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Abstract. In this paper, we study the motion of a cavitation bubble near a concave
boundary from a theoretical perspective. To illustrate the e�ect of the surface concavity
of the boundary, boundary integral and �nite di�erence methods are utilized to investigate
the more detailed process of jet formation. Bubble shapes and its lifetime, movement of
the bubble centroid, pressure contours, and velocity vectors are used to demonstrate the
numerical results. The velocity of a liquid jet impacting on the far side of the bubble
surface tends to increase with decreasing boundary concavity. This result suggests that
higher pressures can occur when cavitation bubbles collapse near a concave boundary.
With the increase of boundary concavity, the time evolutions of the bubble growth and
collapse tend to increase, and the liquid jet is formed later.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Cavitation is one of the major problems that leads
to a severe reduction in operating e�ciency of the
turbo pumps. The interaction between the bubble
and boundaries is of great importance in the study of
cavitation damage due to the bubble collapsing near a
rigid boundary [1]. When a comparable-sized bubble
is located near a rigid boundary, the bubble motion
is signi�cantly inuenced by the surface curvature of
the boundary, which is characterized by parameter
�, giving convex walls for � < 0, concave walls for
� > 0, and a at wall when � = 0. The geometry
of a boundary surface is another important factor
inuencing the damage of material [2]. Cavitation
phenomenon has undesirable consequences for turbo
pumps such as extraordinary noise, vibration, blades
corrosion, and e�ciency reduction [3]. All liquids
evaporate at certain pressure (vapor pressure) and
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temperature. If the pressure is reduced to a pressure
lower than the vapor pressure, the liquid starts to
evaporate [4]. This is the �rst part of the cavitation
due to the pressure drop at the inlet of pumps forming
the vapor bubbles. These bubbles will move along with
the ow to the other parts with higher pressure. If the
pressure at the new location is high enough, these vapor
bubbles collapse. In this case, cavities are formed in the
liquid, causing other liquid particles to deviate from
their paths and hit other surfaces like impeller blades
with a very high impact speed. In these locations on
the surfaces, depending on the severity of the impact,
erosion occurs on the blades and the surface becomes
porous. The growth and collapse of these vapor bubbles
is called cavitation. Even though the simple bursting
of bubbles is not much important, their intensity and
repetition cause the released energy levels to become
more than the yield strength of blade material. In this
stage, blade disintegration and formation of small holes
start [5]. Experimental studies show that the roughness
of the surface due to the cavitation bubble collapse
leads to intensifying the cavitation damage power. The
roughness of a surface can generate local low-pressure
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regions facilitating the cavitation. Hence, it can be
concluded that when the material losses its surface
�nish, the ow �eld around the cavitation bubbles
is inuenced by a new generated surface geometry.
The velocity �eld and pressure distribution around the
cavitation bubble near rigid surfaces are investigated
numerically in many studies.

Shervani-Tabar et al. studied the velocity and
pressure �elds around the cavitation bubble during
splitting and necking phases near a at rigid sur-
face [6,7]. The dynamic behavior of the gas bubble near
rigid walls and its interaction with a set of at rigid
surfaces are investigated by the studies of Zhang et
al. [8]. Zhao et al. considered oscillation of a cavitation
bubble near a rigid surface experimentally and speci�ed
the maximum radius of bubble and collapse time based
on procedures of bubble trembling [9]. Tomita et
al. studied the growth and collapse of the cavitation
bubble near a curved rigid surface. They showed that
the surface convexity decreases the bubble lifetime;
with increment of the surface concavity, the bubble
lifetime increases [2]. Shervani-Tabar and Haji-Tabar
investigated the dynamic behavior of the cavitation
bubble near a curved rigid surface. In this study,
bubble volume, pressure inside the bubble, movement
of the bubble centroid, and the velocity of liquid jet
near curved rigid boundaries are evaluated [10].

In the present paper, the behaviors of a cavi-
tation bubble near the concave rigid boundary and
the velocity and the pressure distribution around the
cavitation bubble are studied numerically during the
collapse phase. The boundary-integral and �nite-
di�erence methods are used for the numerical solution
of the problem. The equations are written in both
Lagrangian and Eulerian forms. This means that the
relations at the points on the moving bubble are written
in Lagrangian form and the relations at the points in
the uid are written in Eulerian form. Although the
situation considered here is restricted to axisymmetric
motion without mean ow, this result suggests that
higher pressures can occur when cavitation bubbles
collapse near a non-at boundary.

2. Explanation of model

Consider a spherical bubble of initial radius, R0,
located above a rigid boundary. The uid domain
and the uid boundary, including the bubble surface
and rigid boundary, are labeled as 
 and S, respec-
tively. The uid domain around the bubble is assumed
to be incompressible, inviscid with the irrotational
motion. Also, surface tension is neglected (normally
unimportant). According to the above assumptions,
the behavior of the liquid ow around the cavitation
bubble can be described in terms of velocity potential
�(r; z; t) satisfying the Laplace's equation:

r2� = 0: (1)

Green's integral formula can be written for any suf-
�ciently smooth function � which satis�es Laplace's
equation in domain 
 having piecewise smooth surface
S:
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where p is on S. We have an equation for either � or
@�
@n on S if the other is speci�ed. Once both are known
on S, Eq. (2) can be used to generate � at any point
p 2 
. The problem is axisymmetric and the centroid
of the bubble is on the vertical axis, and the radial axis
is situated on the rigid boundary.

When a bubble oscillates near a rigid boundary,
its motion is spherical at initial stages of the growth
phase; so, the radial motion of the bubble from zero
volume to its initial volume can be calculated by
Rayleigh-Plesset equation as follows:

R �R+
3
2

_R2 +
P1 � Pb

�
= 0; (4)

where Pb is the variable pressure inside the bubble, P1
is the pressure in the far �eld, and R is the radius of
the bubble. An over-dot denotes di�erentiation with
respect to time. The pressure inside the bubble con-
sists of non-condensable gases and a constant pressure
vapor. The non-condensable gases are assumed to be
an ideal gas. Thus, the pressure inside the bubble is
given by:

Pb = Pc + P0

�80

8
�k

; (5)

where Pb is the pressure inside the bubble, Pc is the
constant vapor pressure, P0 is the initial pressure of
non-condensable gases, 80 is the initial volume of the
bubble, and k is the poly-tropic constant.

In order to keep the generality of the problem,
all the variables have been normalized by using the
bubble's maximum radius Rm, �p = p1�pc, p�P=�
and Rm=

p
�P=�, respectively, similar to the charac-

teristic length, pressure, velocity, and time. Thus, the



1960 M.T. Shervani-Tabar and R. Rouhollahi/Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 1958{1965

dimensionless variables are yielded as follows:
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where , ", and � are the stand-o� parameter, the
strength of the initial pressure inside the bubble, and
the buoyancy e�ect, respectively. Therefore, dimen-
sionless form of Rayleigh-Plesset equation is as follows:

R �R+
3
2

_R2 + 1� "
�
R0

R

�3�

= 0: (7)

This equation can be solved by Newton-Raphson iter-
ative method for di�erent values of ". In this work, �
is taken to be 1.4. Now, If " is taken to be 10, then R0
is obtained 0.3804.

As liquid particles remain on the surface of the
bubble, the velocity of the bubble surface may equate
to the liquid particle velocity. Thus, the moving
boundaries' location can be updated in a Lagrangian
manner according to (kinematic boundary condition):

DX
Dt

= r�; X 2 S: (8)

In order to obtain the rate of change of velocity
potential on the bubble surface, the unsteady Bernoulli
equation is used for the moving boundaries (the dy-
namic boundary condition):

D�
Dt

=
P1 � Pb

�
+
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2
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The governing equation with dimensionless variables is
given as follows:

DX 0
Dt0 = r�0;

D�0
Dt0 = 1� "
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2
jr�0j2 � �2(z0 � ): (10)

To solve Eq. (10) to obtain the time evolution of
�0, we require initial conditions. To do so, for a
very small spherical Rayleigh bubble of radius R0, we
suppose that the velocity potential is zero on the bubble
surface at the initial time. According to Best [11],
the vapor bubble generated due to a high local energy
input in its initial minimum volume contains a high
pressure mixture of gas and vapor and has a spherical
shape. The magnitude of the velocity potential, and
consequently the magnitude of the bubble boundary

in its initial minimum spherical shape are equal zero.
But, due to a very high di�erence between the pressure
of the bubble contents and the pressure in the far �eld,
the bubble surface at its initial minimum volume has
to be accelerated. It should be noted that by growing
of the vapor bubble, the pressure inside the bubble
decreases. Therefore, by decreasing the pressure inside
the bubble, the pressure di�erence between the bubble
contents and the far �eld, which gives out the bubble
motion, decreases, and consequently results in the
bubble collapse after the bubble reaches its maximum
volume. At this time, the normal velocity potential is
also zero on the rigid wall.

3. Numerical solution strategy

In the present study, half of the rigid boundary is dis-
cretized by N linear elements, while half of the bubble
surface is discretized by M cubic spline segments, as
shown in Figure 1.

Elemental values (� and @�
@n ) are approximated

with constant functions de�ned by their values at
the collocation points, located at the midpoint of the
elements. The boundary-integral-equation method is
applied to obtain a numerical solution to the problem.
Given an initial velocity potential of the bubble moving
boundary and its normal derivative on the rigid bound-
ary, M+N elemental values are supplied. Therefore, in
case pi is located on the boundary of the liquid domain,
the discretization of Eq. (2) can be written as follows:
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After substituting the known values, the boundary
integral equation will be simpli�ed to a linear equation
system as follows:

A� = B
@�
@n

: (12)

Figure 1. Discretization of the bubble boundary and the
interface of liquid domain with the rigid boundary.
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We solved this linear equation system by Gaussian
elimination method and obtained the normal velocity
on the bubble surface and the velocity potential on the
rigid boundary. The velocity potential on the bubble
surface is determined by the Lagrangian form of the
unsteady Bernoulli equation at the next time step as
follows:

�i(t+ �t) = �i(t)

+ �t
�
P1 � Pb

�
+

1
2
jr�j2 � �2(z � )

�
; (13)

where �t is an adaptive (variable) time step for captur-
ing the bubble behavior better during the last stages of
its collapse phase to avoid the instability problem. The
value of �t which is used for the numerical integration
of Eq. (11) to update the moving boundaries and their
velocity potential can be obtained by:

�t =
��
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Dtmax

=
��
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���1 + 1

2 jumaxj2 � �2(z � ) + "
�R0
R

�3���� ;(14)

where �� is the maximum increase in the velocity
potential on the moving boundaries between two con-
secutive time steps and is taken to be 0.05 in the present
work.

Once the shape of the bubble is known, it is
possible to compute the velocity and pressure �elds
in the liquid domain outside the bubble. So, the
liquid domain is discretized by evenly spaced �xed
points. It is noteworthy that during the growth phase
of the bubble, some nodes in the neighborhood of the
bubble boundary will be located inside the bubble, but
during the collapse phase of the bubble, some nodes
will be added into the liquid domain. Therefore, the
nodes must be reordered in every time step to use
the nodes outside the bubble and inside the liquid
domain for simulation of the problem, and exclude
the nodes located outside the liquid domain from the
computation area.

We can obtain the velocity potential at any point
inside the liquid domain on its four satellite points
(see Figure 2) by having the velocity potential at the
collocation points on the bubble boundary and rigid
wall by using boundary integral equations.

The vertical and radial components of the velocity
of each �xed point inside the liquid domain can be
obtained by employing a central �nite-di�erencing
scheme:

U =
�r(i; j)� �l(i; j)
Rr(i; j)�Rl(i; j) ; (15)

Figure 2. Fixed point inside the liquid domain and its
four satellite points.

V =
�u(i; j)� �d(i; j)
Zu(i; j)� Zd(i; j) ; (16)

where i and j specify the coordinates of each �xed
point; U and V are the horizontal and normal velocities
of the speci�ed point, respectively; �r and �l are the
potential velocities on the right- and left-hand side
neighbors of each �xed point, respectively; and �u and
�d are the potential at the satellite points located above
and below each �xed point, respectively.

With the value of the potential velocity at the
�xed points inside the liquid domain, the pressure �eld
around the bubble can be obtained by the unsteady
Bernoulli equation as follows:

P = P1�
�
@�
@t

+
1
2
j��j2��2(Z�)

�
(P1�Pc);

(17)

jr�j2 = U2 + V 2: (18)

The computations will be continued until the liquid jet
becomes fully-developed and reaches the opposite side
of the bubble surface.

4. Results and discussion

The evolution of a bubble and dynamic behavior of the
liquid around the bubble is studied under a de�nite
arbitrary condition. The liquid domain is discretized
into 2500 nodes. Table 1 summarizes the parameters
used for the numerical simulation in this paper.

The calculations provide insight into the physics
of uid behavior by calculating bubble shape, shape
and speed of liquid jets, velocity vectors, pressure �elds,
and the sites of intense pressure in particular that could
lead to mechanical defects.

As shown in Figure 3, the bubble grows nearly
spherically until it reaches a maximum volume, and
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Table 1. Table of physical properties and problem data.

� Density of the liquid 1000 kg/m3

P1 Pressure in the far �eld 100 kPa
Pc Vapor pressure 2 kPa
Rm Maximum radius of bubble 0.08 mm
R0 Initial radius of bubble 0.3804
� Buoyancy parameter 0.0282
 Stand-of parameter 1
" Strength parameter 10

�� Maximum increase in potential 0.05
M Number of cubic spline element on half of bubble surface 18
N Number of linear element on half of rigid boundary 60

�r = �z Distance between main node and satellite node 60
�R = �Z Distance between main nodes 0.05

� Rigid boundary curvature 0.4, 0.8, 1.2

Figure 3. Pro�le of the bubble near the rigid boundary
and pressure contours (Pa) around cavitation bubble with
 = 1, � = 0:0282, and " = 10 at the jet formation
moment: (a) � = 0:4, time T = 2:2544, (b) � = 0:8, time
T = 2:3073, and (c) � = 1:2 time T = 2:3429.

then collapses. It is seen that when the bubble reaches
its maximum, the pressure inside the bubble is lower
than the pressure outside it and the pressure in the

liquid domain is increased by going far away from the
bubble. It should be said that the bubble grows until
all of its kinetic energy has been imparted to the uid.
During the collapse phase of the bubble, a liquid jet
develops on the far side of the bubble from the rigid
surface and is directed towards it, and the lower part
of the bubble is attened and takes the shape of the
rigid boundary. It should be noted that two main
forces inuence the bubble behavior above a rigid wall.
The �rst is the buoyancy force exerted by the liquid,
and the second is the Bjerknes attraction force exerted
by the rigid surface. The buoyancy force causes the
bubble to migrate away from the rigid surface, and the
Bjerknes force attracts the bubble towards the rigid
surface. The inuence of the buoyancy force is shown
by non-dimensional parameter �. When the buoyancy
force is negligible in comparison with Bjerknes force,
this case can happen.

The pressure and velocity �elds around the bubble
are also shown in Figure 4. At the last stages of the
bubble collapse, a maximum high-pressure region is
located above the liquid jet of the bubble, and the
relative velocity of the liquid domain near the bubble
jet is very high. In this case, there may be surface
erosion due to the jet impact. Blake et al. [12] reported
the results of pressure contours and velocity vectors
around a laser-generated bubble near a at rigid surface
which also show the high pressure above the bubble
and the high relative velocities in the jet. Features to
note are the high pressure above the bubble before jet
impact and the high relative velocities in the jet. It is
interesting to note that in the �nal bubble collapse, a
relatively broad liquid jet is formed by increasing the
concavity. A close look at Figure 4 reveals that the
magnitude of the maximum pressure above the liquid
jet decreases with increasing the concavity of the rigid
boundary, and the high pressure region is broadened.
It may be the reason for the fact that by increasing the
concavity of the rigid boundary, the liquid jet becomes
broader.
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Figure 4. Velocity vectors and pressure contours (Pa) around a cavitation bubble just prior to the bubble collapse with
 = 1, � = 0.0282, and " = 10 near at, and three di�erent concave rigid boundaries: (a) � = 0, time T = 2:4971, (b)
� = 0:4, time T = 2:5804, (c) � = 0:8, time T = 2:6817, and (d) � = 1:2 time T = 2:7854.

Figure 5 shows the variation of the non-
dimensional volume of the bubble with respect to
the non-dimensional time for di�erent concavities. It
is shown that the bubble expands until it reaches a
maximum volume upon which it collapses; during the
collapse phase, the volume of the bubble decreases.
Also, it is observed that by increasing the concavity,
the bubble volume increases in the �nal collapse phase.

The bubble centroid lies at the axis of symme-
try. Figure 6 shows the movement of the bubble
non-dimensional centroid with respect to the non-

dimensional time. During a very short time in the late
stage of the collapse, the translational motion of the
bubble develops as a result of momentum conservation.
In the growth phase, the bubble gets away from the
boundary surface followed by a gradual attraction
towards the boundary in the collapse process.

It is worth exploring the e�ect of the geometry of
a boundary surface on the impact velocity of a liquid
jet since it is regarded as one of the important factors
in cavitation damage. Figure 7 shows the variation of
the non-dimensional velocity of the liquid jet of the
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Figure 5. Non-dimensional volume of the bubble with
respect to the non-dimensional time for di�erent
concavities and at rigid boundary with  = 1, � = 0:0282,
and " = 10.

Figure 6. Movement of the bubble non-dimensional
centroid with respect to the non-dimensional time for
di�erent concavities and at rigid boundary with  = 1,
� = 0:0282, and " = 10.

Figure 7. Non-dimensional velocity of the liquid jet with
respect to the non-dimensional time for di�erent
concavities and at rigid boundary with  = 1, � = 0:0282,
and " = 10.

Figure 8. Non-dimensional time of growth and collapse
of the bubble with respect to the rigid boundary concavity
with  = 1, � = 0:0282, and " = 10.

bubble at the axis of symmetry with respect to the
non-dimensional time. It is shown that the bubble
behaves approximately the same for all concavities
during the growth phase by negative non-dimensional
velocity. It is obvious that the velocity decreases very
rapidly during the early growth phase. In the early
collapse phase, increase of the jet velocity is very slow,
but when jet is formed, the velocity increases very
rapidly. During the collapse phase, the magnitude
of the velocity of the liquid jet decreases when the
concavity of the rigid surface increases. The area inside
the dashed circle is the liquid jet formation period. It
can be concluded that by increasing the concavity of
the rigid boundary, the liquid jet is formed later and
then the bubble collapses later.

Figure 8 shows the non-dimensional time of
growth and collapse of the bubble with respect to the
rigid boundary concavity. It is obvious that a concave
wall makes the period of the bubble motion longer than
that obtained in the at boundary case with � = 0 and
 = 1. It is obvious that by increasing the period
of the bubble, the destructive power of cavitation also
increases.

5. Conclusion remarks

This study is particularly useful in predicting the
interaction between the bubble and boundaries, which
is of great importance in the study of cavitation damage
due to the bubble collapsing near a rigid boundary.
In this paper, cavitation bubble behavior, pressure
distribution, and velocity �eld around the bubble near
concave rigid boundaries have been investigated numer-
ically during growth and collapse phases. The study
is performed for three di�erent concave rigid walls.
Two methods are applied to gain general knowledge
about bubble behavior near a concave rigid boundary:
one utilizes the boundary integral method to obtain
detailed features of bubble shape over the time, in-
cluding liquid jet formation; the other is the �nite



M.T. Shervani-Tabar and R. Rouhollahi/Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 1958{1965 1965

di�erencing method which calculates velocity �eld and
pressure distribution inside the liquid domain. Results
show that the velocity of the liquid jet impacting on
the boundary surface tends to increase with decreasing
concavity. The bubble period becomes longer about
the more concave boundary. When a boundary is more
concave, the translational bubble motion is evident.
It is interesting to note that the high pressure region
above the liquid jet allocates more area to itself by
increasing the concavity of the boundary, and this is
the reason for the fact that by increasing the concavity
of the rigid boundary, the liquid jet becomes broader.
Results also show that the magnitude of the maximum
pressure above the liquid jet decreases by increasing
the concavity of the rigid boundary.

As a �nal result, when a boundary surface be-
comes rough due to exposure to cavitation for a long
time, delayed formation of the liquid jet and increase
of the bubble period by increasing the concavity of
the rigid surface are �rm reasons for increasing the
cavitation damage power. Therefore, it is possible to
prevent the advancement of the cavitation damages by
periodic control of turbo-machineries blades.
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