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Abstract. The conventional energy release rate approach to the computation of the
crack compliance in rotors is critically reviewed and its shortcoming is highlighted. The
state functions and the generic compliance are introduced, de�ned, and veri�ed. The
proposed functions are de�ned based on the end states' conditions and are exact. The crack
compliance of the shaft in torsion is explicitly de�ned as the function of the crack depth
ratio and recommended as a good alternative to the classical procedure of the energy release
rate method. The accuracy and e�ciency of the work are veri�ed by concise mathematical
formulation and comparison of the results of the work with the others in four examples.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

The fracture stress for brittle materials is related to
the crack size, �rst proposed by Gri�th in 1921 [1].
He de�ned the energy release rate as a function of the
stress, the crack depth, and the modulus of elasticity.
The energy release rate is de�ned as the amount
of energy per unit area of the crack surface. The
Gri�th theory is modi�ed for ductile materials by
Irwin in 1957 [2]. Rice [3-5] considered the plasticity
of the crack tip and extended the method of energy
release rate to nonlinear materials. He derived the
energy release rate as a path-independent integral, then
called the J-integral. Wells [6] proposed the Crack
Tip Opening Displacement, CTOD. In 1981, Shih [7]
showed a unique relationship between the J-integral
and the CTOD. Thereafter, many experiments were
conducted for veri�cation of the fracture mechanics
models. During the last four decades, a great deal
of attention has been paid to the e�ect of cracks
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on rotating machinery [8-17]. The most signi�cant
challenge in this area is modeling of the crack. The
combination of the theory of energy release rate and
the rotor dynamics was a base for the work in classical
fracture mechanics in the context of the energy release
approach [17], which has inherent di�culty. More
information from these references is included in the
next section. Qian and Fatemi [18] reviewed the criteria
for crack growth problems under mixed mode loadings.
The various parameters and criteria proposed in the
literature for prediction of the rate and directions of
crack growth and the limitations and physical basis for
each criterion are reviewed. Several loading conditions
are considered and the e�ects of important variables,
such as load magnitudes, material strength, initial
crack tip condition, mean stress, and crack closure, on
mixed mode crack growth directions and/or rates are
discussed. Lin and Smith proposed that a linear elastic
�nite-element analysis is used to estimate the stress
intensity factor, and then the Paris law is employed to
calculate crack advances at a few points along the crack
front [19]. The results are then used to predict the
shape of crack front via a numerical procedure. Carpin-
teri et al. [20] considered a circular arc circumferential
notch in a round bar, and the stress concentration
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factor for both bending and tension is computed. An
elliptical arc surface 
aw is assumed at the notch root;
for di�erent values of stress concentration factor, the
stress intensity factor is computed and the e�ect of
the stress concentration on the stress intensity factor is
discussed. Li et al. [21] proposed a simple method for
calculating stress intensity factors of transverse cracked
shaft subjected to shear, tension, and bending. The
normalized energy density and the critical load are
calculated. The initial crack growth angles are deter-
mined, and their relation with the mixed mode ratio
is investigated. Fatigue behavior of lateral notched
round bars made of high-strength steel under bending,
torsion, and combined bending torsion was studied by
Branco et al. [22]. The notch e�ect was analyzed
using the equivalent strain energy density concept and
the fatigue life was predicted via the Co�n-Manson
model. They obtained a close correlation between
experimental and predicted fatigue lives. The present
paper is an e�ort to remove the di�culty. A new and
exact theory for the determination of the compliance of
cracked shaft as an explicit function of the crack depth
ratio based on the original concepts of structural and
fracture mechanics and concise mathematical logics is
proposed in this paper. Only the crack compliance
of round bars is included, and other issues of fracture
mechanics and fatigue analysis are excluded.

2. Review of the energy release rate theory

The key concepts of the classical fracture mechanics
are reviewed in this section. Crack compliance, cS , is
computed due to force component, P , by applying the
Castigliano's theorem as follows:

cS =
d2EC
dP 2 ; (1)

where crack energy release, EC , is de�ned as:

EC =
Z �

0
GAdx; (2)

in which G is the energy release rate (energy per
unit area of crack surface) and � = a=h is the crack
depth ratio where a is the crack depth and h is the
structure depth, see Figure 1. The energy release rate
is de�ned in terms of stress intensity factor, K, and
elastic modulus, E, as follows:

GE = K2: (3)

The stress intensity factor depends on the cracked
section geometry and the applied load. For a typical
specimen, the stress intensity factor is de�ned as:

K =
Z a

0
�(x)W (x; a)dx; (4)

Figure 1. Crack surface area.

in which �(x) is the internal stress distribution, W (x; a)
is the weight function [23], and x is position in the
crack surface. A typical weight function used for one-
dimensional mode I crack was proposed by Shen and
Glinka [24] Glinka and Shen [25] as follows:

W (x; a) =
2Fp

2�(a� x)

�
1 +A1(1� x=a)1=2

+A2(1� x=a)1 +A3(1� x=a)3=2
�
; (5)

in which splitting force F and parameters A1, A2, and
A3 are to be computed as in [24]. The di�culty in using
the weight function method is its de�nition and the
accurate computation of the integral in Eq. (4). Stress
�eld, �(x), can be very complex and nonlinear and
the analytical integration is seldom easy in practice.
Also, the standard numerical integration methods are
inaccurate due to the singularity of the weight function
at the crack tip. It has been well known since 1983 [8]
that the local 
exibility of a cracked shaft can be
calculated in terms of the strain energy release rate
function over the crack surface area as in Eq. (1). The
process commences with the calculation of the stress
intensity factor in Eq. (4) followed by calculation of the
energy release rate in Eq. (3) and ends in determination
of the compliance in Eq. (1). With reference to
Papadopoulos [16,17], since the stress intensity factors
for circular cross-sections are not available, the analysis
of the computation of compliance of the cracked shaft
is done by the energy release rate method as follows.
The non-dimensional form for torsional compliance, cT ,
is computed (see Figure 2) as follows:

cT =
Z b

�b
dx
Z a

0

32
�

�
1� � x

R

�2
�
y
R
F 2(x; y)dy; (6)

in which F is de�ned as:

F (x; y) =

s
tan(�y=2hx)

(�y=2hx)

�
�
0:923 + 0:199(1� sin(�y=2hx))4�

cos(�y=2hx)
; (7)
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Figure 2. Geometry of cracked shaft.

and:

b =
p
R2 � (R� a)2; (8)

and:

hx = 2
p
R2 � x2: (9)

The shaft is considered to be the sum of independent
strips and the compliance is obtained by integrating
along the crack tip. In this way, there is di�culty
in using the double integral in Eq. (6), because the
functions present a singularity when x is equal to b.
If the crack depth exceeds the radius of the shaft, the
compliance presents a divergence. Abraham et al. [26]
as well as Dimarogonas [27] suggested us to select
integration length ratio, �, to make the integration
near but not on the boundaries �bm and bm de�ned
as follows:

bm = �b; 0 < � < 1: (10)

A � value in range 0:9 � � � 0:95 should be used in
order to avoid the singularity and estimate a realistic
value of the compliance for deep cracks. The main aim
of this paper is to remedy the problem by proposing a
new theory as follows.

3. Basic principles

The governing equation for the free vibration of the
shaft in torsion is de�ned as follows:

�(2) + �2
�� = 0; (11)

where � is the displacement, the number in round
brackets denotes the order of derivative with respect
to x in the super script, the number without round
brackets denotes the power, and torsion parameter, ��,
is de�ned as follows:

J��2
� = Im!2; (12)

where � is the shear modulus, J is the section polar
moment of inertia, Im is the mass moment of inertia,
and ! is the natural frequency. In fracture mechanics,
the e�ect of crack on shaft is de�ned as:

�� = cT �(1); (13)

in which � denotes the change, and cT 2 [0;1] is
the crack compliance of the shaft. Eq. (13) may be
de�ned [28] in terms of the new crack displacement �c
as follows:

�c = cT �(1)H(x� xi); (14)

where H(x�xi) is the Heaviside unit step function with
center at crack position xi. The derivative of Eq. (13)
with respect to x, the golden derivative, is written as
follows:

�(1)
c = cT �(1)�(x� xi); (15)

where �(x � xi) is the Dirac delta. Eqs. (11) and (15)
are combined to obtain the governing equation for the
free vibration of the cracked shaft as:�

�(1) � cT �(1)�(x� xi)
�(1)

+ �2
�� = 0: (16)

The validity of Eq. (16) is veri�ed via its similarity
with the governing equation for the free vibration of
axial bar [28]. To derive the �nite-element equation for
Eq. (16), the conventional method of weighted residual
is used. The weighted error is written as follows:Z L

0
 
��
�(1) � cT �(1)�(x� xi)

�(1)
+ �2

��
�
dx = 0;

(17)

where  is the weight function. The chain rule of
mathematics is used to write the weak form equation
as follows:Z L

0
 (1)�(1)dx�

Z L

0
 (1)cT �(x� xi)�(1)dx

� �2
�

Z L

0
 dx = 0: (18)

There was no proper chain rule for the second term;
hence, the rule of the others is used. The weight
function is de�ned in terms of nodal value,  �, and
shape function, N�(x), as follows:

 =  �N�(x): (19)

The displacement is de�ned in terms of nodal value,
�� , and shape function, N�(N), as follows:

� = ��N�(x); (20)
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where the repeated indices denote summation and
are dummy. Substitution of Eqs. (19) and (20) into
Eq. (18) led to the �nite-element equation as:�

k�� � kco�� � �2
�m��

�
�� = 0; (21)

where sti�ness matrix, k�� , is de�ned as:

k�� =
Z L

0
N (1)
� N (1)

� dx; (22)

and mass matrix, m�� , is de�ned as:

m�� =
Z L

0
N�N�dx: (23)

Original crack equivalent sti�ness matrix, kco�� , is de-
�ned as:

kco�� =
Z L

0
N (1)
� cT �(x� xi)N (1)

� dx: (24)

Eq. (21) is implemented by a personal software (The
software determines the Eigen values, frequencies, of
Eq. (21).) and is used for the free vibration analysis of
a cracked shaft with a given closed-form solution. The
�nite-element analysis has failed. Close investigation
revealed that the equivalent crack sti�ness in Eq. (24)
and its corresponding term in the weak form of Eq. (18)
are not correct and should be modi�ed. The modi�-
cation is done [29,30] via the �rst sti�ness reduction
function, FR 2 [0; 1], as:

kc�� = FR
Z L

0
N (1)
� cT �(x� xi)N (1)

� dx: (25)

For the de�nition of FR, the shaft is modeled by a one-
degree-of-freedom element (core model), see Figure 3.
For this model, Eq. (20) is applied, but now without
summation convention. The derivative of Eq. (20) with
respect to x is then de�ned as:

�(1) = ��N
(1)
� (x): (26)

Divide both sides of Eq. (26) by �� as:

�(1)

��
= N (1)

� (x): (27)

Figure 3. Single degree of freedom core model.

The left side of Eq. (27) is the force per unit displace-
ment, i.e. the sti�ness, and then sti�ness kS is equal to
the right-side term as:

kS = N (1)
� (x): (28)

By substitution of Eq. (28) into Eq. (25) and making
use of the property of the Dirac delta, the crack
equivalent sti�ness in Eq. (25) is written as:

kc�� = SRkS ; (29)

where the second sti�ness reduction coe�cient, SR 2
[0; 1], is de�ned as:

SR = cTFRkS : (30)

The sti�ness of the cracked shaft should be non-
negative. This is written as:
kS � SRkS � 0; (31)

or:
SR � 1: (32)

In view of Eq. (30), SR should satisfy:

SR = 0 at cT = 0; (33)

and:
SR = 1 at cT =1; (34)

SR with the previous properties is de�ned as:

SR =
cT kS

1 + cT kS
: (35)

FR is de�ned as follows:

FR =
1

1 + cT kS
: (36)

It is interesting to note that the values of these func-
tions are bounded in [0; 1] interval. Reduction of the
range of computation from in�nity for the compliance
to one for the proposed functions is a positive sign for
further investigation. The sti�ness reduction functions
are customized for the unit sti�ness and are called the
state functions. The �rst state function, Fg, is de�ned
as:

Fg =
1

1 + cg
; (37)

and the second state function, Sg, is de�ned as:

Sg =
cg

1 + cg
: (38)

The generic compliance, cg, is de�ned as:

cg =
Sg
Fg
: (39)

The state functions are de�ned for the unit sti�ness;
consequently, they are free functions, i.e. they are
not de�ned for a speci�c structure. This property
recommended the authors to look for a free de�nition
of the state functions. The result is as described in the
next section.
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4. State functions

Experience in the analysis of cracked members led to
the need of the de�nition of the state functions. To that
end, it is assumed that there exists an entity in its �rst
state that should be transited smoothly to its second
state. This transition happens through the change of
state variable, �, which is equal to 0 at the �rst state
and is equal to 1 at the second state, � 2 [0; 1]. Fg
and Sg are proposed for de�ning the smooth transition
between the two states. Based on this de�nition,
the functions should satisfy the following essential end
conditions:

Fg(�) =

(
1 at � = 0
0 at � = 1

(40)

and:

Sg(�) =

(
0 at � = 0
1 at � = 1

(41)

The transition should be isolated from outside of the
state variable domain. This requirement is de�ned by
the fresh (natural) end conditions as:

F 0g(�) =

(
0 at � = 0
0 at � = 1

(42)

and:

S0g(�) =

(
0 at � = 0
0 at � = 1

(43)

where the prime sign denotes the derivative with
respect to �. Fg with the previous end conditions is
de�ned as:

Fg(�) = (1� �)2(1 + 2�); (44)

and Sg is de�ned as follows:

Sg(�) = �2 (1 + 2(1� �)) : (45)

Alternative forms of the state functions are de�ned in
terms of the trigonometric functions as:

2Fg(�) = 1 + cos(��); (46)

and:

2Sg(�) = 1� cos(��): (47)

Polynomial state functions FP and SP as well as
trigonometric state functions FT and ST are shown
in Figure 4. The state functions are quite general,
but they are applied to fracture problems where the
crack depth ratio is selected as the state variable

Figure 4. Polynomial and trigonometric state functions
compared.

Figure 5. Generic crack compliance.

here. Finally, via Eq. (39), the generic compliance is
explicitly de�ned by the ratio of the two state functions.
The generic compliance based on polynomial functions
and trigonometric functions, CP, is shown in Figure 5.

The left side of Eq. (27) is written as:

kS = km�(1)(xa): (48)

In structural mechanics, shaft sti�ness, kS , is de�ned
as:

kS = km=L: (49)

Set Eq. (49) equal to the right side of Eq. (27) to obtain
sti�ness coe�cient, km, the non-dimension sti�ness, in
terms of element length, L, as:

km = LN (1)
� (x�): (50)

For linear shape function km = 1, and hence the
sti�ness for the shaft is de�ned as:

kS = km�(1)(x): (51)

5. Crack compliance

The state functions derived from the previous sections
are innovatively used to derive the crack compliance of
the rotor shaft in this section.
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In fracture mechanics, the crack is de�ned by a
spring with compliance cT which produces a jump in
the displacement as in Eq. (13). The right sides of
Eqs. (13) and (51) are similar, and then crack sti�ness
(the reduction in the structure sti�ness), kC , is de�ned
as:

kC = cm�(1); (52)

in which cm is the crack compliance. Divide Eq. (52)
by Eq. (51) to obtain:

kC
kS

=
cm
km

: (53)

The ratio in Eq. (53) is independent of the geometrical
properties. It is valid for all sti�ness coe�cients.
In view of the de�nition of the generic compliance,
Eq. (53) is written as follows:

cm = kmcg: (54)

Eq. (54) applies to cracked members under any load
component. For the torsional member (shaft), km = 1;
consequently, the crack compliance of the cracked shaft
in torsion, cT , is de�ned as:

cT = cg: (55)

In spite of the conventional fracture mechanics, the
crack compliance of the cracked shaft is an explicit
function of the crack depth ratio. Eq. (55) introduced
the great saving in the analysis of cracked shafts,
because it is a replacement for the energy release rate
method. That is a great achievement which increases
the accuracy and removes the singularity and other
systematic problems. The state functions are de�ned
for gradual and smooth change between the intact
and cracked states without any special assumption of
hindering their accuracy and generality.

Consequently, the compliance in Eq. (55) is ex-
act. The crack compliance of the cracked shaft is
determined independent of the energy release rate.
Eq. (55) shows that the compliance is a geometrical
property of the cracked shaft, and hence independent
of stress, load, energy release or any other external
e�ects. As will be shown in the next section, the energy
release rate and the stress intensity factor are de�ned
as functions of the generic compliance. To see the
signi�cance of the achievement of the work, the reader
is referred to reference [17] for comparison.

6. Parameters of fracture mechanics

Structure energy, ES , of the core model in Figure 3 is
de�ned as:

ES = 0:5km�(1)�2
P ; (56)

Figure 6. A�ected region.

and crack energy release, EC , is de�ned as:

EC = 0:5cm�(1)�2
P ; (57)

where �P is the core displacement. The ratio of
Eqs. (57) and (56) is written as follows:

EC
ES

=
cm
km

; (58)

in view of Eqs. (54) and (58), EC is de�ned as:

EC = EScg: (59)

The structure energy for the a�ected region of the
structure, Figure 6, is de�ned as:

ES =
�2

2E
�Ah; (60)

in which � is the stress. Substitution of Eq. (60) into
the derivative of Eq. (59) with respect to � leads to:

E0C =
�2Ahc0g

2E
: (61)

In classical fracture mechanics, the derivative of EC is
de�ned as:

E0C = GA: (62)

The derivatives in Eqs. (61) and (62) are set equal to
each other to obtain energy release rate, G, for the core
model as follows:

G =
�2hc0g

2E
; (63)

where c0g is explicitly de�ned as follows:

c0g =
6�

(1� �)3(1 + 2�)2 : (64)

Stress intensity factor, K, is de�ned in terms of G as
follows:

K =
p
GE=h: (65)
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Substitution of Eq. (63) into Eq. (65) leads to:

K = �
q
c0g=2; (66)

or:

K = �
p

3�fR; (67)

where:

f�1
R = (1� �)3=2(1 + 2�): (68)

Thanks to the present formulation, for the �rst time
in the history of the fracture mechanics, computation
of the stress intensity factor for the circular shaft
has become possible. As will be veri�ed in the next
section, the proposed compliance and other parameters
are exact and in close agreement with the test results
reported in the literature.

7. Veri�cations

The proposed theory is veri�ed in this section through
four examples. The veri�cation is done for both of
the stress intensity factor and the compliance. In
spite of the classical fracture mechanics in which the
parameters are empirical, the proposed theory is exact.
The proposed stress intensity factor is compared with
the results in the literature in Examples 1 and 2.

Example 1: The stress intensity factor is de�ned by
the ASTM special committee E-399 for bend specimen,
BSTP (see Figure 7) [31] as:

K =
3PL

2Bh3=2 � BSTP;

BSTP =
�1=2

(1 + 2�)(1� �)3=2�
1:99��

�
1��

��
3:15�3:93�+2:7�2

��
; (69)

in which L is length, B is section width, h is the section
depth, and P is the force applied to the center.

Figure 7. Bend specimen.

Solution: The dimensionless part of the proposed
stress intensity factor, PROPK =

q
c0g=2, is compared

with BSTP dimensionless stress intensity factor of
Eq. (69) in Figure 8. The results are in close agreement.
The function de�ned in Eq. (69) has considerable
similarity with the proposed function. That is the
reason for close agreement of the results used as a
veri�cation for the proposed formulation. The strain
energy of the bend specimen is equal to that of the
core model for L = 2h=3.

Example 2: The stress intensity factor is de�ned
by the ASTM special committee E-399 for Compact
Tension Specimen (CTS), in Figure 9 [31], as:

K =
P

Bh1=2 � CSTP

CSTP =
(2 + �)

(1� �)3=2��
0:866+4:64��13:32�2+14:72�3�5:6�4

��
:
(70)

Solution: The dimensionless part of the proposed
stress intensity factor, PROPK =

q
c0g=2, is compared

with CSTP, dimensionless stress intensity factor of
Eq. (70), in Figure 10. Close agreement of the results

Figure 8. Comparison of PROPK with BSTP.

Figure 9. Compact tension specimen.
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Figure 10. Comparison of PROPK with CSTP.

veri�ed the work. The function in Eq. (70) has some
similarities with the proposed formulation. Eq. (70)
does not converge to zero for � = 0. This is the reason
for some di�erences between this and the proposed
function for small �s.

The proposed formulation of the crack compliance
is compared with the compliances in the literatures in
Examples 3 and 4.

Example 3: The compliance of a cracked shaft with
circular section is computed by Papadopoulos [16] as:

PAPA = 1:2�
�

+31:985�6 � 18:846�5 + 4:9219�4

+1:5285�3 + 1:5785�2 � 0:0301�
�
: (71)

Solution: The PAPA compliance computed in
Eq. (71) is compared with the proposed compliance,
PROP = cT , in Figure 11. The data for the compliance
in reference [16] are given in tabular form. The function
in Eq. (71) is obtained by �tting curve on these data by
the present authors. The results are in close agreement
at least for � < 0:5. The agreement was anticipated

Figure 11. Comparison of PROP with PAPT.

Figure 12. Comparison of PROP with JAMEL.

because the result in Eq. (71) was previously criticized
and discussed in several papers [26,27].

Example 4: The proposed compliance is compared
with that of a cracked shaft proposed by Jamel et
al. [32] as:

JAMEL = 5�1:5
�

+0:035��4+0:01�+0:029�2

+0:0086�3+0:0044�4 + 0:0025�6

+0:0017�7 + 0:008�9 � 0:092
�

(72)

where � = (1� a=R).

Solution: The proposed compliance, PROP = cT , is
compared with JAMEL of Eq. (72) in Figure 12. There
were some di�erences in the results which are partly
removed by suitable modi�cation of the compliance
function in Eq. (72) by adding the term 5�1:5 to
the original equation. The di�erence observed is
due to problems in computation and extrapolation by
polynomial function.

8. Conclusions

The following conclusions are obtained from this study:

� Based on the prior experience in analyses of cracked
structures, the state functions and the generic
compliance are introduced, de�ned as the explicit
functions of the crack depth ratio, and veri�ed;

� The proposed state functions are de�ned for the
gradual and smooth changes between the two end
states. The functions are derived based on the end
conditions without any assumption in between. As
a result, the compliance and other functions based
on the state functions are exact;
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� The crack compliance of the shaft in torsion is
explicitly de�ned as the function of the crack depth
ratio. The proposed explicit function is a good
alternative for the classical procedure of the energy
release rate method;

� The singularity problems, integration di�culty, and
other systematic problems available in the classical
energy release rate theory for the circular sections
are not present in the proposed theory;

� For the �rst time in the history of the classical
fracture mechanics, the computation of the stress
intensity factor for circular shaft has become possi-
ble;

� The accuracy and e�ciency of the work are veri�ed
by concise mathematical formulation and compari-
son of the results of the work with the others.
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