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Abstract. In this paper, based on the modi�ed couple stress theory, the size-dependent
dynamic behavior of circular rings on elastic foundation is investigated. The ring is modeled
by Euler-Bernoulli and Timoshenko beam theories, and Hamilton's principle is utilized to
derive the equations of motion and boundary conditions. The formulation derived is a
general form of the equation of motion of circular rings and can be reduced to the classical
form by eliminating the size-dependent terms. On this basis, the size-dependent natural
frequencies of a circular ring are calculated based on the non-classical Euler-Bernoulli
and Timoshenko beam theories. The �ndings are compared with classical beam theories.
Response of the micro-ring under application of static and dynamic loads is investigated
and compared with the classical theories. Results show that when the thickness of the ring
is in the order of the length scale of the ring material, the natural frequencies evaluated
using the modi�ed couple stress are considerably more than those predicted based on the
classical beam theories, while the de
ection and natural frequencies of the classical and
non-classical beam theories approach one another for the rings with thickness much larger
than the material length scale.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Circular rings are widely used as micro-gyroscopes in
micro-electromechanical systems [1,2]. The key block
of micro-gyroscopes is a vibrating ring actuated by
electrostatic or electromagnetic forces [3,4]. By sensing
the lateral vibration of the ring, the angular velocity
of the device is calculated. Many researchers have
studied the vibration and natural frequencies of circular
rings [5,6]. For instance, Chang et al. [5] derived the
equations of motion of a circular ring in polar coordi-
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nate using energy method. They used their formulation
to calculate the natural frequency and mode shapes of
a silicon micro-scale circular ring.

Wu and Parker [6] used perturbation method to
derive an analytic expression for natural frequency
of circular rings on elastic foundations. Cooley and
Parker [7] investigated the vibration behavior of rotat-
ing circular rings. They derived the nonlinear equa-
tions of motion of the ring using Hamilton's principle
and linearized these equations to obtain the natural
frequency of the ring. Patel et al. [8] analyzed the
vibration of isotropic and orthotropic circular rings.
They considered the nonlinearity caused by the large
deformation of the ring and used �nite-element method
to study the mechanical behavior of the ring.
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Rings used in micro-gyroscopes have thicknesses
in the order of microns. In the experiments carried out
on the micro-scale structures, the size dependency is
observed in mechanical behavior of these systems. The
response of these components is signi�cantly di�erent
from that predicted by the classical theory. Performed
experiments revealed that the normalized behavior of
micro-mechanical structures is size-dependent, while,
according to the classical theory, mechanical response
is independent of the structure size. For example, some
experiments are conducted to examine the mechani-
cal behavior of micro-wires made of copper [9] and
polymeric micro-cantilevers [10]. Outcome of these
investigations a�rms the size-dependent behavior of
these components, and shows that torsional sti�ness
of micro-wires and bending sti�ness of polymeric can-
tilevers are much more than the sti�ness predicted by
the classical theory. The size dependency in mechanical
behavior of micro structures was also reported by other
researchers [11-13].

In contrast to the classical theory which is not able
to justify the mechanical response of the micro-scale
structures, non-classical theories, such as couple stress
theory [14-16] and modi�ed couple stress theory [17-
19], are appropriately able to explain this phenomenon
and cover the gap between the experimental and clas-
sical theory results. Couple stress theory as a theory
is capable of explaining the size-dependent behavior
of mechanisms proposed for the �rst time by Mindlin
and Tiersten [14]. In this theory, new stresses are
introduced and considered acting on material element.
These stresses were related to higher order derivatives
of displacement �eld with two new constants. The
stresses are called higher order stresses, and the new
material parameters used in the relation are known as
length-scale parameters. A new equilibrium equation,
named equilibrium equation of moment of couples, is
considered and applied to the relations by Yang et
al. [17]. Using this modi�cation, Yang et al. [17]
presented the modi�ed couple stress theory.

In recent years, many researchers utilized the
modi�ed couple stress theory to analyze the static
and dynamic responses of mechanical components such
as micro-beams [20-23] and micro-plates [24,25]. The
modi�ed couple stress formulations of functionally
graded Euler-Bernoulli and Timoshenko beams were
developed by Asghari et al. [26,27]. The modi�ed
couple stress-based formulation of laminated Timo-
shenko beams was developed by Chen and Li [28].
Fakhrabadi et al. [29] analyzed the nonlinear vibration
of carbon nanotubes based on modi�ed couple stress
theory. Tsiatas [30] utilized the modi�ed couple
stress theory to develop the size-dependent formulation
of Kirchho� plates. The formulations of laminated
Reddy and Kirchho� micro plates derived based on
the modi�ed couple stress theory were presented by

Chen et al. [31,32]. Static and vibrational analyses of
non-classical third-order shear deformation plate were
investigated by Gao et al. [33].

The mechanical behavior of 
uid conveying micro-
tube was investigated based on the modi�ed couple
stress theory by Wang [34]. He derived the natural
frequency of the system and calculated the critical

ow velocity. On the basis of modi�ed couple stress
theory, sensitivity analysis of atomic force microscope
was investigated by Kahrobaiyan et al. [35]. The size-
dependent static and dynamic behaviors of electrostati-
cally actuated micro-beams were studied by Rahaeifard
et al. [36]. They showed that the modi�ed couple stress
theory can �ll the gap between the experimental and
theoretical results of the static pull-in of the micro-
cantilevers.

In this paper, governing equations of motion and
boundary conditions of a circular micro-ring on the
elastic foundation are derived on the basis of modi�ed
couple stress theory and Hamilton's principle. Euler-
Bernoulli and Timoshenko beam theories are consid-
ered to obtain two sets of micro-ring formulations. As
an example, the size-dependent natural frequencies of
circular ring are calculated and compared with the
results obtained by the classical theory. Moreover,
static and harmonic point forces are applied to the
micro-ring and the response is obtained. Findings
indicate that for the rings with thickness of the order
of the material length-scale parameter, the di�erence
between the non-classical and classical results is no-
table. Furthermore, for the rings with the radius much
more than the thickness, the results of the Timoshenko
beam theory converge to those predicted by the Euler-
Bernoulli theory.

2. Modeling of circular rings

A simple model of the circular ring on elastic founda-
tion (radial and tangential sti�ness) considered in this
paper and utilized in Euler-Bernoulli and Timoshenko
theory is illustrated in Figure 1.

2.1. Euler-Bernoulli rings
The displacement �eld based on Euler-Bernoulli beam
theory in cylindrical coordinate system can be ex-
pressed as follows:8><>:ur = w

u� = u+ r
Ru� r

R
@w
@�

uz = 0
(1)

where w(�; t) is displacement in radial direction, u(�; t)
is displacement in tangential direction, R is ring radius,
and r denotes the distance of an arbitrary point from
the neutral axis of the cross-section of the ring. The
in�nitesimal strains associated with the displacement
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Figure 1. A circular micro-ring: (a) Geometry and parameters, and (b) cross section of the ring.

�eld are computed as [37]:
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+
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=
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+
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@u
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;
(2)

"rr = "r� = "rz = "�z = "zz = 0: (3)

Moreover, the components of the symmetric curvature
tensor can be expressed in terms of the displacement
components as [37]:

�sz� = �s�z =
1

2R2

�
@u
@�
� @2w
@�2

�
; (4)

�srr = �sr� = �srz = �s�� = �szz = 0: (5)

Classical and higher-order stresses �ij and ms
ij are also

obtained as follows [37]:
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+
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� @2w
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; (6)

�rr = �r� = �rz = ��z = �zz = 0; (7)

ms
z� = ms

�z =
�l2

R2

�
@u
@�
� @2w
@�2

�
; (8)

ms
rr = ms

r� = ms
rz = ms

�� = ms
zz = 0: (9)

The variation of potential energy due to a variation in
the body con�guration can be expressed as [17]:
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=
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where V and A represent the volume and cross-section
of the micro-ring, and kr and k� are radial and
tangential sti�ness of elastic foundation, respectively.
To simplify the derivation of governing equations, stress
resultants are de�ned as follows:

P =
x
A

���dA; (11)

M =
x
A

���rdA; (12)

Hz� =
x
A

mz�dA; (13)

which gives:
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Performing some mathematical manipulations yields:
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Total kinetic energy of the micro-ring is expressed as:
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in which � is the density of micro-ring material. Con-
sidering the proposed displacement �eld and ignoring
product of small components, the variation of the
kinetic energy can be derived as follows:
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The virtual work done by external forces on the ring is
written in the following form:

�W =
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Using Hamilton principle as:
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Performing some straightforward mathematical manip-
ulations gives the governing equations of motion of the
Euler-Bernoulli micro-ring as follows:
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The corresponding boundary conditions are:
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Considering inextensionality of the centerline of the
rings, the following equation should be satis�ed [38]:

"�� = 0: (26)

Satisfying inextentionality condition of the centerline
and neglecting product of small quantities in Eqs. (2)
gives the following expression for inextensional rings:

w = �@u
@�
: (27)

Eqs. (21) and (22) represent the governing equations of
Euler-Bernoulli micro-ring. Combining these equations
and considering inextensionality of the centerline of the
ring, a single di�erential governing equation is derived
as:�
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where I is the area moment of inertia de�ned as I =R
r2dA. For convenience, the following dimensionless

parameters are introduced:
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u
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f̂ =
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Using the introduced dimensionless parameters, the
dimensionless governing equation can be written in the
following form:�
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where �r =
p
I=A is radius of gyration of the ring cross-

section.

2.2. Timoshenko rings
The displacement �eld of micro-ring with considering
the �rst-order shear deformation in cylindrical coordi-
nate can be stated as follows:8><>:ur = w

u� = u+ r�
uz = 0

(34)

The in�nitesimal strains associated with this displace-
ment �eld and symmetric curvature tensor can be
represented in terms of the displacement variables as
follows:

"�� =
1
R

�
w +

@u
@�

+ r
@�
@�

�
; (35)

"r� = "�r =
1

2R

�
@w
@�
� u+R�

�
; (36)

"rr = "rz = "zr = "�z = "z� = "zz = 0; (37)

�sz� = �s�z =
1

4R2

�
@u
@�
� @2w
@�2 +R

@�
@�

�
; (38)

�szr = �srz =
1

4R2

�
@w
@�
� u+R�

�
; (39)
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Moreover, the non-zero components of corresponding
classical and higher order stresses are obtained as
follows:
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where k is numerical factor that depends on the shape
of the cross-section of the ring. The variation of strain
energy can be calculated as follows:
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In addition to the aforementioned stress resultants, two
more stress resultants are de�ned for Timoshenko rings
as follows:
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x
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Then, the variation of strain energy can be rewritten
as follows:
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Using integration by part yields:
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Considering the proposed displacement �eld for Timo-
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shenko ring and ignoring product of small components,
the variation of kinetic energy is obtained as follows:
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The variation of external work is written as follows:
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The equation of motion for the Timoshenko circular
ring and the corresponding boundary conditions are
derived as follows:
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Using the governing equations of Timoshenko ring and
considering inextensionality of the centerline of the
ring, a single di�erential governing equation for the
Timoshenko micro-ring is derived as follows:
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Employing introduced dimensionless parameters yields:
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@�2

��
�

E
� �r
l

�2 + 1
�

�
1 +

1

4k
�R
l

�2��+
@8û
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3. Static case

In this section, the response of micro-ring under static
load is investigated. For this reason, as a case study,
external point loads are exerted on the ring diagonally
in orientation �=3 from the horizontal direction as
shown in Figure 2. In the static load case, the time-
dependent derivatives are ignored and the radial force

acting on the ring is considered to be:

f̂(�) = F0�
�
� � �

3

�
+ F0�

�
� � 4�

3

�
; (62)

p̂(�) = 0; (63)

where F0 is amplitude of static load, and �=3 and
4�=3 express the positions of the forces. The governing
equation of Euler-Bernoulli micro-ring under static
load would be as follows:�

1 +
�

E
� �r
l

�2��@6û
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In a similar procedure, the governing equation of
Timoshenko ring for static loading can be written as
follows:
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The response of a structure under application of ex-
ternal forces can be obtained using mode summation
technique. Based on this method, the solution is ex-
pressed as the summation of the mode shapes of the
structure. Therefore, the mode shapes of the ring are
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Figure 2. Circular micro-ring loading.

needed. This mode which is satisfying the governing
equations and boundary conditions can be mentioned
as follows:
Un = sin(n� + �) n = 2; 3; :::; (66)

where n is the mode number of the ring, noting that
n = 1 indicates the rigid body motion of the ring.
Using the mode shapes, the response of the micro ring
under static loading can be expressed as follows:

û(�) =
1X
n=2

Cn sin(n� + �): (67)

By inserting the above equation into the governing
equations of Euler-Bernoulli and Timoshenko ring with
su�cient modes and using Galerkin approximation, one
can obtain the response of the ring.

4. Free vibration analysis

4.1. Natural frequency of Euler-Bernoulli ring
To �nd natural frequencies of the ring, external forces
are assumed to be zero and harmonic response is
considered as follows:

û(�; t̂) = U(�)ei!t̂; (68)

where ! is dimensionless natural frequency of the
micro-ring. Eq. (59) can be rewritten as follows:�
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As it is expressed in the static case section, the solution

of this equation can be proposed in the following form:

U(�) = c0 sin(n� + �) n = 2; 3; :::; (70)

in which c0 is a real constant. The natural frequency of
Euler-Bernoulli micro-ring, according to the modi�ed
couple stress theory, is derived as follows:
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4.2. Natural frequency of Timoshenko ring
As performed in the previous section, external forces
are assumed to be equal to zero and the following
harmonic response is considered for the ring:

û(�; t̂) = c0 sin(n� + �)ei!t̂ n = 2; 3; :::: (72)

Utilizing the proposed relation, the following algebraic
equation is derived for natural frequency of the Timo-
shenko micro-ring:

A!4 �B!2 + C = 0; (73)

in which:
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5. Harmonic case

In the case of harmonic load, the radial force acting on
the ring is considered to have the form as follows:

f(�; t) =F0 sin(
t)�
�
� � �

3

�
+ F0 sin(
t)�

�
� � 4�

3

�
; (77)

where 
 is the excitation frequency. The governing
equation of Euler-Bernoulli micro-ring under harmonic
loading would be as follows:�
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Utilizing the mode summation method, the de
ection
of the ring can be considered as follows:

U(�; t) =
1X
n=2

�(t) sin(n� + �): (79)

Inserting the above equation into Eq. (78) gives the
following di�erential equation for �(t) which can be
easily solved:
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After the time part of de
ection (�(t)) is solved, the
response of the Euler-Bernoulli micro ring can be
obtained from the mode summation technique by mul-
tiplying the time part solution to corresponding mode.
A similar procedure is performed on Timoshenko ring
and the di�erential equation for time part of response
is derived as follows:

A
@4�(t)
@t4

+B
@2�(t)
@t2

+ C�(t) = N(t); (82)

whereA, B, and C coe�cients are the same as Eqs. (74)
to (76), and N(t) can be achieved from Eq. (81).
By solving the time part solution of Timoshenko ring
and multiplying them to the corresponding modes, the
response of Timoshenko ring can be obtained.

6. Results and discussion

Ring with rectangular cross-section is considered as a
case study in this section. Let parameters h and b
denote the height and width of the ring cross-section,
respectively. These parameters' radius of gyration
of the cross-section of the ring may be replaced by
(1=2
p

3)h.
The �rst dimensionless natural frequency of

Euler-Bernoulli micro-ring with respect to the ratio of
ring thickness to the material length scale is illustrated
in Figure 3. The dimensionless coe�cients of elastic
foundation (K̂r; K̂�) are assumed to be zero. The size
dependency of the normalized natural frequency of the
Euler-Bernoulli micro-ring can be seen clearly in this
�gure. It can be easily concluded that when the ratio of
h=l is less than 10, the di�erence between the natural
frequencies given by the modi�ed couple stress and
classical theories is considerable. As is well-known in
the literature and can be understood from this �gure,
the modi�ed couple stress theory predicts the sti�ness
of the micro-scale structures higher than the classical
theory. Hence, the natural frequency predicted by
the modi�ed couple stress theory is higher than that
evaluated by that classical theory.

The �rst dimensionless natural frequencies of
Timoshenko ring are plotted in Figure 4. The di-
mensionless coe�cients of elastic foundation (K̂r; K̂�)
are assumed to be zero. To calculate the results
presented in this �gure, the ratio of the ring radius
to the thickness of the cross-section is considered as
R=h = 10. The results indicate that when the thickness
of the cross-section is in the order of the material length
scale, the di�erence between classical and non-classical
theories is considerable. As an example for h=l = 3,
this di�erence is 25%. This di�erence means that size
e�ect should be considered for the structures in which
the constitutive length (e.g., the thickness of the beam-

Figure 3. First dimensionless natural frequency of
Euler-Bernoulli ring.
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Figure 4. First dimensionless natural frequency of
Timoshenko ring.

Figure 5. First dimensionless natural frequency of
Euler-Bernoulli ring on elastic foundation.

type structure) is in the order of material length-scale
parameter.

In Figure 5, the �rst dimensionless natural fre-
quencies of Euler-Bernoulli micro-ring in terms of sti�-
ness coe�cient are presented. Results indicated that
natural frequency increases as radial and tangential
sti�ness coe�cient enhances. The same result can be
obtained from Figure 6 in which the �rst dimensionless
natural frequencies of Timoshenko micro-ring in terms
of sti�ness coe�cient are investigated. The dimension-
less coe�cients of elastic foundation are assumed to bebKr = bK� = 10.

The ratios of the 1st, 5th, and 10th natural
frequencies of Timoshenko ring to those of the Euler-
Bernoulli are presented in Figure 7 for h=l = 3. Based
on this �gure, it can be realized that the di�erence
between the natural frequencies given by the Timo-
shenko and Euler-Bernoulli theories would be larger
as the number of the mode increases. Furthermore,
as the ratio of ring radius to ring thickness increases

Figure 6. First dimensionless natural frequency of
Timoshenko ring on elastic foundation.

Figure 7. Natural frequency of Timoshenko ring over
that of Euler ring for �rst, �fth and tenth frequencies.

the di�erence between the natural frequencies of the
Timoshenko ring and that of the Euler-Bernoulli ring
tend to each other. However, for the values larger
than 10, the natural frequencies of micro-rings for
Timoshenko and Euler beams are assumed to be the
same.

Figure 8 shows the e�ect of sti�ness coe�cient
of elastic foundation on size-dependent mechanical
behavior of micro-ring. In this �gure, the ratio of
size-dependent natural frequency to classic natural
frequency with respect to radial and tangential sti�ness
coe�cients is plotted for R=h > 20. This �gure reveals
that as the sti�ness coe�cient of the system increases,
the size-dependent parameter would be less e�ective in
natural frequency of the system, and the ratio of non-
classic to classic natural frequencies tends to 1.

Utilizing the mode summation technique and the
derived equations, the response of the micro ring under
static load for R=h > 20 and h=l = 3 is presented in
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Figure 8. Ratio of non-classic to classic natural
frequency with respect to elastic foundation sti�ness.

Figure 9. Maximum de
ection of micro-ring under static
load h=l = 3.

Figure 9. It should be noted that since the ratio of
ring radius to ring thickness (R=h) is assumed to be
higher than 20, the results of static loading based on
Euler-Bernoulli and Timoshenko theories match each

other. As it is expected from the free vibration analysis,
micro ring based on non-classical theory is sti�er than
classical theory and de
ection is smaller compared to
classical theory.

Using mode summation technique and considering
4 modes of the ring, the e�ect of size dependency on the
maximum de
ection of the micro ring at di�erent ratios
of h=l under harmonic loading is plotted in Figure 10.
The excitation frequency (
) is assumed to be close
to the �rst natural frequency of the ring. Findings
indicate that as h=l increases, the classical and non-
classical results tend to one another (for h=l = 3, there
is a meaningful gap between classic and non-classic
responses, while the responses completely match each
other h=l > 100). Comparing the natural frequencies
and de
ection of the micro ring under external force
based on classical and non-classical theories reveals
that for the vibrating ring gyroscope which operates
based on natural frequency of the micro ring, the size
dependency must be considered in the analysis of these
systems.

7. Conclusion

In this paper, based on the Euler-Bernoulli and Tim-
oshenko beam theories, size-dependent formulations
are developed for micro-scaled circular rings on elastic
foundation. A displacement �eld is proposed for circu-
lar rings and Hamilton's principle is utilized to derive
the governing equations and boundary conditions of
micro-rings. As a case study, the dimensionless size-
dependent natural frequencies of a circular micro-
ring with rectangular cross-section are obtained and
compared with those evaluated based on the classical
theory. The response of the micro-ring under applica-
tion of static and harmonic point loads is investigated,
and the �ndings are compared with classical ones.
Results reveal that the normalized natural frequency
of the micro ring and the de
ection of micro ring
under static and harmonic forces are size-dependent,

Figure 10. Maximum de
ection of micro-ring under harmonic load.
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while according to the classical theory, the normalized
behavior of a structure is independent of its size.
As the ring thickness increases, the results of the
modi�ed couple stress theory converge to those of
the classical theory. Furthermore, as the radius of
the ring increases, the natural frequency given by the
Timoshenko beam theory converges to that predicted
by the Euler-Bernoulli beam theory.
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