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Abstract. For the �rst time, the problem of impulsive oblique stagnation-point ow on
a vertical cylinder along with mixed convection heat transfer due to buoyancy forces has
been solved in this study. The uid at rest with uniform temperature, T1, around the
cylinder starts owing towards it at strength rate of �k, and the cylinder temperature rises
to Tw at t = 0, simultaneously. The governing equations induced by the impinging ow on
the constant-temperature vertical cylinder at any obliqueness angle, �, have been reduced
to ODEs by using similarity transformations, and then they have been solved numerically.
Considering a sample case of incompressible ow with Re = 1 and Pr = 0:7, the results
of Nusselt number and similarity functions of velocity and temperature distributions have
been obtained for di�erent values of time and angle, �. At the initial instants of time,
the Nusselt number, regardless of �'s magnitude, has large values; for example Nu = 5:1
at � = 0:01. As time passes, the value of the Nusselt number reduces intensely within a
short period of time (until � � 0:4), and then it changes with a moderate reduction rate,
such that in the steady-state situation, its value reaches 0.67, 0.61, and 0.51 for obliqueness
angles � = 10�, 30�, 60�.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Due to various industrial applications of stagnation-
point ow to a plate or cylinder, many studies have
been done on these issues. For example, in manufactur-
ing of metal, plastic, or food product by extrusion pro-
cess, the output product is usually cooled by blowing a
peripheral uid ow. Since the cooling process a�ects
the resistance and quality of the product, analytical
modeling and evaluation of this physical event are
highly of interest under the topic of stagnation ow
problem. By using analytical methods, particularly
similarity solutions, accurate results can be obtained
demonstrating ow behavior in a viscous boundary
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layer. However, �nding the appropriate similarity vari-
ables and solving the governing di�erential equations of
the problem are the main challenges of this approach.
The history of analytical methods studies using sim-
ilarity solution techniques goes back to Hiemenz [1].
He investigated the steady two-dimensional laminar
incompressible ow perpendicularly impinging on a at
plate and succeeded to transform governing equations
into an ordinary di�erential equation, which was then
solved by using numerical methods. Wang [2] was
the �rst who presented the solution of stagnation-
point ow on a circular cylinder. This problem was
speci�c to a simple case of a stationary cylinder without
suction and blowing in steady-state condition, and
its importance was due to introduction of di�erent
similarity variables into cylindrical coordinate system.
Based on Wang's accomplishment, Gorla [3] could
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obtain both velocity and temperature distributions
for a cylinder with constant wall temperature and
constant heat ux. He considered energy equation
and used a transformation for temperature quantity,
then solved the extracted di�erential equations by
numerical methods. Gorla [4] continued his work
and solved the problem for transient state, when the
free stream ow has time-dependent velocity. He
used series solutions in his analysis and presented
the results of some speci�c time-dependent functions.
Gorla [5], in his next paper, assumed the cylinder
having harmonic motion and obtained the results of
this unsteady problem for two cases of low and high
frequencies. Takhar et al. [6] investigated the unsteady
case of this problem for any arbitrary time-dependent
free-stream or cylinder velocities. They obtained
numerical methods for solving their �nal di�erential
equations for the cases of semi-similar and self-similar
forms. Stuart [7], for the �rst time, formulated the
problem of oblique stagnation-point ow on a at
plate by involving vorticity in the impinging velocity
�eld. The �rst formulation of the oblique stagnation-
point ow on a circular cylinder was accomplished
by Okamoto [8]. He produced a stream function for
the oblique stagnation-point ow by considering an
additional term of shear ow along the cylinder's axis
and solved the additional related equation, numerically.
Another study on oblique stagnation-point ow on a
circular cylinder was conducted by Wideman et al. [9].
They solved the functions used in similarity solution
by asymptotic analysis method for high Reynolds
numbers. In their paper, Ramachandran et al. [10]
dealt with solving the problem of normal stagnation-
point ow against a vertical at plate in the presence
of buoyancy forces which cause mixed convection.
Gorla [11] studied mixed convection of a vertical
circular cylinder impinged by a normal stagnation-
point ow and presented a numerical solution to the
equations in the case of constant or linear variable wall
temperature. Lok et al. [12] solved the problem of the
oblique stagnation-point ow on a vertical at plate
along with mixed convection heat transfer with wall's
constant heat ux condition to obtain the velocity �eld
and the streamlines. Revnic et al. [13] dealt with mixed
convection heat transfer problem of a circular cylinder
impinged by a normal stagnation-point ow, already
mentioned by Gorla [11] whose solution was presented
for a wider range of dimensionless numbers.

In the present analysis, the unsteady problem of
mixed convection heat transfer of a vertical circular
cylinder impinged by an impulsive oblique stagnation-
point ow is dealt with; moreover, some characteristics
are investigated in terms of the angle and time of ow
obliqueness. This problem may be a simulation of
certain practical cases where some inclined peripheral
blowers around a long rod are employed for cooling

purposes. By focusing on time interval at the beginning
of the process, we encounter an unsteady situation
which is caused by the sudden blowing uid meeting
a hot surface. In this problem, a constant-strength
oblique axisymmetric outer ow impinges on a circular
cylinder, impulsively. The ow is considered inviscid
far from the cylinder, but in the region near the surface
(boundary layer), equations of viscous ow are reduced
to a system of coupled semi-similar ODEs by using
similarity transformations and are solved numerically
using a �nite-di�erence scheme to determine velocity
and temperature distributions of the ow �led. This
solution is conducted for any arbitrary angle of outer
ow in the range of zero to near 90� for both conditions
of assisting or opposing buoyancy forces. The unsteadi-
ness of the problem leads to obtaining time-dependent
results at any obliqueness angle.

2. Problem formulation

Axisymmetric incompressible oblique stagnation point
ow impinges impulsively on a vertical circular cylinder
with radius a and the length of in�nity with constant
wall temperature, Tw, in the space inuenced by
gravity acceleration gg. A schematic of this problem
for two states of assisting and opposing ow against
buoyancy forces is presented in Figure 1. The ow far
from the cylinder surface can be considered inviscid
which is composed of two perpendicular ows as: a
normal stagnation ow onto the cylinder and a shear
ow parallel to the cylinder axis. If the axisymmetric
coordinate system (r; z), according to Figure 1, is
assumed on the cylinder in a way that always the sepa-
rating streamline goes toward the positive z-direction,
referring to Wideman et al. [6], then the oblique stream
function and velocity components with coe�cients A >
0 and B > 0 are:

Figure 1. Schematic of the inviscid oblique stagnation
ow impinging axisymmetrically on vertical circular
cylinder at obliqueness angle � in the presence of
buoyancy forces: (a) Assisting ow, and (b) opposing ow.
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It is easily seen that the velocity �eld of Eq. (2)
obtained from the stream function expressed by Eq. (1)
satis�es the continuity equation. In these relations,
coe�cients A and B indicate the strength of the normal
stagnation ow and the axial shear ow, respectively.
Their summation is equal to the total strength of
oblique ow, �k, which is independent of the obliqueness
angle. So:

A+B = Const. = �k: (3)

2.1. Flow obliqueness angle
Since separating streamline  inv = 0, derived from
Eq. (1), is not a straight line and has a parabolic form,
we use the tangent angle of this line at the incidence
point on cylinder wall, named �, as a scale of ow
obliqueness. This de�nition, which is based on inviscid
outer ow, is just used as a scale, and the correct
tangent angle introduced by �s will be calculated later
which obviously has di�erent values in practice due to
uid viscosity e�ects. To insert the inuence of � into
oblique ow equations, constants A and B in Eq. (1)
should be determined. For  inv=0 in Eq. (1) under
r = a condition, we get:

tan� =
����dzdr ���� =0

r=a

=
B
A
: (4)

Using Eqs. (3) and (4), we have:

A =
cos�

sin�+ cos�
�k; B =

sin�
sin�+ cos�

�k: (5)

2.2. Boundary layer viscous ow
To have ow �eld in the vicinity of cylinder surface
(laminar boundary layer), we need to extract the
governing equations in this region and solve them.
These equations for incompressible ow in axisymmet-
ric cylindrical coordinate system with velocity compo-
nents u(r; z; t) in r-direction, w(r; z; t) in z-direction,
and temperature �eld T (r; z; t) are as follows:
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Momentum equations (Navier-Stokes equations):
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The last term in Eq. (8) is due to the presence of
buoyancy forces in z-direction which is replaced by
Boussinesq's approximation. Herein, gg is gravitational
acceleration and � is uid volumetric thermal expan-
sion coe�cient. Positive sign is for the case of gravity
acceleration in negative z-direction, so buoyancy forces
are towards positive direction (ow direction), and
we call it assisting ow case, whereas minus sign
is for the case of positive z-direction gravity which
makes buoyancy forces oppose the ow, and we call
it opposing ow case (refer to Figure 1).

Energy equation:
@T
@t

+ u
@T
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+ w
@T
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�
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1
r
@T
@r

+
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�
;
(9)

where �th is thermal di�usivity. The boundary con-
ditions of the problem with respect to the no-slip
condition on the cylinder surface on one side and
viscous ow conversion to inviscid ow far distant from
the cylinder on the other side are:
r = a : u = w = 0 and T = Tw;

r !1 :

(
u = U
w = W

and T = T1; (10)

where U and W were already de�ned by Eq. (2).
Tw and T1 are temperatures of cylinder wall and
free steam ow, respectively. The stream function in
viscous region ( vis) is considered as follows:

 vis = Aa2f(�)z +Ba3g(�): (11)

So, we use similarity transformations for the veloc-
ity components (extracted from above equation) and
temperature variable as in the following to transform
the nonlinear momentum equations into the linear and
solvable form, in which A and B are from Eq. (5):8>>>>>><>>>>>>:

u = �Aa�� 1
2 f(�; �)

w=2Af 0(�; �)z+2Bg0(�; �)a

T�T1
Tw�T1 = �(�; �)

(
�=
� r
a

�2
�=2�kt (12)

These similarity variables satisfy continuity Eq. (6)
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automatically. By eliminating the pressure term from
Eqs. (7) and (8), the following system of ODEs is
yielded:8>>>>>>><>>>>>>>:
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h
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= 0

�g000 + g00 + Re
h
m (fg00� f 0g0)� @g0

@�

i
+ �

n� = 0

��00 + �0 + RePr
�
mf�0 � @�

@�

�
= 0

(13)

Here, the prime sign denotes derivative with respect to
�. Coe�cients m and n along with Reynolds number,
Prandtl number, and dimensionless parameter, �, have
the following de�nitions:

m =
cos�

sin�+ cos�
; n =

sin�
sin�+ cos�

;

0 < � < 90�

Re=
a2�k
2�

; Pr=
�
�th

; �=�gg�a(Tw�T1)
8��k

: (14)

Also, the following boundary conditions for the ODE
system (13) are deduced by considering Eq. (10):8><>:f(1; �) = 0; f 0(1; �) = 0; f 0(1; �) = 1

g(1; �) = 0; g0(1; �) = 0; g00(1; �) = 1
�(1; �) = 1; �(1; �) = 0 (15)

Since the unsteadiness of the problem is a consequence
of the impulsive motion of the free stream ow at t = 0,
we consider the uid at rest (no motion) with uniform
temperature, T1, in both uid and cylinder's wall for
t < 0 as the initial conditions. For t � 0, a sudden
free stream ow, according to Eq. (2), appears, and
therefore, the cylinder's wall temperature rises to Tw.

It is notable here that due to the presence of
dimensionless axial velocity function, g, the e�ect of
buoyancy forces is included by (�=n)�, unlike that
presented by Gorla [11] in which buoyancy term (Re�)�
was inserted into f -equation, and a linearly-varying
wall temperature against z was assumed in order to
obtain the self-similar form of the equations.

2.3. Flow characteristics
Now, we are able to calculate some ow characteristics
using the resulting data of functions f , g, and �.
Nusselt number and shear-stress on the cylinder wall
are obtained by the following relations:
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i
: (17)

The position of incidence point of the separating

streamline on cylinder surface, zs, where the shear
stress is zero, and the slope of this streamline at
incident point, tg�s, are calculated by:

zs = zj�w=0 = �a tan�
g00(1; �)
f 00(1; �)

; (18)
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#
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3. Method of solution

Eqs. (13) along with boundary conditions (15) are
solved numerically using an implicit �nite-di�erence
scheme. The third-order di�erential equations for
f and g are reduced to second-order equations by
substituting f 0 = F and g0 = G. Then, all �rst-
order and second-order derivatives with respect to � are
discretized by using a central di�erence formulation,
whereas the �rst-order derivatives in � are replaced by
a backward di�erence approximation.

The nonlinear terms are converted to linear form
by using a Taylor series expansion about � + �� . The
solution procedure starts at � = �� as the �rst time-
step with respect to the known values at � = 0 as
initial conditions to determine the unknown values of
F , G, and � functions by using the well-known Thomas
algorithm. The procedure is iterated until the results
converge with the stable values by an appropriate
accuracy. The same procedure is repeated for the next
time-step and the problem solution continues to a value
of � , where the results show a steady-state behavior.
We used �� = 0:01, �� = 0:001, and �max = 50 as an
upper limit for calculation domain to reach accuracy
up to fourth decimal places. The latter value is an
appropriate choice because it would be observed that
boundary layer thickness in the worst case does not
exceed � = 10. We employed several �� to have a best
choice of grid size along �. For �� = 0:01 to �� = 0:1,
the results are exactly the same, and hence they are
independent of grid size; for values less than 0.01, due
to accumulation of truncation errors, no convergence
with our expected accuracy would occur.

4. Results and discussions

The results presented here are produced by solving
ODEs system (13) along with boundary conditions (15)
for certain values Re = 1, Pr = 0:7, and � = 1 in the
range of obliqueness angle � between 0 and 80�.

Distribution of radial velocity function, f 0(�; �),
for � = 30�, which is obtained at three-time levels
� = 0:01, 0.1, 0.5, as well as the steady-state condition,
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which is illustrated by dashed line, is shown in Figure 2.
Distribution of thermal function, �(�; �), is depicted in
Figure 3 for � = 30� and the same time levels. Accord-
ing to these diagrams, by increasing obliqueness angle
�, the domain of variation of f 0 and � functions (the
boundary layer is inuenced by them) increases which
is due to the reduction of the normal ow strength.

Distributions of axial velocity function g0(�; �) for
� = 30�, Re = 1, Pr = 0:7, and � = 1 and the same
time levels in the two cases of assisting and opposing
ows are presented in Figure 4. The initial convexity of
the curves in Figure 4(a) is due to the buoyancy forces
which act in the direction of the shear ow parallel
to the cylinder axis. Due to the positive e�ect of the
buoyancy forces on the assisting ow, the convexity is

Figure 2. Distribution of the radial velocity function,
f 0(�; �), for Re = 1 and � = 30� at di�erent time levels
� = 0:01, 0.1, 0.5, 1.

Figure 3. Distribution of the thermal function �(�; �) for
Re = 1, Pr = 0:7, and � = 30� at di�erent time levels,
� = 0:01, 0.1, 0.5, 1.

Figure 4. Distribution of the axial velocity function
g0(�; �) for Re = 1, Pr = 0:7, and � = 30� at di�erent time
parameters � = 0:01, 0.1, 0.5, 1: (a) Assisting ow; and
(b) opposing ow.

toward positive side too, but in the case of the opposing
ow, it is downward (toward negative z). As it can
be seen, for initial time levels, there is an insigni�cant
convexity, especially in the assisting ow case which is
due to the buoyancy forces not extended yet.

The presented diagrams in Figure 5 are related
to the variation of boundary layer thickness based on
the distribution of functions f 0(�) and �(�) drawn for
� = 10�, 30�, 60�. �99% is de�ned as a value of �
where the value of the function reaches 99% of its
target. This diagram indicates the time level where the
steady-state condition is reached for velocity and/or
thermal distributions. According to these diagrams,
for obliqueness angle, � = 10�, we have a steady
condition of velocity f 0 at about � = 2, whereas this
situation for the temperature distribution starts from
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Figure 5. Variation of boundary layer thickness, �99%,
based on distribution of f 0 and � for constant values of
Re = 1, Pr = 0:7 and di�erent obliqueness angles,
� = 10�, 30�, 60�.

� = 4:5. Besides, for larger obliqueness angles, we
witness a delay in the starting time of the steady-
state condition. Another point in the diagrams is
the existence of a larger thermal boundary layer in
comparison to dynamic boundary layer at any angle �.

The variation of boundary value, f 00(1; �), against
obliqueness angle for Re = 1 at di�erent time levels,
� = 0:01, 0.02, 0.1, 0.5, is observed in Figure 6.
Also, the same variation for �0(1; �), which is equal
to Nusselt number multiplied by a minus sign, is
shown in Figure 7. According to these diagrams, both
f 00(1; �) function and Nusselt number decrease very
slightly against �, but as time passes, the slope of this
reduction grows and it continues to the steady-state
condition when the rate of the reduction in curves is
the highest. For better illustration, a comparison of
Nusselt number variation against � in di�erent time
instants is presented in Table 1. Here, we see that
for the initial moments, e.g. � = 0:01, Nusselt number
varies from 5.133 to 5.139 when � changes from zero
to 50�. It means that at this instant of time, 50�
variation of the ow obliqueness angle makes only
0.08% reduction in Nusselt number. But, at the next
time levels, � = 0:02, 0.1, 0.5, the steady-state Nusselt
number would reduce with more percent like 0.16, 0.85,
4.45, and 23.6.

Figure 6. Variation of the boundary value, f 00(1; �),
against obliqueness angle, �, for Re = 1 at di�erent time
parameters, � = 0:01, 0.02, 0.1, 0.5, 1.

Figure 7. Variation of Nusselt number (boundary value
�0(1; �)) against the obliqueness angle, �, for Re = 1 and
Pr = 0:7 at di�erent time parameters, � = 0:01, 0.02, 0.1,
0.5, 1.

The variations of boundaryvalue, g00(1;�), against
the obliqueness angle for Re = 1, Pr = 0:7, and � = 1
at di�erent time levels, � = 0:01, 0.02, 0.1, 0.5, in the
both states of assisting and opposing ows are shown

Table 1. Comparison of Nusselt number variation against obliqueness angle, �, in the di�erent time instants for Re = 1
and Pr = 0:7.

� = 0:01 � = 0:02 � = 0:1 � = 0:5 Steady state

Nu Variation
percentage

Nu Variation
percentage

Nu Variation
percentage

Nu Variation
percentage

Nu Variation
percentage

� = 0� 5.133 {0.08% 3.639 {0.16% 1.756 {0.85% 0.966 {4.45% 0.712 {23.6%
� = 50� 5.129 3.633 1.741 0.923 0.544
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in Figure 8. According to the diagrams, the value of
g00(1; �) function on the both sides of �'s range faces a
high growth, speci�cally in the steady-state condition.
For the assisting ow case, at the initial time levels, no
growth is observed in the diagrams for large values of
�; however, in steady-state condition, we see a growing
behavior. From diagram of Figure 8(b), it is notable
that g00(1; �) changes sign from negative to positive at a
speci�c obliqueness angle in all time levels. Besides, it
is interesting to note that all the diagrams, regardless of
their time levels, meet at the same value at obliqueness
angle of about 50�.

The variation of boundary value, f 00(1; �), against
dimensionless time, � , for three di�erent angles � =

Figure 8. Variation of boundary value, g00(1; �), against
obliqueness angle, �, for Re = 1 and Pr = 0:7 at di�erent
time parameters, � = 0:01, 0.02, 0.1, 0.5, 1: (a) Assisting
ow, and (b) opposing ow.

10�, 30�, 60� is presented until � = 1 in Figure 9.
Similarly, the variation of Nusselt number is drawn
until � = 3 in Figure 10. The obvious fact in these
two �gures is the drastic fall of curves at a short period
of initial time at all di�erent obliqueness angles which
happens for f 00(1; �) at about � < 0:05 and for Nusselt
number at about � < 0:4 (Nusselt number varies from
5.1 to about 1 at this time interval). From then on,
the functions vary more moderately (Nusselt number
varies from 1 to steady value 0.6) and they divert from
each other for di�erent values of �. In other words, at
higher time instants, speci�cally at steady-state, e�ect
of the obliqueness angle on Nusselt number would be
more sensible.

Moreover, the variations of boundary value,
g00(1; �), against dimensionless time, � , for Re = 1,

Figure 9. Variation of boundary value, f 00(1; �), against
time for Re = 1 and di�erent obliqueness angles, � = 10�,
30�, 60�.

Figure 10. Variation of Nusselt number (boundary value
�0(1; �)) against the time for Re = 1, Pr = 0:7 and
di�erent obliqueness angles, � = 10�, 30�, 60�.
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Pr = 0:7, and � = 1 and three di�erent angles � = 10�,
30�, 60� are represented until � = 5 (Figure 11),
which is distinguished for two cases of the assisting and
opposing ows. According to Figure 11(a) (assisting
ow), g00(1; �) is always positive and grows as time
passes for any value of �. However, its variation for
� = 30� takes a substantial drop compared to that
for � = 10�, and in � = 60�, it has a variation close
to � = 30�, so that the two diagrams can meet each
other at about � = 5. In the case of the opposing ow
(Figure 11(b)), the variation of g00(1; �) shows di�erent
behaviors in various angles, �. It has a descending
trend against � for � = 10� and 30�, but an ascending
trend for � = 60�. This event is due to the e�ects of
the opposing buoyancy forces too, which are negligible
versus the axial ow when � becomes high.

Figure 11. Variation of boundary value, g00(1; �), against
the time for Re = 1, Pr = 0:7 and di�erent obliqueness
angles, � = 10�, 30�, 60�: (a) Assisting ow, and (b)
opposing ow.

5. Conclusions

E�ect of obliqueness angle of the ow in unsteady
problem of mixed convection heat transfer from a ver-
tical cylinder impinged by an impulsive axisymmetric
oblique stagnation-point ow on the characteristics of
boundary layer zone has been investigated. For the
outer ow which is supposed to be inviscid, simple
analytical equations govern, but in the boundary layer
region near the cylinder surface, nonlinear equations
of viscous ow have been reduced to a system of
semi-similar equations solved by using �nite-di�erence
method. Considering constant strength for the outer
ow in the speci�c case of Re = 1, Pr = 0:7, and � = 1,
the solution process has been repeated for the selected
arbitrary angles of obliqueness, from zero (net normal
stagnation ow) to about 90� (net axial ow) as the
buoyancy forces have assisting or opposing e�ects. The
numerical results of the problem demonstrate variation
of di�erent parameters such as Nusselt number or
boundary value of the dimensionless axial and radial
velocity functions, f 00(1; �) and g00(1; �), against the
time and ow obliqueness angle, �. According to the
resulting diagrams, by increasing the angle of oblique-
ness, �, boundary value f 00(1; �) and Nusselt number
decrease slightly, whereas boundary value g00(1; �) has
an intense growth on both sides of �'s range. Also,
through increasing time, f 00(1; �) and Nusselt number
show a moderate reduction to steady-state condition
after a sudden drop at the initial instants. At the
beginning of the ow, Nusselt number is high, e.g.
about 5.1 at � = 0:01, also approximately independent
of �'s value. After a short period of time (for � > 0:4),
Nusselt number begins to get close to a certain steady
value corresponding to its related obliqueness angle �,
so that in the steady-state condition, which occurs for
� > 3, we can reach Nu = 0:67, 0.61, 0.51 for � = 10�,
30�, 60�, respectively. From numerical point of view,
we observe that in � = 0:01, Nusselt number equals
5.133 and 5.139 for � = 0 and � = 50�, respectively,
which shows only 0.08% variation, whereas, in the
steady-state condition, the values of Nusselt number
for the same values of � reach 0.712 and 0.544, which
means a 23.6% reduction.

Nomenclature

a Radius of cylinder
A Strength of radial ow
B Strength of shear ow
f; g Dimensionless velocity functions
gg Gravitational acceleration
h Convective heat transfer coe�cient
k Thermal conductivity
�k Strength of free stream ow
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m;n Coe�cients
Nu Nusselt number
Pr Prandtl number
p Dynamic pressure
Re Reynolds number
r Radial direction of cylinder
r� Dimensionless r, (r=a)
t Time
T Temperature
Tw Cylinder wall temperature
T1 Free stream temperature
u;w r- and z-component of velocity of

viscous ow
U;W r- and z-component velocity of inviscid

ow
z Cylinder axial direction
zs z-value of incident point
� Obliqueness angle
�s Tangent angle at incident point
�th Thermal di�usivity
� Volumetric thermal expansion

coe�cient
� Dimensionless parameter
� Dimensionless mixed convection

parameter
� Dimensionless temperature function
� Dynamic viscosity
� Kinematics viscosity
� Density
� Dimensionless t, (2�kt)
�w Shear-stress on cylinder wall
 inv Inviscid ow stream function
 vis Viscous ow stream function
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