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Abstract. Estimation of physical parameters of a parametrically excited gyroscope
is studied in this paper. This estimation is possible by reading the input and output
data of the gyroscope. Because of di�erent faults in the manufacturing process and
tolerances, physical parameters of a gyroscope are not exactly same as the expected values
of the manufacturer. Moreover, changing of temperature, humidity, external acceleration,
etc. can change the physical parameters of the gyro. Thus, the physical parameters of
gyroscope are not �xed values and may deviate from the desired designed values. The
physical parameters of gyroscope determine the optimal region for working of gyroscope.
Thus, if the parameters deviate from the original ones but the excitation frequency is
�xed at its initial value, the sensitivity of the gyroscope will be reduced. The new
parameters of the gyroscope can determine the new point of excitation frequency and,
because of this, estimation of these parameters should be done to prevent sensitivity
reduction. Estimation of these new parameters using the input and output values is studied
here.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Estimating of parameters of a parametrically excited
gyroscope using the least squares method is investi-
gated in this paper. This estimation will be done
by measuring the input and output signals of the
gyro. The new point for optimum working of gyroscope
is calculated with new estimated parameters. The
excitation frequency will be calculated using these
parameters, too.

Rate gyros measure the body angular velocity
of the devices on which they are installed. Among
di�erent types of gyros, MEMS gyros are in focus,
because of low cost and low energy consumption [1].
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MEMS gyros are mainly used in vehicle industries; nav-
igation systems of airplanes, especially low-cost drones;
stability control of cars; robotics; biomechanics; and
rollover detection of vehicles [1-6]. Di�erent types of
MEMS gyros are tuning fork [1,3,7-10], proof mass [1],
and ring gyroscopes [1,3,10]. In this paper, proof
mass MEMS gyros are investigated because of their
simple con�guration and wide use [6,11,12]. Proof
mass is driven in the drive direction (x axis) using
electrostatic harmonic force that is generated using
some comb-�nger electrodes with di�erent voltages.
Existing angular velocity in the z direction creates
a motion in the y axis (sense direction) because of
Coriolis e�ects. The angular velocity is determined
measuring the amplitude of the sense direction. The
more is the angular velocity, the more is the sense
direction's amplitude [3]. These gyroscopes are called
harmonic drive gyros.
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Coriolis force creates movement in the sense di-
rection; the frequency of this force is equal to the drive
frequency. Thus, maximum force and displacement
in the sense direction and, consequently, maximum
sensitivity are attained when, �rst, the drive frequency
is equal to the natural frequency in the drive direction
and, second, the natural frequencies in the drive and
sense directions are equal to each other. Because
of this, small changes in natural frequency in each
direction may signi�cantly reduce sensitivity of the
gyroscope. This change can happen because of manu-
facturing errors or change in temperature, humidity, or
environmental conditions.

Many researchers, like Alper et al., have tried to
modify manufacturing errors for improving the robust-
ness of the gyroscope when changing environmental
conditions [6,11-13].

Other methods, like closed loop control methods,
make resonances in the drive mode only or in the drive
and sense modes. Yi et al. made resonance in the
drive mode for amplitude and phase control using a
PI controller and some electronic circuits [14]. Chang
et al. in [15] made resonances in drive and sense modes
with phase di�erence control method. In [16], forced
control algorithms based on adaptive control methods
are presented for making resonances in the drive and
sense modes.

Another method for solving the problems of har-
monic excitation in MEMS gyroscopes is parametric
excitation. Physical structure of these gyros is similar
to that of the harmonic excitation gyroscopes. The
di�erence is in the drive mode electrodes' con�gu-
ration that changes the system's equations. In this
method of excitation, mismatching between the natural
frequencies of the drive and sense modes does not
reduce the gyroscope's sensitivity to the extent that
it does in the harmonically excited gyros. This is
because of large bandwidth of the drive mode; thus,
natural frequency of the sense mode can be in any
point of the frequency bandwidth of the drive mode.
Therefore, because of larger bandwidth of the drive
mode of a parametrically excited gyro, if the natural
frequency of each mode changes due to environmental
conditions or tolerance errors, its sensitivity will not be
reduced signi�cantly. Compared with manufacturing
modi�cation methods, parametric excitation needs low
cost and time. Control methods need some electronic
devices and circuits such as controller; this leads to
increased cost in comparison with parametric excita-
tion method that needs only some modi�cations in
electrodes con�guration. This idea was �rst pub-
lished by Oropeza-Ramos in 2005 and the result was
shown with numerical simulation [17]. After that,
in [5,18], the operating speci�cations of a parametri-
cally excited gyroscope were reported. In Pakniyat's
works [19,20] some parametric study and stability

analysis for di�erent parameters of the gyroscope were
done.

Here, the suspension system of the gyroscope
is assumed to be like that in Alper and Akin's
work [6,11,12].

As mentioned in [19,20], the optimum drive fre-
quency for parametrically excited gyroscope is twice
the natural frequency of the sense mode. This will be
shown in the following sections. Thus, knowing the
gyroscope's parameters is needed for maximizing its
output amplitude.

In this paper, the parameters of a parametrically
excited gyroscope will be estimated. The proposed
method can be used in a gyroscope to �nd the op-
timal point for its working with maximal sensitivity
and estimating the external angular velocity, which
is a completely novel method of measurement. For
estimating the parameters of the system, the equations
of the system are modi�ed. The external acceleration
terms, coupling sti�ness, and damping are considered
in the equations, too. These terms are estimated as
well as the physical terms of the gyro.

In Section 2, the dynamical equations of paramet-
rically excited gyros will be determined and, then, the
equation will become dimensionless using the de�ned
parameters. In Section 3, the least squares estimator
will be explained. In Section 4, simulation results
that show the correct estimation of parameters will be
shown, and Section 5 contains the conclusion of this
work.

2. Determining the dynamical equations of
gyroscope

The structure of the gyroscope is similar to the pre-
sented gyro in [6,11,12] as was mentioned before. A
scheme of this gyroscope is shown in Figure 1 and
structural model of the gyroscope is shown in Figure 2.

The drive electrodes are similar to the shown �g-

Figure 1. Schematics of the designed gyroscope
in [6,11,12] and in this paper.
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Figure 2. Structural model of the gyroscope in this
paper. Dashed line: free state, and solid line: deformed
shape.

Figure 3. The con�guration of electrodes in harmonically
excited gyroscope.

Figure 4. The con�guration of electrodes in
parametrically excited gyroscope.

ures in Figures 3 and 4, when the actuation mechanism
is of harmonic or parametric type, respectively.

For determining the gyroscope's equation of mo-
tion, the frame coordinate system is chosen in the
center of gyro. Thus, the equations will be found as
follows.

F = ma;

F
m
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xî+ _
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In Eq. (1), Î, Ĵ and k̂ are the coordinate axes in
body frame; F and a are the total force on the gy-
roscope's proof mass and the proof mass' acceleration,
respectively; m is the mass of the proof mass; ao is
the acceleration of the center of frame coordinate (aox,
aoy, and aoz in x, y, and z directions, respectively);
and arel is the relative acceleration of the lumped mass
center with respect to the frame coordinate system (�x,
�y, and �z in x, y, and z directions, respectively), both of
them stated in the body coordinate system; !f is the
angular velocity of gyroscope frame stated in the body
coordinate (
x, 
y, and 
z in x, y, and z directions,
respectively) and r is the coordinate of any point of
gyroscope relative to frame axes, both of them in body
axes; _!f is the angular acceleration of gyroscope frame
( _
x, _
y, and _
z in x, y, and z directions, respectively);
and v is the velocity of any point of gyroscope stated in
body coordinate ( _x, _y, and _z in x, y, and z directions,
respectively).

Total external forces on the vibrating body are
written in Eq. (2):

Fi = F ai � F ri � F di : (2)

F ai is the actuation force; F ri is the restoring force; and
F di is the damping force in the i direction (x, y, or z
direction).

Now, some assumptions will be applied for sim-
plifying Eq. (1):
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� Actuating force is in the x direction only;

� Angular velocity is in the z direction only. (
x =

y = 0);

� Displacement of the mass is constrained in the z
direction (z = _z = �z = 0);

� Linear viscous damping exists in the system;

� Restoring force is of degree 3; force in each direction
is a function of displacement in that direction
(F ri (xi) = k1xi + k3x3

i );

� Coupling sti�ness and damping are the same in x
and y directions (dxy = dyx, kxy = kyx);

� Actuating force is of the following form [5,21]:

F a(x; t) = �(r1x+ r3x3)[V (t)]2; (3)

V is voltage di�erence between the electrodes of
parametric excitation; r1 and r3 are the parametric
excitation coe�cients that can be calculated ac-
cording to electrode length and width, and their
numbers, and the gap between them. The voltage
di�erence is as follows:

V (t) = VA
p

1 + cos 2
t; (4)

where VA is the amplitude of voltage di�erence and

 is the frequency of this change.

Regarding the above assumptions, the �nal equa-
tions for working of the gyroscope are in the form of
Eq. (5).8>>>>>>>>>>><>>>>>>>>>>>:
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2
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+
�
kxy �m _
z

�
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z) _y
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�
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2

z
�
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+
�
kxy +m _
z

�
x+ (dxy + 2m
z) _x = may

(5)

The non-dimensional parameters will be de�ned in
the form shown in Table 1, where �xy, �x, and �y
are the non-dimensional cross damping in the drive
direction and in the sense direction. The dimensional
damping parameters are dxy, dx, and dy. !xy is
the non-dimensional cross natural frequency. !x and
!y are the non-dimensional natural frequencies of the
drive and sense modes, and ! is the non-dimensional
excitation frequency. The linear sti�ness in the x
and y directions is kx1 and ky1 and cross sti�ness is
kxy. �x and �y are the non-dimensional nonlinear
sti�ness. The nonlinear sti�ness is kx3 and ky3. 
and 0 are the non-dimensional angular velocity and

Table 1. De�nition of non-dimensional parameters and
non-dimensional derivation.
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z
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0
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!0

acceleration of the gyroscope. 
z is the external
angular velocity and _
z is the external angular acceler-
ation. X and Y are the non-dimensional displacement
(dimensional terms are \x" and \y") in the drive
and sense directions and L0 is equal to 1 �m. � is
the non-dimensional time. �1 and �3 are the non-
dimensional electrostatic excitation terms, respectively.
The electrostatic excitation terms are r1 for linear and
r3 for nonlinear. ~ax and ~ay are the non-dimensional
linear accelerations in the drive and sense modes. The
accelerations in the drive and sense modes are ax
and ay. !0 is the natural frequency of the drive
mode.

Except acceleration term in the right side of
Eq. (5), some of the parameters in the left side
of that equation are time-dependent. Because of
this, time-dependent terms are transferred to the
right side of the equation and considered as inputs.
The non-dimensional equations are in the form of
Eq. (6).8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
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(6)

Writing these equations in the state space form results
in the following equations:
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3. Estimating the gyroscope's parameters

As mentioned before, knowing the parameters of gy-
roscope is bene�cial for �nding the optimum working
point of the gyroscope and for improving sensitivity of
the gyroscope. If the parameters of gyroscope deviate
from the designed value, because of manufacturing
tolerances or changes in temperature, humidity, ex-
ternal acceleration, etc., the optimum working point
will change. If actuation frequency remains at its
original value, sensitivity of the gyroscope decreases.
By estimating the parameters of the gyroscope, the
angular velocity of the gyroscope can be estimated, too.

In Table 2, the non-dimensional parameters of a
typical parametrically excited gyroscope are presented.
In our calculation, the external acceleration on the
drive and sense axes is assumed to be 10 g. The angular
velocity is 150 deg/sec.

The simulation results of the gyroscope model
(Eq. (6)) with the above-mentioned parameters are
shown in Figures 5 and 6 for drive and sense directions
if the actuation frequency (!) is equal to !y (in normal
and zoomed views).

If !y changes to 1.03 because of environmental
conditions or tolerance errors, the response of the
system is like the one shown in Figures 7 and 8. Here,
the actuating frequency is equal to the previous !y or
1.0265.

Table 2. Non-dimensional parameters used for
parametrically excited gyroscope design.

�xy = 0:0001 �y = 0:001 �x = 0:001
!2
xy = 0:002 !2

y = 1:0265 !2
x = 1

 = 3:8581� 10�5 �y = 0:001264 �x = 0:002303
�3 = 6:33� 10�5 �1 = 0:0226 0 = 0
~ax = 0:0213 ~ay = 0:0213

The amplitude of the sense mode in the system
with 3.5% changes in !y decreases signi�cantly. This
is clear by comparing Figures 7 and 8 with Figures 5
and 6. When ! 6= !y, the amplitude of the sense mode
is 20% of that when ! = !y. Because of this, knowing
some parameters of system like !y is important.

Figure 5. Normal view of drive and sense mode responses
when ! = !y.

Figure 6. Zoomed view of drive and sense mode
responses when ! = !y.

Figure 7. Normal view of drive and sense mode responses
when ! 6= !y.
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Figure 8. Zoomed view of drive and sense mode
responses when ! 6= !y.

For estimating these parameters, input and out-
put of the system should be measured. ~ax and ~ay
(non-dimensional external accelerations in x and y
directions) are the system's inputs, and X and Y
(displacements of the system in x and y directions) are
the system's outputs. The accelerations (inputs) can be
fed to the system using the existing accelerometers in
the system. The accelerometers exist in most systems
where the MEMS gyros are used, for example, in an
inertial navigation system. The outputs (X and Y )
are measured with a lock-in ampli�er [22] that usually
exists in an MEMS gyro for determining the amplitude
and phase of oscillations.

Parameter estimation will be done using the least
squares method. For unbiased estimation of param-
eters using least squares method, the inputs should
be persistently exciting. The inputs of the system
are the non-dimensional external acceleration in the
drive and sense modes. The value of non-dimensional
acceleration in the \X" and \Y " directions for 10g
acceleration is 0.0213 as shown in Table 2. But, this
input is constant and probably does not have enough
richness to estimate the parameters of the gyroscope.
If we notice the system's equations in Eq. (6), there
exist some oscillating terms like \2�1X cos 2!�" and
\2�3X3 cos 2!�". After beginning the estimation pro-
cess, �1 and �3 will be estimated (not necessarily in a
correct way). \X", \X3", \Y ", and \Y 3" are harmonic
because they are the displacement of the proof mass in
the drive and sense directions. The proof mass moves
in these directions in a sinusoidal way, because the
electrostatic excitation term is harmonic. Thus, the
multiplication of \X" and \X3" to \cos 2!�" will be
harmonic with di�erent frequencies that help the inputs
to be rich enough to estimate the parameters in an
unbiased way.

Now, parameter estimation will be done. As
mentioned before, the least squares method is used for
estimating the gyroscope's parameters. This method

was �rst formulated by Fredrick Gauss in the late 18th
century. He used these equations for estimating the
orbit of asteroids and planets. In this method, the least
squares error of the estimated and real models should
be minimized.

From Eq. (7), the estimated parameters can be
determined as written in Eqs. (8) and (9). Here, \�1"
and \�2" are the parameters of the drive and sense
modes' equations, respectively.
�1 =

���x �(!2
x � 2 + 2�1) �(�xy � 2)

�(!2
xy�0) �(2�3+�x) �2�1 �2�3 1

�T ;
(8)

�2 =
���y �(!2

y � 2) �(�xy + 2)

�(!2
xy + 0) ��y 1

�T : (9)

Here, state variables of the system are X, X 0, Y , and
Y 0. The last components of \�1" and \�2" are the
coe�cients of the system inputs that are known, but
we estimate them in the identi�cation process.

As can be seen in Eqs. (8) and (9), some pa-
rameters can be estimated based on other parameters,
e.g. !2

x cannot be estimated individually; it can be
estimated in a summation form (!2

x�2 +2�1). But, it
will be shown that after calculating all the parameters
in Eqs. (8) and (9), each parameter can be estimated
separately.

The estimator has the following equations in the
\least squares error" method.8><>:

_� = P�e = P�(Z � �T �)

_P = �P � P��TP
(10)

P is the estimation error covariance and � is the
regression matrix and its components are regression
variables in Eq. (10); � is a matrix that includes non-
dimensional variables that should be identi�ed; Z is
the measured output of the system; e is the estimation
error; � is the forgetting factor that 0 < � � 1. Here,
the measured output consists of outputs in X and Y
directions. Measuring the output of the system, one
can estimate the unknown non-dimensional parameters
using the �rst equation in Eq. (10) [23].

Here, two sets of equations like Eq. (10) are
written, one for �1 and one for �2. Thus Z in Eq. (10)
is X for estimating �1 and Y for estimating �2.

X and Y should be compared with their estimated
values for computing the estimation error. The esti-
mated values of \X" and \Y " can be obtained using
Eq. (11):

X̂ = �T1 (t)�̂1;

Ŷ = �T2 (t)�̂2; (11)



Z. Mohammadi and H. Salarieh/Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 1889{1900 1895

where �̂1 and �̂2 are estimations of �1 and �2 (estimated
non-dimensional parameters); �T1 (t) and �T2 (t) will be
in the form shown in Eq. (12). This will be obtained
integrating Eq. (6) twice:

�T1 (t) =
� tR

0
Xd�

tR
0

tR
0
Xd�

tR
0
Y d�

tR
0

tR
0
Y d�

tR
0

tR
0
X3d�

tR
0

tR
0
X cos(2!�)d�

tR
0

tR
0
X3 cos(2!�)d�

tR
0

tR
0

~axd�
�
;

�T2 (t) =
� tR

0
Xd�

tR
0

tR
0
Xd�

tR
0
Y d�

tR
0

tR
0
Y d�

tR
0

tR
0
Y 3d�

tR
0

tR
0

~ayd�
�
: (12)

\t" is the identi�cation time in Eq. (12). Thus, the
error in x and y directions is obtained as follows:

e1 = X � X̂; e2 = Y � Ŷ : (13)

Using �T1 (t) and �T2 (t) in Eq. (12) results in oscillating
estimated parameters. This is because of the integral
form of �T1 (t) and �T2 (t). To prevent this, a stable
polynomial is considered here. This polynomial is
�(D) = D2 + 3D + 2, where D is the di�erential
operator. The �rst and second equations in Eq. (6) are
considered as P (D)X � Z(D)Y � f(X; ~ax; �) = 0 and
P 0(D)X � Z 0(D)Y � f 0(Y; ~ax; �) = 0 in Relation (14),
respectively. The �rst and second equations in Rela-
tion (14) can be rewritten in the forms of Eqs. (15)
and (16).8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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D
D2+3D+2Y

1
D2+3D+2Y

1
D2+3D+2Y

3

1
D2+3D+2 ~ay

� h
3� �y 2� �!2

y � 
2
z

!2
0

�
���xy+2
z

!0

� ��!2
xy + _
z

!2
0

� ��y 1
iT
:
(16)

The above-mentioned method is equivalent to applying
a low-pass �lter to �1(t) and �2(t) that ignores the
integral terms in these matrices.

Using Eqs. (15) and (16), the new �T1 (t) and
�T2 (t) will be in the form of Eq. (17). Therefore, the
�lter is used for ignoring the integrals in the equations.
After using this �lter, there will be no pure intergral
in the regression matrices, so there is not any wind-up
problem and integration error anymore:

�T1 (t)=

24 D
D2 + 3D + 2

X(t)| {z }
x5

1
D2 + 3D + 2

X| {z }
x7

D
D2 + 3D + 2

Y| {z }
x9

1
D2 + 3D + 2

Y| {z }
x11

1
D2+3D + 2

X3| {z }
x13

1
D2+3D+2

X cos(2!�)| {z }
x15

1
D2+3D+2

X3cos(2!�)| {z }
x17

1
D2+3D+2

~ax| {z }
x19

35;
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�T2 (t) =

24 D
D2 + 3D + 2

X| {z }
x21

1
D2 + 3D + 2

X| {z }
x23

D
D2 + 3D + 2

Y| {z }
x25

1
D2 + 3D + 2

Y| {z }
x27

1
D2 + 3D + 2

Y 3| {z }
x29

1
D2 + 3D + 2

~ay| {z }
x31

35 :
(17)

Using new �T1 (t) and �T2 (t), the number of state
variables increases. Each component of these matrices
is de�ned as a new state variable other than previous
states (X, X 0, Y , Y 0). The de�nition of the new state
variable is shown in Eq. (17) below each component.

One of the de�ned state variables is x5. If one
de�nes _x5 = x6, we have the following equation:

x5 =
D

D2 + 3D + 2
X(t); x6 = _x5: (18)

Thus:

_x5 = x6; _x6 = �3x6 � 2x5 + x2: (19)

The derivatives of x7 to x29 can be calculated using the
method in Eqs. (18) and (19).

Each component of the matrix P (P1 for the
equation of x direction and P2 for the equation of y
direction) is a state variable, too. As it is shown in
Eq. (10), this matrix will be updated with the equation
of _P = �P � P��TP .

The stability of the least squares method is proved
in the following way:

A positive Lyapunov function is assumed to be in
the form of Eq. (20):

V = �TP�1�; � = � � �̂ ! _� = � _̂�: (20)

For �(t) to be stable, _V (t) should be negative. Now,
_V (t) will be calculated:

_V = 2�TP�1 _� + �T _P�1� ! _V

= �2�TP�1P�e+ �T _P�1�: (21)

The de�nition of matrix P is as follows:

P =

0@ �Z
0

�(�)�T (�)d�

1A�1

! d
�
P�1�
dt

=�(t)�T (t);
(22)

and:

e = Z � �T �̂ = �T �: (23)

Using the equations in Eq. (10) for updating � and P

(with � = 0), _V can be found in Eq. (24):

_V = �2�TP�1P�e+ �T��T �

= �2�T�e+ �T��T � = eT e � 0: (24)

Thus, _V � 0 and � is stable and bound and so the
parameter estimation process is stable, too. Now, if
the inputs are persistently exciting, � will converge
to zero and the parameters will converge to the real
parameters. The whole explanations about the sta-
bility of least squares method and convergence of the
estimated parameters to the real parameters if the
input is persistent can be found in [23].

For testing the method of estimation, the compo-
nents of �1 and �2 arrays will be changed to �50%.
Using this, we can �nd whether the estimator can
estimate change of parameters or not.

The identi�cation process is in the way that,
�rst, the system's equations are written in the form
of Eq. (7). Other state variables will be de�ned by
Eq. (17). Updating formulae for matrices P and � will
be like Eq. (10). After that, the equations will be solved
using the initial conditions and the output estimation
will be obtained using Eq. (11). The estimation
error will be determined by Eq. (13). Estimation of
parameters should be done in the way that this error
approaches zero with time.

The stability of estimator is studied in [23]. The
parameters may not be estimated correctly if the inputs
are not persistently exciting.

4. Simulation results

The results of simulations will be shown in this section.
Dominating equations for estimator and gyroscope are
used for simulation (Eqs. (7), (10), (11), (13), and
(17)). The initial conditions of components for matrix
P (in Eq. (10)) are assumed to be 104 � I8�8 for
estimating the parameters in x direction, and 104�I6�6
for estimating the parameters in y direction, where I8�8
and I6�6 are the unity matrices.

Using the non-dimensional parameters in Table 2,
the components �1 and �2 can be found as they are
shown in Eq. (25). These components of �1 and �2
arrays change �rst +50% and second �50%. Thus,
we have three sets of values for �1 and �2 that should
be estimated fast and correctly by the estimator after
switching. These di�erent sets are given here:

�1 =
��0:001 �1:0452 �0:002 �0:000023

�0:00243 �0:0452 �1:266e� 10�4 1
�
;

�2 =
��0:001 �1:0265 �0:002 �0:0000177

�0:001537 1
�
: (25)
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Figure 9. Estimation of the �rst to the 4th components of �1.

With +50% change:

�1 =
��0:0015 �1:5678 �0:003 �0:0000345

�0:0036 �0:068 �1:899e� 10�4 1
�
;

�2 =
��0:0015 �1:5398 �0:003 �0:0000266

�0:0023 1
�
: (26)

With {50% change:

�1 =
��0:0005 �0:5226 �0:001 �0:0000115

�0:0012 �0:023 �6:33e� 10�5 1
�
;

�2 =
��0:0005 �0:5132 �0:001 �0:00000885

�7:685e� 10�4 1
�
: (27)

The initial values for �1 and �2 are as follows:

�1 =
�
0 0 0 0 0 0 0 0:1

�
;

�2 =
�
0 0 0 0 0 0:1

�
: (28)

The value of � in Eq. (10) is set to 0.2.

The simulation results are presented in the fol-
lowing �gures for di�erent components of �1 and �2.
Figure 9 for the �rst to the 4th and Figure 10 for the
5th to the 8th components of �1, and Figure 11 for the
�rst to the 6th components of �2. In these �gures, solid
lines are the real values and the dashed lines represent
estimated values. The �gures show that the estimation
algorithm works well when the parameters change.

In the next step, for computing each non-
dimensional parameter of Table 2, some calculations
should be done. For example, using the estimated
values for the 4th component of �1 in Eq. (8) and
the 4th component of �2 in Eq. (9), one can calcu-
late �xy and . Some parameters like �x, �y, �1,
�y, and �3 are estimated directly because they exist
individually in Eqs. (8) and (9). This is signi�cant
in Figures 9, 10, and 11. Other parameters are !2

x,
, !2

xy, 0, �x, !2
y, and �xy. They are determined

as is written in Table 3. The other non-dimensional
parameters in Table 2 will be determined using the
above-mentioned method. Figures 12 to 14 show the
estimation of non-dimensional parameters of Table 2
(�1i is the ith component of �1 and �2i is the ith
component of �2). Solid lines represent real values
and dashed lines represent estimated values. The
non-dimensional parameters of Table 2 can be found

Table 3. Finding !2
x, , !2

xy, 0, �x, !2
y, and �xy from the estimated parameters in Eqs. (8) and (9).

�x = ��15 � 2�3 = ��15 + �16  = 1
4 (�13 � �23) �xy = � 1

2 (�13 + �23)
!2
xy = � 1

2 (�14 + �24) !2
y = ��22 + 2 = ��22 +

� 1
4 (�13 � �23)

�2
0 = � 1

2 (�14 � �24) !2
x = ��12 � 2�1 + 2 = ��12 + �16 +

� 1
4 (�13 � �23)

�2
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Figure 10. Estimation of the 4th to the 8th components of �1.

Figure 11. Estimation of the 1st to the 6th components of �2.

Figure 12. Estimation of (a) �xy :
�� 1

2 (�13 + �23)
�
, and (b)  :

� 1
4 (�13 � �23)

�
.
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Figure 13. Estimation of (a) �x : (�17 � �15), and (b) !2
x :
���12 + �16 +

� 1
4 (�13 � �23)

�2�.

Figure 14. Estimation of (a) !2
xy :

�� 1
2 (�14 + �24)

�
, and (b) 0 :

� 1
2 (�14 � �24)

�
.

uniquely from the estimated parameters in Eqs. (8)
and (9).

As shown in the �gures, estimated parameters
(dashed line) converge to the true parameters (solid
line) in a short time.

5. Implementation remarks

As it is written in the paper, it is necessary to measure
X, Y , ~ax, ~ay, and time (t) online and accurate, here.
The oscillation frequency of the proof mass in the
gyroscope is more than 10 KHz. If data acquisition
is done with the frequency of 500 Hz, there will be 20
oscillations in a sampling period and the results will be
in steady state in these oscillations. In this case, using
a lock-in ampli�er can lead to �nding the amplitude
and phase of the oscillations. The lock-in ampli�er is
an analog circuit with no delay [22]. The accelerations
are fed to the system with accelerometer that exists
in most systems that use MEMS gyros, for example
navigation systems.

6. Conclusion

In this paper, non-dimensional parameters of a para-
metrically excited gyroscope were estimated using the
least squares method. This estimation is fast and ac-
curate. The equations of this gyroscope are nonlinear,
but the parameters can be estimated correctly using

this method. In addition, some parameters are �rst es-
timated in a summation term, but the non-dimensional
parameters in these equations are con�gured in a way
that they can be separated and estimated individu-
ally. Thus, each non-dimensional parameter can be
estimated using the above-mentioned method. The
non-dimensional angular velocity is estimated during
estimation process that can be used for calculating
external angular velocity; the non-dimensional natural
frequency of the sense mode is estimated, too. The
drive frequency of the system should be equal to this
value for having maximum amplitude in the sense
mode.
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