary mirror particles are placed adjacent to the
surface. The mirror particles are used in the calculation
of surface properties such as surface normal vector
and curvature. The impact of using these particles
is illustrated through some simple examples, and it
is shown that their use has signi�cant e�ect on the
surface tension, especially near the sharp corners with
high curvature. These particles do not require any
extra memory requirement and only their contribution
is considered.

The proposed scheme is applied to some simple
2D surface tension examples such as the oscillation
of a square shaped droplet and binary coalescence of
two droplets. The results of the current study show
good agreement with exact data as well as results
obtained from VOF simulation. It is also observed
that by increasing spatial resolution at lower Ohne-
sorge numbers, parasitic currents can appear in the
simulation. The conservation of angular momentum is
also studied via the simulation of o�-center coalescence
of two droplets. It is con�rmed that CSF method
cannot conserve momentum exactly. In simulations
where conservation of linear and angular momenta is
imperative, the use of CSS method is recommended, in
which the implementation of the introduced imaginary
particles is also straightforward.
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