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Abstract. In this paper, a �nite volume formulation is proposed for static and in-plane
vibration analysis of curved beams in which the axis extensibility, shear deformation,
and rotary inertia are considered. A curved cell with 3 degrees of freedom is used in
discretization. The unknowns and their derivatives on cell faces are approximated either
by assuming a linear variation of unknowns between the 2 consecutive computational points
or by using the Moving Least Squares technique (MLS). The proposed method is validated
through a series of benchmark comparisons where its capability in accurate predictions
without shear and membrane locking de�ciencies is revealed.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The numerical modeling of the curved beams is a chal-
lenging task due to the coexistence of three di�erent
load transfer mechanisms provided by the bending,
shear, and membrane 
exibilities. The modeling of
such coexistence of load carrying mechanisms may not
be properly resolved, which leads to de�ciencies called
as shear and membrane locking phenomena. These
locking phenomena are seen in the �nite element anal-
ysis using two-node curved element with linear shape
functions. Researchers have proposed various schemes
to alleviate such de�ciencies, including reduced in-
tegration [1], hybrid/mixed concepts [2], assumed
displacement �eld [3], use of algebraic trigonometric
function [4], three-node curved beam element with
trigonometric shape function [5], and use of discrete
strain gap method [6]. Zhang and Di [7] presented
accurate two-node �nite element, which was derived
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from the potential energy principle and the Hellinger-
Reissner functional principle. They introduced the
internal displacement parameters for developing a high-
order displacement-rotation interpolation �eld. Kim
and Kim [8] used the nodeless degrees of freedom tech-
nique for developing an accurate, locking-free hybrid-
mixed C(0) curved beam element.

Unlike the straight beams, the governing equa-
tions of motion of curved beams are dependent not
only on the rotation and radial displacement, but also
on the coupled tangential displacement caused by the
curvature of the structure. Wolf [9] employed straight
elements to analyze the free vibration of elastic circular
arcs ignoring the e�ects of shear deformation, but con-
sidering rotary inertia e�ects. Irie et al. [10] calculated
the natural frequencies of in-plane vibrations of circular
curved beams with uniform cross-section where the
e�ects of rotary inertia and shear deformation were
considered. Eisenberger and Efraim [11] studied the
uniform circular beams using the Timoshenko beam
theory, which included the e�ects of rotary inertia,
shear deformation, and the couplings of the radial and
tangential displacements. Friedman and Kosmatka [12]
utilized the Ritz method based on the trigonometric
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functions and derived the exact static sti�ness matrix
for the uniform circular curved beams. Yang et al. [13]
used a four-node Lagrangian type curved beam element
and a polynomial equation of order 5 describing the
tangential displacement for modeling the uniform and
nonuniform curved beams with variable curvatures.

All of the above-mentioned studies have been
successfully applied to achieve the locking-free elements
with di�erent accuracy levels. Most of the formulations
deal with two-node or three-node beam elements.
However, it should be mentioned that higher accuracy
of some of these elements is at the cost of inherent
complex mathematical formulations.

In recent years, the Finite Volume (FV) tech-
nique, which is a widespread and powerful technique in
computational 
uid dynamics, has received a growing
interest by the researchers for the solid mechanics anal-
ysis. Elastic analysis of three-dimensional solids [14],
stress analysis of elasto-plastic solids [15], bending
analysis of elastic plates [16-18], dynamic of solids [19],
dynamic 
uid-structure interaction [20], elasto-plastic
analysis of plates [21], and active control of adaptive
beams [22] are among the researches that expose the
FV's capability in dealing with the variety of solid
mechanics problems. FV formulations for the bending
analysis of straight beams and plates have shown some
advantages [17,18,21,22]; it is simple and transparent,
it behaves well in the analysis of very thin to thick
beams and plates, and it predicts accurate results
without using any adjustable parameter for the analysis
of thin beams and plates.

Two types of �nite volume technique are common:
cell vertex �nite volume [14,17,19,20] and cell centered
�nite volume [15-18,21-24].

In this paper, the �nite volume method is applied
for the static and dynamic vibration analyses of shear-

exible curved beams. Due to accounting for the
transverse shear e�ects, the present formulation can
be applicable for both thin and thick beams. For the
�nite volume analysis, �rst, the beam is discretized into
a mesh of curved elements known here as cells. For each
cell, a computational point is considered at its center
with three degrees of freedom. The internal forces act-
ing on each cell are calculated and used in the balance
equations of the cell. These equilibrium equations with
equations expressing the boundary conditions provide
a set of simultaneous linear equations, which can be
solved for the unknown calculations. For the calcula-
tion of the internal forces, the interpolation of unknown
variables is needed, for which two approaches are used,
namely, linear interpolation and interpolation based on
the MLS technique. Although applying linear approach
for the interpolation of unknowns in FV is common,
however, using MLS approximation technique in FV
is rather new. The MLS approximation technique
has been known as a powerful technique in computer

graphics [25], however, it now becomes widespread and
is used in mesh-free numerical methods for constructing
shape functions.

To evaluate the proposed formulations, several
numerical tests are performed, where no shear and
no membrane lockings are observed in the analysis of
Timoshenko curved beam models. Furthermore, the
natural frequencies of some reference curved beams are
calculated and the results are compared with the �nite
element and analytical results. Also, it is observed that
using MLS increases the accuracy of the predictions.

This paper is presented in 6 sections. After
Section 1, curved beam formulation based on the
cell centered �nite volume technique is presented in
Section 2. Section 3 deals with the solution procedure
for static and forced vibration analysis of curved beams.
In Section 4, free vibration analysis of curved beams
is presented. Section 5 deals with some benchmark
tests, which are analyzed using the present formulation.
Finally, in Section 6, we draw the conclusions.

2. Formulation

A portion of a circular curved beam is shown in
Figure 1(a), which is discretized to a number of two-
node curved elements along its centerline (Figure 1(b)).
Each element is considered as a control volume or
cell. In the cell centered �nite volume approach, the
computational points where the unknown variables are
associated coincide with the centers of cells. Three
degrees of freedom are assigned to each computational
point, which are radial and tangential displacements

Figure 1. Discretization of a curved beam into the
control volumes: (a) Curvilinear coordinate system, (b)
discretized beam, and (c) degrees of freedom of the
computational points.
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Figure 2. A generic internal cell with the dynamic loads: (a) External loads, and (b) internal loads.

and the cross-sectional rotation shown by w, u, and �,
respectively (Figure 1(c)).

To obtain the �nite volume based formulation,
it is needed to determine the governing static and
dynamic equilibrium equations of each individual cell.
A control volume under a time-dependent radial load is
depicted in Figure 2. The internal forces and moment
acting on both sides of the cell and the inertia forces are
shown in this �gure, where subscripts Ri and L denote
the right and left sides of the cell, respectively. For the
inplane dynamic analysis of the beam, the governing
equations of motion of a typical cell shown above are
as follows:X

Mc(t) =0!MI �
�
MRi(t)�ML(t)� (VR(t)

+ VL(t))�R tan
��
2

�
= m(t)

+ 2qS(t)R2tg
��
2
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��
2

); (1)X
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��
2
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2
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2
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FS(t) =0! FIS �

�
(NRi(t)�NL(t))� cos

��
2

� (VRi(t) + VL(t))� sin
��
2

�
= 2qS(t)R sin

��
2
; (3)

where the terms with subscript I are the inertia-related
terms following the D'Alembert principle; MI is the
inertia moment associated with angular acceleration
around the axis normal to the plane of motion passing
through the cell center; and FIS and FIY are also the
inertia forces corresponding to the linear accelerations
in S and Y directions, respectively. It may be
noted that the damping e�ects are neglected in the
above equilibrium equations. �� is the included angle
corresponding to the cell and R is its initial radius of
curvature.

The internal forces and moments in the above
equilibrium equations, acting on the cell faces, can be
expressed in terms of the deformation-related terms
using the constitutive equations [26]:8<:MVN

9=;
j

=

24EI 0 0
0 KsGA 0
0 0 EA

358<: d�
ds

dw
ds + � + u

R
du
ds � w

R

9=;
j

;
(4)

where j stands for the right and left faces of the cell, EI
is the 
exural rigidity at the corresponding face, G is
the shear modulus, A is the cross-sectional area of the
corresponding face, Ks is the shear correction factor,
and R is the cell radius of curvature. Also, � is the
cross-sectional rotation, and u and w are displacements
along the S and Y axes, respectively. All these
displacement components correspond to the face j.

The displacement components as well as their
gradients associated with both faces of the considered
cell can be approximated in terms of displacement
components measured at the centers of the considered
cell and its neighboring cells. By using the interpola-
tion techniques, which are explained in the following
section, approximating Eq. (4), and substituting the
results into Eqs. (1) to (3), one obtains:

MC

8<: ��
�w
�u

9=;
C

+ kC

8<: �wu
9=;
C

= PC ; (5)
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where PC contains the external loads and matrix
MC is the diagonal mass matrix of the cell. The
acceleration terms, i.e. ��, �w, and �u, correspond to
the considered cell center and the displacement terms
that are gathered in the vectors of �, w, and u are
associated with the centers of the considered cell and its
neighboring cells. Matrix kC contains the coe�cients
relating the unknowns associated with the considered
cell and its neighboring cells. Depending on the utilized
interpolation schemes, these intercell relations can be
established.

Diagonal mass matrix MC contains the whole
mass of the cell, which is lumped at the cell center
as:

MC =

24 m1 0 0
0 m2 0
0 0 m2

35 ; (6)

where m1 is the mass moment of inertia and m2 is the
total mass of the cell. m1 and m2 are obtained using
the following equations:

m1 = �I Si; m2 = �ASi; (7)

in which A, I, Si, and � are cross-sectional area, inertia
moment, cell length, and volumetric mass density of the
cell, respectively.

2.1. Interpolation
To calculate the unknown variables and their deriva-
tives corresponding to the cell faces appeared in
Eq. (4), two methods, namely, linear interpolation and
MLS based interpolation, are used. These methods are
explained in the following parts.

2.1.1. Linear interpolation
A typical internal cell, i, and its neighboring cells are
shown in Figure 3. To calculate the unknowns and
their required derivatives corresponding to the right
face of the cell, i, which is a common face of cell i
and cell i+1, a linear variation of unknown variables is
assumed between the centers of the two neighboring
cells. Thus, the unknown variables and their �rst
derivatives corresponding to that face can be calculated
as [17,21,27]:

Figure 3. A generic internal cell and its neighboring cells.
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�
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�
(8a)

wr = wi + Sif
�
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�
(8b)

ur = ui + Sif
�
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�
; (8c)�
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�
r
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Si+1
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Similar expressions can be written for the left face of
the cell i. For a typical cell, C, substitution of Eqs. (8)
and (9) into constitutive Eq. (4) provides results that
can be used in Eqs. (1) to (3), leading to 3 equations
in the form of Eq. (5).

Eq. (5) represents the relation of unknowns at
the center of a cell with those at the centers of two
neighboring cells. This procedure is applied for all
the internal cells appearing in the model that provides
three equations corresponding to each internal cell.

2.1.2. Higher order interpolation
The MLS method of interpolation is generally con-
sidered to be one of the best schemes to interpolate
random data with a reasonable accuracy because of its
completeness, robustness, and continuity [28]. Accord-
ing to the MLS, the distribution of a function u in 

can be approximated, over a number of scattered local
points fsig (i = 1; 2; :::; n), as:

uh(s) = pT (s)a(s); 8s 2 
; (10)

where pT (s) = [p1(s); p2(s); :::; pm(s)] is a monomial
basis of order m and a(s) is a vector containing
coe�cients, which are functions of the coordinates
[s1; s2; s3], depending on the monomial basis.

In the present study, the basis is chosen as:

pT (s) =
�
1; s; s2; s3� ; m = 4: (11)

The coe�cients included in vector a(s) are determined
by minimizing a weighted discrete, L2, norm de�ned
as:

J(a(s)) =
NX
I=1

WI(s)
�
pT (sI)a(s)� ûI�2

=
�
pa(s)� ûI�TWI(s)

�
pa(s)� ûI� ; (12)
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where sI denotes the position vector of node I, WI(s)
are the weighting functions, and ûI are the nodal
parameters at s = sI . N is the number of nodes in

 for which the weighting functions WI(s) > 0. One
may obtain the shape function as:

uh(s) = 'T (s):û =
NX
I=1

�I(s) ûI ; (13)

where:
'T (s) = pT (s)A�1(s)B(s); (14)

and its partial derivative is:

'I;s=
mX
j=1

pj;s(A�1B)jI +pj(A�1
;s B + A�1B;s); (15)

where matrices A(s) and B(s) are de�ned by:

A(s) = pTWP = B(s)p =
NX
I=1

WI(s)p(sI)pT (sI);
(16)

B(s) =pTW =
�
w1(s)p(s1); w2(s)p(s2); :::::;

wN (s)p(sN )
�
: (17)

The weighting function in Eq. (12) de�nes the range of
in
uence of node I. Normally, it has a compact support.
In the present study, N = 4 is considered and a quartic
spline weighting function is used, which is:

Ŵ (x� xI) � Ŵ ( �d)

=
�

1� 6 �d2 + 8 �d3 � 3 �d4

0
0 � �d � 1

�d > 1

�
; (18)

where:

�d =
dI
dw

=
jx� xI j
dw

; (19)

in which dI is the distance of node I from the sampling
point and dw is the size of the support domain for the
weighting function.

Support domain, 
s, is shown in Figure 4. As can
be seen in Figure 4, for the internal cells of a beam
discretized to the uniform cells, the size of dw is 4 times
the length of the cells, while for the end point cells, the
size of dw is 2 times the length of the cells. Eqs. (13) to
(15) can be used for approximating �, w, and u as well
as their derivatives corresponding to the right and left
faces of each internal cell, which are required in con-
stitutive Eq. (4). Then, the approximated constitutive
Eq. (4) is substituted in equilibrium Eqs. (1) to (3),
which results in the discretized equilibrium equations
in the form of Eq. (5). The above approximation
procedure is applied for all the internal cells, which
provides three equations corresponding to each internal
cell.

Figure 4. Sub-domain for internal cell faces and point
cells.

Figure 5. Point cells at the boundaries.

2.2. Boundary conditions
To introduce the boundary conditions to the solution
procedure, point cells are used at the two ends of the
beam (Figure 5). When displacement components are
known at the end of the beam (displacement boundary
condition), the incorporation of these known values
in the solution procedure can be readily performed.
Depending on the interpolation schemes used, we have
the following equations for imposing the displacement
boundary conditions; in case of using the linear inter-
polations, we have:8<:�wu

9=;
Pb

=

8<:��w�u�
9=; ; (20)

and in case of using the MLS interpolation scheme, we
have:8>>>>>><>>>>>>:

NP
I=1

�I(s) �̂I

NP
I=1

�I(s)ŵI

NP
I=1

�I(s) ûI

9>>>>>>=>>>>>>;
Pb

=

8<:��w�u�
9=; ; (21)

where asterisked values denote the known applied
values and Pb indicates the point cell. When moment,
shear, and axial forces are known at the boundary
(force boundary condition), we have:

MPb = M�; VPb = V �; NPb = N�; (22)

where asterisked values denote the known applied
values. Substituting constitutive equations with the
approximated derivative expressions into the above
equations gives the appropriate equations. For linear
interpolation method, we have:
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�
�EI

�
�Pb � �p

Sb

��
Pb

= M�; (23a)�
KsAG

��(wPb � wP )
Sb

+ �Pb +
uPb
R

��
Pb

= V �;
(23b)�

EA
��(uPb � uP )

Sb
� wPb

R

��
Pb

= N�; (23c)

where the positive and negative signs are used for the
right and left boundaries, respectively. Parameters
with subscript Pb correspond to the point-cell at the
left or right boundary and parameters with subscript
P correspond to the adjacent cell next to the point cell.
When MLS interpolation scheme is used in the �nite
volume formulation, the force boundary conditions
corresponding to a point cell, like the point cell at the
left boundary, can be expressed in the following form:

EIb�1;s�pb + �2;s�2 + �3;s�3 + �4;s�4cPn=M�; (24)

KsAG
�
�1;sWpb + �2;sW2 + �3;sW3 + �4;sW4

+ �1�pb + �2�2 + �3�3 + �4�4

+
1
R

(�1upb + �2u2 + �3u3 + �4u4)
�
Pb

= V �;
(25)

EA
�
�1;supb + �2;su2 + �3;su3 + �4;su4

� 1
R

(�1Wpb + �2W2 + �3W3 + �4W4

�
Pb

= N�;
(26)

where parameters with subscripts 2, 3, and 4 are
associated with the centers of the �rst, second, and
third neighboring cells, respectively. By applying the
boundary conditions for the two point cells, three
equations are obtained.

3. Solution procedure for the discretized
equilibrium equations

Equations associated with all the internal cells and
two point cells provide a system of simultaneous linear
equations, which can be expressed in the matrix from:

M�X + TX = P; (27)

where T contains the coe�cients relating the unknown
variables and vector X contains the unknown variables.
Vector P represents the known values on the bound-
aries as well as the values that depend on the applied
loads. Due to the sparse nature of T, Eq. (27) can be

solved by any appropriate solver technique for studying
the bending behavior of the Timoshenko curved beam.
In case of existence of damping e�ects, the above
equation can be re-expressed as:

M�X + C _X + TX = P; (28)

where damping matrix C can be approximated using
Rayleigh damping [29] as follows:

[C] = � [M ] + � [K] ; (29)

where � and � are the proportional damping constants,
which are found using the following equation:�

�
�

�
=

2�
!m + !n

�
!m!n

1

�
; (30)

where � is the damping ratio, and !m and !n are fre-
quencies of two di�erent modes [29]. After determining
the mass, sti�ness, and damping matrices, it is possible
to state the dynamic equation of the control volume.
The set of equations of the whole cells gives a system
of algebraic equations, which can be solved by applying
an available solver technique. For solving the dynamic
equilibrium in Eq. (27) or Eq. (28), the Newmark
method with a constant acceleration assumption is
used [29].

4. Free vibration

In order to study the harmonic vibrations of the beam,
one can assume:

�(s; t) = �(s) sin!t; (31a)

w(s; t) = w(s) sin!t; (31b)

u(s; t) = u(s) sin!t; (31c)

where ! is the frequency of the natural vibration
mode of the curved beam. By substituting the above
relations into Eq. (28), one can obtain the following
eigenvalue equation:

KA = �MA ; (32)

where � is the eigenvalue and �A contains the natural
modes of the vibrating beam.

5. Numerical results

To demonstrate the accuracy of the present formu-
lations, some benchmark problems are studied and
the results obtained are compared with the reference
results reported in literature. At �rst, the performance
of the present formulation is evaluated for the analysis
of some straight beam tests. For this purpose, the
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present formulation, which corresponds to the curved
beams, is adjusted by using a large value for the
radius of curvature, R. It is aimed to demonstrate the
capability of the present formulation for modeling the
straight beams under static loads as well as to highlight
the shear locking-free feature of the present method.

5.1. Uniformly loaded clamped-clamped
straight beam

As a �rst evaluation test, the present formulation is
used for the modeling of a uniformly loaded straight
beam with the clamped-clamped boundaries. The
material properties and geometry of the beam are
L = 3 m, h = 0:3 m (depth), b = 0:01 m (width), q = 1
N/m, E = 2:1E11 N/m2, � = 0:3, and Ks = 5=6. The
analytical prediction of the displacement at the middle
of the beam span is calculated using the following
equation given in Ref. [30]:

w
�
L
2

�
=

qL4

384EI

�
1 + :96(1 + �)

h2

L2

�
: (33)

The beam is discretized by using an equally sized
two-node element and, then, analyzed by the present
method. The error of the predictions of the proposed
approach is obtained as follows:

Error =
�wfv
w
� 1
�� 100; (34)

where wfv is the predicted displacement and w is the
value calculated using Eq. (33). For modeling the
straight geometry of the beam, a large value is used for
the parameter R in the discretized equation (Eq. (27)).

Figure 6 illustrates how the errors diminish as the
number of elements is increased by mesh re�nement.
The �gure also shows that FVM with linear and MLS
interpolation schemes predicts results that monoton-
ically converge to the analytical solution. However,
it may be noted that the results of FVM with MLS
interpolation scheme converge to the corresponding
analytical results faster than the FVM with linear
interpolation technique.

Figure 6. Error in the prediction of mid-span
displacement of a uniformly loaded clamped-clamped
straight beam (L=h = 10).

Figure 7. The e�ect of aspect ratio, L=h, on the
prediction of mid-span displacement of a uniformly loaded
clamped-clamped straight beam.

Also, in Figure 6, the results of the present
method are compared with the results obtained by
using ANSYS [31] software, in which the equally sized
element type of Beam 2D-elastic3 is used for beam
discretization. This element type is a two-node element
with six degrees of freedom, which is able to model
the shear e�ects. In order to have shear locking-free
behavior, the reduced integration technique [32,33] is
used in the element formulation. As Figure 6 shows,
the predictions of the present method with either linear
or MLS interpolation schemes are more close to the
analytical value of Eq. (33) than the ANSYS predic-
tions. To investigate the e�ect of aspect ratio, L=h,
on the performance of the formulation, several aspect
ratios, namely, 5, 10, 100, and 1000, are considered.
The error in the prediction of mid-span transverse
displacement is calculated corresponding to each aspect
ratio. As Figure 7 demonstrates, the formulation is
able to predict accurate transverse displacements of
very thin to thick uniformly loaded clamped-clamped
beams.

It is important to note that the shear locking
phenomenon is not observed in the analysis of thin
Timoshenko beam models. It is well known that to
eliminate the shear locking de�ciency in the �nite
element analysis of Timoshenko beams, researchers
have proposed techniques like reduced integration [32],
selective integration [33], and some �nite elements with
rather complicated formulations [3,12,34].

5.2. Uniformly loaded cantilevered straight
beam

The material properties, geometry, and load intensity
of the beam are the same as those of the above test
beam. FVMs with both linear interpolation and MLS
interpolation are used for the analysis of the beam.
Again, as we did in the above test, ANSYS with equally
sized elements of Beam 2D-elastic3 is used for the
analysis of the beam. The error in the predictions of
the tip displacement is calculated relative to the values
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Figure 8. Error in the prediction of tip displacement of a
uniformly loaded cantilevered straight beam (L=h = 10).

given by [30]:

wtip =
qL4

8EI

�
1 + 0:8(1 + �)

h2

L2

�
: (35)

Figure 8 illustrates the capability of the present formu-
lation and ANSYS in di�erent mesh densities, in which
FVM shows remarkable capability. Also, to �nd out the
performance of the FVM in dealing with the uniformly
loaded cantilevered beams of di�erent thicknesses,
several aspect ratios, namely, 5, 10, 100, and 1000,
representing thick to very thin beams, respectively, are
considered. The error in the prediction of tip transverse
displacement is calculated corresponding to each aspect
ratio. As shown in Figure 9, the formulation is
able to predict accurate tip transverse displacement of
cantilevered beams in the range of thick to very thin
beams.

5.3. Cantilevered straight beam with tip
transverse load

In this test, a cantilevered beam with a tip transverse
load is concerned. This beam has been used in [35]
for evaluating the capability of the proposed �nite
elements in dealing with the shear locking de�ciency.

Figure 9. Error in the prediction of tip displacement of a
uniformly loaded cantilevered straight beam with di�erent
values of L=h.

The material properties and geometry of the beam
are L = 4, h = 0:554256 (depth), b = 1 (width),
E = 2:6 N/m2, � = 0:3, and Ks = 0:85. The exact
tip transverse displacement, wT , is calculated using the
following relation taken from [36]:

wT =
PL3

3EI

�
1 +

3EI
KGAL2

�
: (36)

The tip displacement of the considered beam is ob-
tained by using the �nite volume method with both
linear and MLS interpolation techniques, which are
shown in Table 1. As mentioned above, this beam has
already been studied in [35] by using the Timoshenko �-
nite element and a proposed higher order �nite element
formulation. In that work, Timoshenko �nite elements
have been formulated using both full integration and
reduced integration; however, full integration has been
used in the formulation of the proposed higher order
�nite element. In Table 1, the results of FVM and
those from [35] are given in which (wTF ), (wTR),
and (wHOT ) correspond to the results of Timoshenko
�nite element with full integration, Timoshenko �nite

Table 1. Comparison of displacements calculated by di�erent approaches.

No of
elements

WTF (FEM)
[35]

WTR (FEM)
[35]

WHOT (FEM)
[35]

FVM
(linear)

FVM
(MLS)

2 111.6 550.6 553.3 550.6 |
3 202.9 570.7 573.1 570.7 |
4 284.2 577.7 579.9 577.7 586.8
5 349.0 581.0 582.9 581.0 586.8
6 398.4 582.8 584.4 582.8 586.8
7 435.6 584.2 585.3 583.8 586.8
8 463.5 584.6 585.8 584.5 586.8
9 485.0 585.2 586.1 585.0 586.8

Exact 586.8
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element with reduced integration, and higher order
�nite element with full integration, respectively. As
can be seen, FVM with MLS interpolation predicts
the analytical value by using only four elements. Also,
FVM with linear interpolation produces results which
monotonically converge to the analytical value. While
the FVM with either interpolation is able to analyze
this test beam, the results shown in the second col-
umn of Table 1 indicate that the Timoshenko �nite
element formulation fails in accurate predictions due
to shear locking phenomenon. To remove the shear
locking defect in the Timoshenko �nite element for-
mulation, the reduced integration technique has been
used. By using this technique, Timoshenko �nite
element predictions converge to the analytical results,
as shown in the third column of Table 1. Also,
the obtained results indicate that FVM with MLS
interpolation converges faster than the higher order
�nite element formulation proposed by Heyliyer and
Reddy [35].

5.4. A quarter circular cantilever ring
As the �rst evaluation of the present formulation for
the curved beam analysis, a quarter circular arc �xed
at one end and free at the other end is studied. As
shown in Figure 10, the arc is subjected to a radial
point force, Q = 1 kN at the free end, h = 1 m,

Figure 10. A quarter circular beam �xed at one end.

E = 5:6E6 kN/m2, and G = 4E6 (kN/m2). Two
values of 10 and 50 m are assumed for R, which
give the slenderness ratios, R=h, equal to 10 and 50,
respectively. The ring is divided into the equal sized
curved elements or cells and is analyzed by the present
method. Also, the ring is modeled by ANSYS using
two-node element of Beam 2D-elastic3, which is a
straight element with six degrees of freedom. The dis-
placement components at the free end are determined
using both FV method and ANSYS, and then, the error
of the predictions is calculated in comparison with the
analytical values [3,7,34] calculated using Castigliano's
energy theorem:

w =
�QR3

4EI
+

�QR
4GAKs

+
�QR
4EA

; (37)

u = � QR
2EA

+
QR3

2EI
� QR

2GAKs
; (38)

� =
QR2

EI
: (39)

Figures 11 to 13 depict the errors in the predictions
for both arcs of R = 10 m and R = 50 m. It can be
seen that both FV and ANSYS results monotically
converge to the analytical values by increasing the
element numbers. However, the FV predictions are
more accurate than the ANSYS predictions when the
same number of elements are used. It can be observed
that even FV with linear interpolation predicts with
more accuracy than the ANSYS.

5.5. A circular arc under di�erent static loads
This test concerns an arc with included angle of 120
degrees with di�erent boundary conditions under the
di�erent loading scenarios, in total of 7 cases. The
arc's properties are R = 4 m, opening angle � = 2�=3
(length l = 8�=3), rectangular cross section with depth
h = 0:6 and width b = 0:4 m, Young's modulus
E = 30 GPa, and Poisson's ratio � = 0:17. These
arcs have already been used in the evaluation of the
formulations proposed by Litewka and Rakowski [4].
The arc is analyzed by the present method as well as

Figure 11. Error in the prediction of end point redial displacement.
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Figure 12. Error in the prediction of end point tangential displacement.

Figure 13. Error in the prediction of end point sectional rotation.

by ANSYS using straight element Beam 2D-elastic3.
The displacement components corresponding to the
midpoint C are calculated and normalized as �wc = wc

l ,
�uc = uc

l , and ��c = �c
� , where l is the arc length and �

is the arc opening angle.
The calculated results and the results of [4] are

presented in Table 2.
It is observed that in all cases, except for the last

one, the results of the FV with either linear or MLS
interpolation techniques are found to be in good agree-
ment with those reported in [4] and the predictions of
ANSYS. In case 7, the results of FV and ANSYS are in
good agreement, but far from the predictions reported
in [4]. In that reference, the formulation of a two-
node curved element has been developed by using the
analytical shape functions of the trigonometric form.
The element has been demonstrated to be shear and
membrane locking-free; however, it does not perform
properly in situations like case 7.

5.6. Free vibration of a curved beam
(pinned-pinned)

A uniform circular beam with the pinned-pinned
boundary condition is considered as another test to
demonstrate the capability of the present formulation.
The beam has already been studied in [13] with the
following material and geometrical properties: R=r =
15, l=r = 23:56, ' = 90, R = 0:75 m, A = 4 m2,
I = 0:01 m4, E = 70 GPa, ks = 0:85, ksG=E = 0:3,

and � = 2777 kg/m3, where R, r =
q

I
A , l = R', and


 are the radius of curvature, the radius of gyration,
length of the curved beam, and the material density,
respectively.

The non-dimensional natural frequencies (
 =

!l2
q

�A
EI ) of the �rst 10 modes are calculated and

presented in Table 3. It is observed that very close
agreement exists between the present results and those
published in [11,13,36]. The associated modal shapes
are also presented in Figure 14, where an excellent
agreement is observed with the results given in [11].
It should be noted that in �gures depicting the
modal shapes, the horizontal axis represents the non-
dimensional length parameter, s=l, in which s is the
tangential curvilinear coordinate and l is the total
length of the beam.

5.7. Free vibration of a curved beam (clamped-
clamped)

In this test, a uniform circular curved beam with the
clamped boundaries is studied. The geometrical and
material properties are the same as those used in [13]:
R=r = 15:915, l=r = 25, ' = 90, R = 0:6366 m, A = 1
m2, I = 0:0016 m4, E = 70 GPa, ks = 0:85, ksG=E =
0:3, � = 2777 kg/m3.

The non-dimensional natural frequencies (
 =
!l2
q

�A
EI ) of the �rst 10 modes are calculated and

presented in Table 4. The close agreement between the
results of the present study and the reference results
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Table 2. Normalized displacements at the center of a circular beam under di�erent conditions.

Case
no.

Arc Normalized
displacement

Litewka and
Rakowski [4]

ANSYS FVM
(linear)

FVM
(MLS)

1 �wC(10�6) 0.2488 0.2454 0.2485 0.2485
�uC(10�6) 0.0000 0.0000 0.0000 0.0000
��C(10�6) 0.0000 0.0000 0.0000 0.0000

2 �wC(10�6) 0.0000 0.0000 0.0000 0.0000
�uC(10�6) 0.1252 0.1202 0.1251 0.1251
��C(10�6) 0.3796 0.374 0.3795 0.3794

3 �wC(10�6) 0.0000 0.0000 0.0000 0.0000
�uC(10�6) 0.0949 0.0936 0.0948 0.0949
��C(10�6) 1.0824 1.0695 1.0819 1.0749

4 �wC(10�6) 0.3047 0.2715 0.2806 0.2807
�uC(10�6) 0.0000 0.0000 0.0000 0.0000
��C(10�6) 0.0000 0.0000 0.0000 0.0000

5 �wC(10�6) 0.0000 0.0000 0.0000 0.0000
�uC(10�6) 0.2884 0.2833 0.2881 0.2883
��C(10�6) 0.8064 0.8021 0.8064 0.8060

6 �wC(10�6) 0.0000 0.0000 0.0000 0.0000
�uC(10�6) 0.2016 0.2014 0.2015 0. 2016
��C(10�6) 1.3613 1.3537 1.3612 1.3540

7 �wC(10�6) 0.118 0.475 0.4722 0.4721
�uC(10�6) 0.0000 0.0000 0.0000 0.0000
��C(10�6) 0.0000 0.0000 0.0000 0.0000

Table 3. Non-dimensional frequencies, 
, of a uniform circular curved beam with the pinned-pinned boundary condition.

Mode FVM
(linear)

FVM
(MLS)

Eisenberger and
Efraim [11]

Yanga
et al. [13]

Veletsos and
Austin [37]

1 29.261 29.284 29.28 29.306 29.61
2 33.297 33.301 33.305 33.243 33.01
3 67.101 66.120 67.124 67.123 67.24
4 79.957 79.958 79.971 79.95 79.6
5 107.825 107.838 107.851 107.844 107.7
6 143.619 143.596 143.618 143.679 144.5
7 156.636 156.640 156.666 156.629 155.2
8 190.439 190.447 190.477 190.596 191.3
9 225.320 225.322 225.361 225.349 223.7
10 234.473 234.483 234.524 234.809 235.3

can be observed. The associated modal shapes are also
presented in Figure 15, where an excellent agreement
is observed with the results given by Eisenberger and
Efraim [11].

For analyzing the above last two tests, Eisen-

berger and Efraim [11] have derived the �nite element
formulation using the shape functions, which are the
exact solutions of the di�erential equations of motion.
Also, Yang et al. [13] have applied an element of
4 nodes with 12 degrees of freedom. However, in
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Figure 14. Non-dimensional frequencies and vibration mode of a circular beam with uniform cross-section and
pinned-pinned beam.

the proposed formulation, we use a curved cell of
two points with three degrees of freedom in which
even assuming a linear variation of unknowns be-
tween the computational points can provide accurate
results.

5.8. Forced vibration of a curved beam
(clamped-clamped)

In this example, the forced vibration of a uniform circu-
lar curved beam with the clamped-clamped boundary
is studied (Figure 16). The geometrical and material
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Figure 15. Non-dimensional frequencies and vibration mode of a circular beam with uniform cross-section and
clamped-clamped boundary conditions.
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Table 4. Non-dimensional frequencies 
 of a uniform circular curved beam with the clamped-clamped boundary condition.

Mode FVM
(Linear)

FVM
(MLS)

Eisenberger and
Efraim [11]

Yanga
et al. [13]

Veletsos and
Austin [37]

1 37.705 36.704 36.703 36.65 36.81
2 42.268 42.267 42.264 42.289 42.44
3 82.239 82.237 82.233 82.228 82.5
4 84.494 84.494 84.491 84.471 84.3
5 122.311 122.310 122.305 122.298 122.5
6 154.949 154.949 154.945 154.998 155.1
7 168.208 168.208 168.203 168.174 167.7
8 204.479 204.478 204.472 204.599 {
9 238.998 238.997 238.992 238.973 {
10 248.019 248.016 249.011 249.320 249.6

Figure 16. Curved beam with the clamped-clamped
boundary under dynamic load.

properties are R = 1 m, ' = 180, b = :05 m, h = 0:2 m,
E = 200 GPa, ks = 0:85, � = 0:3, and � = 7850 kg/m3.

A uniformly distributed dynamic radial force of
qY = sin�t is applied to this curved beam, and
its radial vibration is studied. This beam is also
analyzed by using ABAQUS [38] analysis tool, where
the element B21 is applied for the discretization. In
the B21 element formulation, the reduced integration
technique is used for removing the locking de�ciency.
For the dynamic analysis of the beam by the present
formulation, the FVM with linear interpolation is used.
The Newmark approach [29] is utilized for solving the
dynamic equilibrium equation in which the parameters

 = 0:5 and � = 0:25 are used. In Figure 17, the
time history of radial displacement at the middle-span

Figure 17. Comparison of the time histories of radial
displacement of middle-span of the arc between FVM and
FEM methods.

Figure 18. Curved beam with the pinned-pinned
boundary under the concentrated dynamic load.

of the beam is shown and compared with the results
predicted by ABAQUS. The close predictions of both
approaches are evident. This comparison demonstrates
the capability of the proposed formulation for this
dynamic analysis.

5.9. Forced vibration curved beam
(pinned-pinned)

The uniform circular curved beam with the pinned-
pinned boundary condition is considered as the last
test problem (Figure 18). The beam has the following
material and geometrical properties: R = 2 m, ' =
180, b = 0:05 m, h = 0:2 m, E = 200 GPa, ks = 0:85,
� = 0:3, and � = 7850 kg/m3.

A concentrated dynamic force of qY = sin�t
is applied at the middle-span of the beam. Similar
to the previous example, FVM with linear interpo-
lation and the ABAQUS software are used for the
analysis of the beam. The time histories of the
radial displacement of the middle-span of the beam are
obtained using both methods and compared with each
other. Figure 19 shows the close predictions of both
approaches.

6. Conclusions

In this work, the �nite volume method presented in [23]
and [27] has been extended for the modeling of the
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Figure 19. Comparison of the time histories of the radial
displacement of middle-span of the arc between FVM and
FEM methods.

curved beams. The governing equations for the static
and dynamic analyses have been simply obtained by
studying the equilibrium of each individual cell, where
the e�ects of the extensibility of the curved axis,
the shear deformation, and the rotary inertia have
been considered. For interpolation of unknowns, the
linear approximation and MLS approximation schemes
have been used. To evaluate the proposed approach,
several benchmark tests has been studied. It has
been demonstrated that the proposed formulation was
able to model both curved beams and straight beams,
where a large value for the radius of curvature is
used for the straight beam models. In most test
problems, MLS scheme has presented more accurate
results than the linear interpolation scheme. The
convergence of the solutions to the exact results in
the static test cases showed that the proposed simple
formulation is free of shear and membrane locking
de�ciencies. Furthermore, the pro-posed approach has
been applied to calculate the natural frequencies and
analyze forced vibration of several curved beams, which
had already been studied in the literature. Also, the
comparison between the obtained results and the ref-
erence results indicates the accuracy and e�ectiveness
of the �nite volume method for the vibration analysis
of the curved beams. The attractive capabilities of
the proposed approach in dealing with such rather
challenging problem of curved beam models, even by
using only 3 degrees of freedom for each cell (element),
is promising.
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