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Abstract. In this paper, a new analytical technique, i.e. a combination of the Energy
Balance Method (EBM) with Harmonic Balance Method (HBM), is presented to obtain
higher-order approximations of a conservative oscillator with strong odd nonlinearity. To
show the accuracy of the present method, one nonlinear oscillator, named as cubic-quintic
Du�ng oscillator, is investigated. The results obtained in this paper are compared with
those determined by other methods and exact solutions. The results give high accuracy and
also provide better results than other existing results for both small and large amplitudes
of oscillation. The main advantage of the present paper is its simplicity, which contains a
few harmonic terms with lower order terms, and these terms make the solution converge
quickly. The present technique can be used for other nonlinear oscillators.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The study of nonlinear oscillations is a necessary issue
in engineering, physical science, applied mathemat-
ics, mechanical structures, nonlinear circuits, chemi-
cal oscillation, and many real-world applications [1-
30]. Nonlinear oscillations are modeled by nonlin-
ear di�erential equations. Many analytical techniques
have been developed to solve these nonlinear dif-
ferential equations. One of the most widely used
techniques is perturbation method [1-4] whereby the
nonlinearities are small. However, these techniques
have many shortcomings and cannot be used due
to strongly nonlinear systems. To overcome these
shortcomings, many analytical techniques, such as vari-
ational iterative method [5,6], homotopy perturbation
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method [7-9], iterative method [10-12], harmonic bal-
ance method [13-17], variational approach [18,19], and
coupled method [20], are used to solve strongly nonlin-
ear equations. The energy balance method [21,22] is
also another technique to obtain a �rst-order approx-
imation of strongly nonlinear oscillators. Usually, a
set of algebraic equations with complex nonlinearities
appears when EBM is formulated for determining
higher-order approximations. On the contrary, some
authors [23,24] have extended the energy balance
method to obtain higher-order approximations, but the
algebraic equations are not solved analytically.

The Du�ng equation is a well-known nonlinear
di�erential equation [20,25,26] which is related to many
practical engineering systems, such as the classical
nonlinear spring system with odd nonlinear restoring
characteristics [3], and has become applicable more re-
cently in di�erent physical phenomena [25]. There have
been many variations of Du�ng equation, for instance,
the Du�ng-harmonic equation [11,12] and the cubic-
quintic Du�ng equation. The unperturbed cubic-
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quintic Du�ng equation can be found in the modeling
of the free vibration of a restrained uniform beam
carrying an intermediate lumped mass and undergoing
large amplitudes of oscillation in the unimodel Du�ng-
type temporal problem [26], the nonlinear dynamics of
a slender elastica, the generalized Pochhammer-Chree
(PC) equation, and the compound Korteweg-de Vries
(KdV) equation [26]. A di�erential equation with �fth-
power nonlinearity is very di�cult to handle due to the
presence of strong nonlinearity.

Due to the presence of �fth-power nonlinearity,
the accuracy of approximate analytical methods be-
comes extremely demanding [20]. Recently, several au-
thors [23,24] have extended the energy balance method
to determine higher-order approximations. The limita-
tion of the articles [23,24] is that they have not ana-
lytically solved algebraic equations; instead, they have
only solved these algebraic equations numerically. On
the other hand, Khan et al. [20] used coupled method of
He's homotopy perturbation method [7] and variational
formulation [18] to obtain higher-order approximations
for nonlinear cubic-quintic Du�ng equations. How-
ever, the �rst, second, even third-order approximations
bring about unfavorable results, as compared with the
exact solution. Furthermore, Guo et al. [27] obtained
the analytical periodic solutions of the oscillator up to
third-order approximation.

In this paper, a new analytical technique, combin-
ing the energy balance method [23] with harmonic bal-
ance method [17], has been presented to obtain higher-
order approximations for nonlinear cubic-quintic Du�-
ing equations. Generally, the second-order approxi-
mate frequency and the corresponding periodic solution
have been determined containing a few harmonic terms
with lower order terms. The algebraic equations are
analytically solved in this paper easily. The second-
order approximate frequencies (obtained in this paper)
show high accuracy in both small and large amplitudes
of oscillation and also better than those obtained in [20]
(calculated by the second-, third-, and fourth-order
approximate frequencies). Moreover, compared to the
other second-order approximation, the present method
gives better results obtained by Guo et al. [27].

A cubic-quintic Du�ng oscillator of a conservative
autonomous system can be described by the follow-
ing di�erential equation with cubic-quintic nonlineari-
ties [20,26,27]:

�u+ �u+ � u3 +  u5 = 0; (1)

with initial conditions:

u(0) = A; _u(0) = 0: (2)

It is a simple harmonic oscillator if � 6= 0; � =  = 0;
it is a cubic Du�ng oscillator if � 6= 0;  = 0; further,
it is a quintic oscillator if  6= 0; � = 0. Otherwise, it

is a cubic-quintic oscillator if � and  do not vanish
(see [20,26,27]).

It should be noted that, in the case of 0 < A < 1,
system Eq. (1) will present small oscillations. On the
other hand, in the case of A � 1, system Eq. (1) will
present large oscillations (see [20,26,27]).

2. The basic idea of He's energy balance
method

According to the energy balance method [21,22,28,29],
a variational principle for the oscillation is established,
and then the corresponding Hamiltonian is considered
from which the angular frequency can be easily founded
by several residual methods.

Let us consider a general form of a nonlin-
ear oscillator with initial conditions in the following
form [28,29]:

�u+ f(u) = 0; u(0) = A; _u(0) = 0: (3)

Its variational principle can be written as follows:

J(u) =

T=4Z
0

�
�1

2
_u2 + F (u)

�
dt; (4)

where T = 2�
! is a period of nonlinear oscillation and

F (u) =
R
f(u)du.

The Hamiltonian can be written as follows:

H(t) = �1
2

_u2 + F (u) = F (A): (5)

Eq. (5) gives the following residual:

R(t) = �1
2

_u2 + F (u)� F (A) = 0: (6)

We consider the �rst-order approximate solution in the
following form:

u(t) = A cos!t; (7)

Substituting Eq. (7) into Eq. (6) yields the following
residual:

R(t) = �1
2
A2!2sin2!t+ F (A cos!t)� F (A) = 0:

(8)

Finally, collocation at !t = �
4 gives [28,29]:

! =
2
A

vuutF (A)� F
 p

2
2
A

!
: (9)
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3. Application of the coupled energy and
harmonic balance methods

The variational principle of Eq. (1) can be written as
follows:

J(u) =

T=4Z
0

�
�1

2
_u2 + �

u2

2
+ �

u4

4
+ 

u6

6

�
dt: (10)

Its Hamiltonian, therefore, can be written in the
following form:

H(u) =
_u2

2
+
�u2

2
+
�u4

4
+
u6

6
=
�A2

2

+
�A4

4
+
A6

6
: (11)

In order to obtain more accuracy, consider the second-
order approximate solution of Eq. (1) in the following
form [17]:

u(t) = A((1� u3) cos!t+ u cos 3!t): (12)

Eq. (12) must satisfy initial conditions given in Eq. (2).
In order to calculate the residual, by substituting

Eq. (12) into Eq. (11), we obtain:

R(t) =
1
2

(�!A((1� u3) sin!t+ 3 sin 3!t))2

+
�
2

(A((1� u3)) cos!t+ u cos 3!t))2

+
�
4

(A((1� u3)) cos!t+ u cos 3!t))4

+

6

(A((1� u3)) cos!t+ u cos 3!t))6

� �A2

2
� �A4

4
� A6

6
: (13)

Now, through dividing Eq. (13) by factor A2sec!t and
then equating the coe�cients of the terms cos' and
cos 3' from the integral:

T=4Z
0

R(t) cos(2n� 1)!t
A2 sec!t

dt; n = 1; 2: (14)

Respective zeros are obtained as follows:

!2(1 + 4u3)� �� 4u3�� 3A2�=4� 5A2u3�=2

� 29A4=48� 7A4u3=4 + � � � = 0; (15)

!2(�1 + 2u3) + �+ 2u3�+ 5A2�=8 +A2u3�=2

+ 7A4=16 + � � � = 0: (16)

It is noted that dividing factor A2 cos!t makes the
solution converge rapidly and also gives signi�cantly
better results than other existing methods do.

For the �rst approximation, by setting u3 = 0 in
Eq. (15), the �rst approximate frequency is obtained
as follows:

48�+ 36A2� + 29A4 � 48!2 = 0: (17)

Solving Eq. (17) for !, the following is obtained:

! = !1(A) =
r
�+

3A2�
4

+
29A4

48
: (18)

Eliminating ! from these two Eqs. (15) and (16), the
equation for u3 is obtained as follows:

1� 3(32�+ 20A2� + 15A4)
A2(3� + 4A2)

u3 + 24u2
3 � 96u3

3

+ � � � = 0: (19)

Eq. (19) can be written as follows:

u3 = �(1 + 24u2
3 � 96u3

3 + � � � ); (20)

where:

� =
A2(3� + 4A2)

3(32�+ 20A2� + 15A4)
:

Now, u3 can be obtained in powers of � of the form
u3 = l1�+ l2�2 + l3�3 + ::: (see [17] for details) where
unknown coe�cients l1; l2; l3; ::: are to be determined.
Therefore, we have obtained the solution of Eq. (20) as
follows:

u3 = �+ 24�3 � 96�4 + � � � : (21)

It is noted that the series of u3 converge to all values
of A.

By solving Eq. (15) for !, the second approximate
frequency is obtained as follows:

! = !2(A) =s
�+ 4u3�+ 3A2�

4 + 5A2u3�
2 + 29A4

48 + 7A4u3
4

1 + u3
;

(22)

where u3 is given in Eq. (21).
Therefore, the second-order approximation be-

comes:

u(t) = A((1� u3)) cos!t+ u3 cos 3!t); (23)

where u3 and ! are given in Eqs. (21) and (22),
respectively.
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4. Results and discussion

A new analytical technique coupled by the energy
and harmonic balance methods has been presented to
determine the approximate frequency and the corre-
sponding solution to cubic-quintic Du�ng oscillator.
The method is valid for both small (0 < A < 1) and
large (A � 1) amplitudes of oscillation. Recently, Khan
et al. [20,27] have investigated the same oscillator by
coupling homotopy with variational approaches and
obtained the �rst-, second-, third-, and forth-order
approximate frequencies. However, the determination
of the third- and fourth-order approximations is a
laborious process. In this situation, the determination
of (�rst-order (given in Eq. (18) and second-order
(given in Eq. (22)) approximations obtained in this
paper is an easy and straightforward process.

To verify the e�ciency and accuracy of the
present method for cubic-quintic Du�ng oscillator, in
comparison with other results and the exact result,
three cases are given: � = � =  = 1, � = 5, � = 3,
 = 1 and � = 1, � = 10,  = 100 (see [20]). The
relative errors of frequencies are de�ned as follows [26]:

Error (%) =
j!i � !Exactj

!Exact
; i = 1; 2; 3; 4; � � � : (24)

The relative errors of the �rst- and second-order
analytical approximations obtained in this paper are
compared with the exact solution, providing results
less than 4:077% and 0:102%, respectively, in the case
of A � 1 (i.e., large amplitudes). In Tables 1-3,
the relative errors for the approximate frequencies of
di�erent parameters are presented.

On the other hand, the relative errors of the �rst-;
second-, third-, and fourth-order analytical approxima-
tions obtained by [20] are compared with the exact
solution, providing results less than 25:149%, 15:519%,
7:050%, and 0:154%, respectively.

Furthermore, the relative errors of the second-
order analytical approximations obtained by [27] are
compared with the exact solution which are less than
1:078%.

Based on these three tables, we also see that the
present method gives better results than those obtained
in [20,27] for small values of amplitude, 0 < A < 1.
The convergence rate of the present method is faster

Table 1. Comparison of the present frequency with existing results for cubic-quintic Du�ng oscillator when
� = � =  = 1.

Khan et al. [20] Guo et al. [27] Present study

A !e
!1

Er (%)�
!2

Er (%)
!3

Er (%)
!4

Er (%)
!2

Er (%)
!1

Er (%)
!2

Er (%)
0.1 1.0037770 1.0025125 1.0028276 1.0031009 1.0034276 1.0037730 1.0037732 1.0037722

0.126 0.095 0.067 0.035 0.000 0.000 0.000

0.5 1.1065487 1.0698277 1.0792589 1.0877056 1.0974873 1.1065755 1.1069148 1.1062745
3.319 2.467 1.703 0.819 0.003 0.033 0.025

1 1.5235914 1.3462912 1.3984287 1.4456576 1.4951413 1.5250736 1.5343294 1.5224068
11.637 8.215 5.115 1.867 0.097 0.705 0.078

5 19.1815720 14.4503460 16.2514248 17.8276787 19.1806374 19.3735477 19.9337444 19.1676301
24.666 15.276 7.058 0.005 1.001 3.921 0.073

10 75.1776276 56.3560104 63.5547600 69.8760834 75.2651825 75.9737510 78.2155142 75.1074146
25.036 15.461 7.052 0.115 1.060 4.041 0.093

20 299.22427 224.05580 252.83170 278.12708 299.65771 302.43540 311.39632 298.92664
25.121 15.504 7.051 0.145 1.073 4.068 0.099

50 1867.5796 1397.9900 1577.7996 1735.9103 1870.4300 1887.6949 1943.6866 1865.6890
25.145 15.516 7.050 0.153 1.077 4.075 0.101

100 7468.8525 5590.6172 6309.8315 6942.2827 7480.3364 7549.3401 7773.2984 7461.2727
25.148 15.518 7.050 0.154 1.078 4.076 0.102

500 186709.59 139754.70 157734.86 173546.20 186997.34 188721.99 194320.88 186519.96
25.149 15.519 7.050 0.154 1.078 4.077 0.102

1000 746836.94 559017.44 630938.13 694183.44 747988.00 754886.53 777282.07 746078.35
25.149 15.519 7.050 0.154 1.078 4.077 0.102

�: Er (%) denotes the absolute percentage error.
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Table 2. Comparison of the present frequency with existing results for cubic-quintic Du�ng oscillator when � = 5; � = 3;
and  = 1.

A !e Khan et al. [20] Guo et al. [27] Present study
!1

Er (%)�
!2

Er (%)
!3

Er (%)
!4

Er (%)
!2

Er (%)
!1

Er (%)
!2

Er (%)
0.1 2.2411156 2.2394266 2.2398469 2.2402105 2.2406456 2.2411070 2.2411070 2.2411063

0.075 0.057 0.041 0.021 0.001 0.000 0.000

0.5 2.3661575 2.3226130 2.3337476 2.3434565 2.3548751 2.3661560 2.3664870 2.3660775
1.840 1.370 0.960 0.477 0.014 0.003

1 2.7962794 2.6100767 2.6612775 2.7063482 2.7566507 2.7966959 2.8025286 2.7958356
6.659 4.828 3.216 1.417 0.015 0.223 0.016

5 20.2164536 15.4211702 17.2236977 18.7895069 20.1565380 20.3911022 20.9488464 20.2109616
23.720 14.804 7.058 0.296 0.864 3.623 0.027

10 76.1700134 57.2712860 64.4817429 70.7962723 76.2022247 76.9486769 79.1938550 76.1106133
24.811 15.345 7.055 0.042 1.022 3.970 0.078

50 1868.5568 1398.8853 1578.7106 1736.8159 1871.3540 1888.6547 1944.6521 1866.6778
25.136 15.512 7.051 0.150 1.076 4.073 0.101

100 7469.8296 5591.5117 6310.7422 6943.1880 7481.2598 7550.2994 7774.2634 7462.2611
25.146 15.517 7.050 0.153 1.078 4.076 0.101

500 186710.58 139755.59 157735.78 173547.11 186998.27 188722.95 194321.85 186520.95
25.149 15.519 7.050 0.154 1.078 4.077 0.102

1000 746837.94 559018.31 630939.00 694184.38 747988.88 754887.48 777283.04 746079.34
25.149 15.519 7.050 0.154 1.078 4.077 0.102

�: Er (%) denotes the absolute percentage error.

Figure 1. Comparison of approximate periodic solution
obtained by the present method (denoted by circles) with
the numerical solution obtained by the fourth-order
Runge-Kutta method (denoted by solid line) for the
cubic-quintic Du�ng oscillator (Eq. (1)) for � = 1, � = 1,
 = 1, and A = 0:5).

than [20,27]. Therefore, the present method is suitable
for solving Eq. (1), as compared to [20,27].

Furthermore, we have determined the second-
order approximate solutions to Eq. (1) for di�erent

Figure 2. Comparison of approximate periodic solution
obtained by the present method (denoted by circles) with
the numerical solution obtained by the fourth-order
Runge-Kutta method (denoted by solid line) for the
cubic-quintic Du�ng oscillator (Eq. (1)) for � = 1, � = 1,
 = 1, and A = 1:0).

values of parametersA; �; �; and , including all results
with the corresponding numerical solutions obtained
by fourth-order Runge-Kutta method. All results are
presented in Figures 1-6. Based on these �gures, we
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Table 3. Comparison of the present frequency with existing results for cubic-quintic Du�ng oscillator when
� = 1; � = 10; and  = 100.

A !e Khan et al. [20] Guo et al. [27] Present study
!1

Er (%)�
!2

Er (%)
!3

Er (%)
!4

Er (%)
!2

Er (%)
!1

Er (%)
!2

Er (%)
0.1 1.0397019 1.0262188 1.0296117 1.0325994 1.0361322 1.0397000 1.0397315 1.0396423

1.297 0.971 0.683 0.343 0.000 0.003 0.006

0.5 2.5247023 2.0501525 2.2114758 2.3542032 2.4890764 2.5350468 2.5789614 2.5236147
18.796 12.407 6.753 1.411 0.410 2.150 0.043

1 8.0100698 6.1032777 6.8193183 7.4440041 7.9883609 8.0806905 8.3016063 8.0064163
23.805 14.866 7.067 0.271 0.882 3.640 0.046

5 187.19966 140.20432 158.19193 174.00040 187.46034 189.20333 194.80482 187.01580
25.105 15.496 7.051 0.139 1.070 4.063 0.098

10 747.32526 559.46490 631.39343 694.63605 748.44946 755.36618 777.76453 746.57252
25.138 15.513 7.050 0.151 1.076 4.073 0.100

50 18671.400 13975.872 15773.896 17355.027 18700.148 18872.631 19432.522 18652.440
25.148 15.519 7.050 0.154 1.078 4.075 0.102

100 74684.133 55902.148 63094.219 69418.750 74799.211 75489.084 77728.641 74608.280
25.149 15.519 7.050 0.154 1.078 4.077 0.102

500 1867091.6 1397542.9 1577344.5 1735457.9 1869969.3 1887215.6 1943200.0 1865200.0
25.149 15.519 7.050 0.154 1.078 4.076 0.101

1000 7468365.0 5590170.5 6309377.0 6941830.5 7479875.5 7548860.9 7772820.0 7460780.0
25.149 15.519 7.050 0.154 1.078 4.077 0.102

�: Er (%) denotes the absolute percentage error.

Figure 3. Comparison of approximate periodic solution
obtained by the present method (denoted by circles) with
the numerical solution obtained by the fourth-order
Runge-Kutta method (denoted by solid line) for the
cubic-quintic Du�ng oscillator (Eq. (1)) for � = 5, � = 3,
 = 1, and A = 0:5).

see that the present method's solutions are nicely in
agreement with the corresponding numerical results for
all values of parameters A;�; �; and .

Figure 4. Comparison of approximate periodic solution
obtained by the present method (denoted by circles) with
the numerical solution obtained by the fourth-order
Runge-Kutta method (denoted by solid line) for the
cubic-quintic Du�ng oscillator (Eq. (1)) for � = 5, � = 3,
 = 1, and A = 1:0.

5. Conclusion

In this paper, a new simple analytical technique
coupled by energy and harmonic balance methods
was presented to solve the cubic-quintic Du�ng os-
cillator. Next, The second-order approximation was
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Figure 5. Comparison of approximate periodic solution
obtained by the present method (denoted by circles) with
the numerical solution obtained by the fourth-order
Runge-Kutta method (denoted by solid line) for the
cubic-quintic Du�ng oscillator (Eq. (1)) for � = 1,
� = 10,  = 100, and A = 0:5.

Figure 6. Comparison of approximate periodic solution
obtained by the present method (denoted by circles) with
the numerical solution obtained by the fourth-order
Runge-Kutta method (denoted by solid line) for the
cubic-quintic Du�ng oscillator (Eq. (1)) for � = 1,
� = 10,  = 100, and A = 1:0).

determined. The solution contains a few harmonic
terms and also a lower-order term. These terms make
the solution converge rapidly. It was observed that
the present method gives better results than other
existing results do, for both small and large amplitudes
of oscillation. It was proved that the present method
is very e�ective, convenient and also gives more precise
accuracy for solving strongly nonlinear oscillators.
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