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Abstract. The determination of erosion and deposition patterns in channels requires
detailed knowledge and estimation of the bed shear stress. In this investigation, the
application of a Genetic Algorithm-based Arti�cial (GAA) neural network and Genetic
Programming (GP) was presented to predict bed shear stress in a rectangular channel with
rough boundaries. Several input combinations, �tness functions, and transfer functions
were investigated to determine the best GAA model. Also, the e�ect of various GP
operators on estimating bed shear stress was studied. A comparison between the GAA
and GP techniques' abilities to predict bed shear stress was made and then investigated.
The results revealed that the GAA model performs better in predicting the bed shear stress
(RMSE = 0.0774), as compared to the GP model (RMSE = 0.0835).
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

The ow structure in open channels is directly a�ected
by the shear stress distribution along the wetted
perimeter; hence, the variations of the boundary shear
stress are more important. It has long been established
that many factors inuence this distribution. These
factors include variation of the longitudinal and lateral
boundary roughness types, geometry of a cross-section,
longitudinal variation of plan-form geometry, and sed-
iment concentration and deposition in the bed.

Many direct and indirect methods have been
used to calculate the shear stress along a wetted
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perimeter [1-8]. Guo and Julien [9] and Babaeyan-
Koopaei et al. [10] found that the open channel ow for
the separation of bed and wall shear stress was more
important for a velocity pro�le study, while Julien [11]
and Berlamont et al. [12] found that it was more
important for the bed load transport estimation.

In addition to experimental studies, some re-
searchers have focused on determining shear stress
using analytical models based on continuity and mo-
mentum equations [13,14]. Using the entropy concept,
the shear stress distribution was studied along the wall
and bed of a channel [15,16]. Berlamont et al. [12] used
computational uid dynamic modeling to estimate the
shear stress distribution in a rectangular channel and
partially �lled pipes.

Recently, the application of soft computing tech-
niques has been widely used for the prediction of
hydraulic phenomena [17-19]. Najafzadeh et al. [20]
applied Group Method of Data Handling (GMDH)
network to predict abutments scour depth of bridges.
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Some researchers utilized GEP model to solve dif-
ferent hydraulic problems [21-23]. Azamathulla and
Zahiri [24] used linear genetic programming to predict
the ow discharge in a compound open channel. Zaji
and Bonakdari [25] utilized the ANN and Radial Basis
Neural Network (RBNN) to compute the discharge
capacity of a triangular side weir. The suspended
sediment load was estimated using soft computing
techniques by Tayfur [26] and Kisi et al. [27]. Cobaner
et al. [28] used a simple ANN method to estimate
percentage of shear force carried by walls in rectangular
ducts and channels. Sheikh Khozani et al. [29], by ap-
plying GP and GAA models, could predict percentage
of shear force carried by walls (%SFw) of rough rect-
angular open channels. The authors expressed that the
ANN model has better performance in predicting shear
force than the traditional shear force relationships.
Predicting %SFw in smooth rectangular channels was
studied by Sheikh Khozani et al. [30] using GP and
GAA methods.

Because the bed shear stress has an important
role in bed load sediment transition, a few studies have
been conducted on the rectangular channel with rough
boundaries using the soft computing technique. Conse-
quently, the aim of this study is to utilize this technique
in estimating the bed shear stress in a rectangular
channel with non-homogenous roughness. For this goal,
the GAA method as a novel combination of modi�ed
Genetic Algorithm (GA) and Arti�cial Neural Network
(ANN) was used to predict the bed shear stress. The
performance of the GAA was compared with that of
the Genetic Programming (GP) method, as a practical
branch of the GA. Also, the obtained equation by the
best method has been compared with the equation of
Knight [2].

2. Materials and methods

2.1. Genetic algorithm-based arti�cial neural
network

The multi-layer perceptron ANN is widely used in
various engineering �elds as a successful soft computing
method. An ANN method is composed of three major
layers: one input layer, one or more hidden layers, and
one output layer. Each layer consists of some neurons.
The input layer's neurons are the input variables of
the considered problem. In the current ANN model,
the output layer has one neuron, i.e., the output of
the problem. Each hidden layer has some neurons.
Each neuron in the hidden layers, at �rst, compute the
weighted sums of neurons in last layer, and then by
putting the results of the summation in the activation
functions, the estimation for each neuron is calculated.

The activation function selection signi�cantly af-
fects the performance of the model [31-33]. In this
study, four combinations of activation functions were

examined to determine the most appropriate one of all.
The considered activation functions include the loga-
rithmic sigmoid (Eq. (1)), hyperbolic tangent sigmoid
(Eq. (2)), and linear (Eq. (3)):

logsig(x) =
1

1 + e�x ; (1)

tansig(x) =
2

1 + e�2x � 1; (2)

purelin(x) = x: (3)

In addition to the advantages of the ANN method
in modeling the complex problems, the absence of a
speci�c rule in choosing the number of hidden layer
nodes makes the modeling process more puzzling. In
this study, a modi�ed GA was used to optimize the
structure of the ANN method. The GA investigates
di�erent ANN models with various numbers of neurons
in hidden layers and automatically chooses the most
appropriate one.

Levenberg-Marquardt Algorithm [34] was used to
train the ANN model. It is possible that a good
combination of a number of hidden layer neurons
was eliminated by the GA due to bad luck with
the Levenberg-Marquardt training process and random
nature of the training algorithms used. So, the GA used
to optimize the ANN model needs some modi�cations.

The modi�ed GA used in the optimization of the
ANN structure is shown in Figure 1. According to
Figure 1, the GA modi�cation was conducted in the
elite populations. The elite population consists of the
best 15% of the entire chromosomes. Each individual
in the elite population was run with the ANN model
several times. The best cost for each individual was
replaced in the elite population.

This modi�cation has two major bene�ts. First,
it prevents the local minimum trapping of the GA.
Second, it minimizes the e�ect of the random nature
of the Levenberg-Marquardt training process. Finally,
the GAA method, as the combination of the modi�ed
GA and ANN methods, was introduced.

2.2. Genetic programming
The GP method, as a branch of the GA algorithm,
was developed by Koza [35]. The general processing
rules of the GP method are similar to those of the GA
algorithm. The rules are as follows. The initial pop-
ulation was performed by a number of chromosomes.
Here, the chromosomes are the programs. The error of
each chromosome was investigated by the dei�ed �tness
function.

The aim of GP processing is to �nd the most
appropriate program that could be used to model
the considered problem. Because of this, the GP
method explicitly becomes a suitable method for the



154 Z. Sheikh Khozani et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 152{161

Figure 1. Flowchart of the GAA model

practical situations. To �nd an appropriate GP model
in each problem, some of the properties should be
speci�ed.

Each GP program uses some functions that must
be determined. The functions include arithmetic oper-
ations (e.g., +, �, �, and �), mathematical functions
(e.g., sin, cos, and power), and logical functions (e.g.,
AND, OR, and NOT). There is no speci�c rule in
function determination, and it should be determined
for each problem. In this study, to �nd the most appro-
priate functions, four di�erent function combinations
were examined.

The processing steps of the GP are as follows:
(1) Selecting the initial population of the individuals
(programs) randomly; (2) Calculating the cost of
each individual by the �tness function; (3) Sorting
the individuals according to the calculated costs; (4)

Conducting the reproduction, mutation, and crossover
on the population and performing the new population;
(5) Achieving one of the termination criteria (e.g., the
time of the run, number of generations, and value of the
error) in the process. Table 1 shows the characteristics
of the GP model used.

2.3. Case study
The dimensionless mean bed shear stress data of the
experiments were used; these were originally conducted
by Knight [2]. By using the Preston pipe technique,
Knight [2] calculated the bed shear stress along a ume
that was 15 m in length, 460 mm in width, and with
a constant bed slope of 9:58 � 10�4. This ume had
a rectangular cross-section with rough boundaries and
shear stress that was measured at di�erent ow depths.
The ranges of the geometric and hydraulic characteris-
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Table 1. The characteristics of the GP model.

Parameter
name

Parameter
speci�cation

Population size 500
Mutation frequency 93%
Crossover frequency 50%

Number of replication 10
Block mutation rate 30%

Instruction mutation rate 30%
Instruction data mutation rate 40%

Homologous crossover 95%
Program initial size 64

Program maximum size 256
Function combination To be determined

Fitness function To be determined

tics of the rectangular channel used by Knight [2] are
listed in Table 2.

Knight [2] presented an empirical equation for
calculating the mean bed shear stress as follows:

��b
�ghSf

= 1� 0:01 (%SFw) ; (4)

where ��b is the mean bed shear stress, Sf is the energy
slope, h is the water depth, � is the uid density, and
%SFw is the total shear force carried by the walls. This
total shear force can be calculated as follows:

%SFw = e�
�

tanh (��)� 0:5[tanh (��)� �]2
�
; (5)

where � = �3:264 log
�B
h + 3

�
+ 6:211, � = 1� 

5 , and
 = log

�
ksb
ksw

�
.

The shear stress depends on the hydraulics of
the ow, cross-section, and bed and wall roughness.
The dependent parameters are: ow velocity (V ),
hydraulic radius (R), uid density (�), geometry of
the channel (B), bed and wall roughness (ksb; ksw),
ow depth (h), and energy slope (Sf ). A functional
relationship between the bed shear stress and the
e�ective parameters can be expressed as follows:

��b = F (�; g;B; h; ksb; ksw; R; Sf ; V ) :

Using a dimensional analysis for expressing the dimen-
sionless bed shear stress, the following function was
obtained:

��b
�ghSf

= f
�
B
h
;
ksb
ksw

;Fr;Re
�
; (6)

where B
h is the aspect ratio, ksb

ksw is the relative rough-
ness, Fr is the Froude number, and Re is the Reynolds
number.

Table 2 shows the ranges of data set parameters
that were used in modeling. About 75% of all data
were selected randomly for training, and the remaining
data were used for testing stage.

Eq. (4) was also selected to predict the mean
bed shear stress and was compared with the proposed
model.

3. Application and results

In order to investigate the accuracy of the models and
the �tness function, six statistical parameters were
used. These parameters include: the Root Mean
Squared Error (RMSE), Mean Squared Error (MSE),
Mean Absolute Error (MAE), average absolute devia-
tion (�%), Scatter Index (SI), and BIAS as follows:

RMSE =

vuut nP
i=1

(� ip � � im)2

n
; (7)

MSE =

nP
i=1

(��ip � ��im)2

n
; (8)

MAE =
1
n

nX
i=1

j��ip � ��imj; (9)

� =

0BB@
nP
i=1
j��ip � ��imj
nP
i=1

��ip

1CCA� 100; (10)

SI =

0BBB@
vuut nP

i=1
(��ip � ��im)2

n

1CCCA
0BB@ n

nP
i=1

��im

1CCA ; (11)

Table 2. Ranges of the geometric and hydraulic variables of the rectangular channel.

Symbol Variable de�nition Variable range Mean value

h (m) Flow depth 0.0307-0.3107 0.1413
ksb
ksw

Relative roughness 1-17120 4255.14

Q (m3/s) Discharge 0.003-0.1136 0.0336
V (m/s) Velocity 0.161-0.805 0.4187

��b
�ghS Dimensionless bed shear stress 0.364-1.0255 0.751
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BIAS =

nP
i=1

��ip � ��im

n
; (12)

where ��ip shows the value of the predicted mean bed
shear stress by the model, and ��im is the measured
mean bed shear stress in the laboratory.

To compute the mean bed shear stress, eight
di�erent input combinations were tested. These input
combinations were:

(i) B=h, Fr and ksb=ksw;
(ii) B=h, Fr and Re;
(iii) B=h, Fr and ksb=ksw;
(iv) B=h, Re and ksb=ksw;
(v) Fr, ksb=ksw and Re;

(vi) B=h and ksb=ksw;
(vii) B=h and Fr;

(viii) Fr and ksb=ksw.

The results were compared with the RMSE, MAE,
and %� statistic parameters.

In the �rst step of the GAA model, by assuming
MSE as a �tness function and the logarithmic trans-
fer function, the mentioned input combinations were
investigated. As shown in Table 3, the GAA model
with the input combination of (ii) was more accurate
with the smallest values of the statistical parameters.
Various GP models were developed using the same

input combinations as the GAA model. Similar to
the GAA model in the GP model, the assumption
�tness function in the �rst step was that the MSE and
default function (+;�;�;�) were used to select the
best input combination. As shown in Table 4, the input
combination (i) is more appropriate than the others
with RMSE of 0.0835.

Continuing to use the selected input combination,
a comparison was checked between the MSE and MAE
to �nd a more appropriate �tness function in the GAA
model. The results of this comparison are presented
in Table 5. According to the results, it is clear
that the MSE �tness function provides more accurate
results with RMSE of 0.0774 than the MAE �tness
function with RMSE of 0.0918. To select the best
�tness function in the GA model, MSE and MAE were
investigated. From Table 5, it is clear that the MSE
�tness function (based on the absolute error) produces
the best results for computing the mean bed shear
stress. Consequently, the MSE �tness function with
better statistical results (RMSE = 0.0835, MAE =
0.0732, and �% = 10:1635) was selected.

In the �nal step, four di�erent conditions were
studied by the GAA model using the logarithmic, pure-
lin and hyperbolic tangent, as the transfer functions.
The outcomes (Table 6) show that the GAA model
with the logarithmic transfer function in a hidden layer
and the purelin transfer function in the output layer
operates better between the transfer functions.

The selection of the basic operators in building

Table 3. Statistical measures of the models in the test period of GAA model.

Model inputs GAA
RMSE MAE %� SI BIAS

(i) B=h, Fr and ksb=ksw 0.0875 0.0711 9.7614 0.1239 0.0228
(ii) B=h, Fr and Re 0.0774 0.0631 8.6560 0.1096 0.0229
(iii) B=h, Fr and ksb=ksw 0.0942 0.0755 10.5406 0.1335 0.0106
(iv) B=h, Re and ksb=ksw 0.0836 0.0618 8.7320 0.1184 0.0019
(v) Fr, ksb=ksw and Re 0.0811 0.0672 9.0700 0.1149 0.0352
(vi) B=h and ksb=ksw 0.0910 0.0738 10.2469 0.1289 0.0143
(vii) B=h and Fr 0.0844 0.0718 9.9990 0.1253 0.0123
(viii) Fr and ksb=ksw 0.1099 0.0893 11.9109 0.1557 0.0434

Table 4. Statistical measures of the models in the test period of GP model.

Model inputs GAA
RMSE MAE %� SI BIAS

(i) B=h, Fr and ksb=ksw 0.0835 0.0732 10.1635 0.1183 0.0139
(ii) B=h, Fr and Re 0.0909 0.0757 10.3231 0.1287 0.0272
(iii) B=h, Fr and ksb=ksw 1.6866 0.5342 47.6534 2.389 0.4151
(iv) B=h, Re and ksb=ksw 0.0919 0.0743 10.2097 0.1302 0.0213
(v) Fr, ksb=ksw and Re 0.0957 0.0821 11.2094 0.1356 0.0267
(vi) B=h and ksb=ksw 0.0978 0.0831 11.0748 0.1385 0.0440
(vii) B=h and Fr 0.0879 0.0785 10.8536 0.1245 0.0169
(viii) Fr and ksb=ksw 0.1181 0.0993 12.8157 0.1860 0.0730
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Table 5. Fitness function selection for the models.

Models Statistical
parameters

MSE MAE

GAA

RMSE 0.0774 0.0918
MAE 0.0631 0.0734
%� 8.6560 10.4547
SI 0.1096 0.1300

BIAS 0.0229 -0.0040

GP

RMSE 0.0835 0.0957
MAE 0.0732 0.0813
%� 10.1635 11.0186
SI 0.1183 0.1356

BIAS 0.0139 0.0315

the parse tree is the �nal step in the GA model. The
basic range of the investigated functions is:

F1 = f+;�;�;�g ;
F2 = f+;�;�;�; sin (x) ; cos (x)g ;
F3=

�
+;�;�;�; sin (x) ; cos (x) ; jxj ;p ;Power

	
:

A set of preliminary model runs was carried out to
test the performance of the models with the function
sets and select the best one to use in the next stage
of the study. All of these procedures were conducted
for input combination (i) by the MSE �tness function.
The investigated results of these sets of functions are
illustrated in Table 7. Based on the comparison of
the various GP operators listed in this table, it can be
deduced that the GP default operator function set (F1)
surpasses all of the other structures. It was determined
that the simple operator function is better to use

than the other function sets, since the other operator
function sets resulted in complicated computations.

Finally, the comparison between the GAA and GP
models was conducted. As can be seen in Table 8, the
GAA model with an RMSE of 0.0774 was compared
to the GP model with an RMSE of 0.0835. The GA
model was selected due to its better performance. The
GP model is capable of predicting the mean bed shear
stress, too. When comparing the GAA predictions
with the measured data for the test stage, the proposed
model was proved to be highly capable to estimate the
mean bed shear stress with few errors.

With regard to selecting the GAA model as the
best model, the equation obtained from the proposed
model with input combination (i), MSE �tness func-
tion, and logarithmic and linear transfer functions
in the hidden and output layers, respectively, are as
follows:

��b
�ghS

=purelin(( logsig((logsig(input� iw + b1))

� lw + b2))� ow + b3; (13)

input =
�B
h Fr Re

�
; (14)

iw=24 0:451 �0:122 0:348 �0:349�0:225�0:006
�26:623�20:878 21:350 24:510 25:914 21:037

0:000 �0:001 0:000 0:000 0:000 0:000

35 ;
(15)

lw =

26666664
�3:167 1:971 0:045 2:700
2:451 �4:757 5:707 �3:610
�0:715 0:687 1:799 �3:610
4:661 �2:240 �3:713 3:809
2:605 1:191 �0:280 1:207
�2:093 4:041 �0:244 �0:435

37777775 ; (16)

Table 6. Transfer function selection process for the GAA model.

Hidden layers
transfer function

Output layer
transfer function

RMSE MAE %� SI BIAS

logsig purelin 0.0774 0.0631 8.6560 0.1096 0.0229

logsig logsig 0.0833 0.0719 9.9282 0.1180 0.0179

tansig purelin 0.0952 0.0790 10.8712 0.1348 0.0206

tansig tansig 0.0817 0.0658 8.9494 0.1158 0.0289

Table 7. Statistical parameters for the preliminary selection of the basic functions for the parse tree.

De�nition RMSE MAE %� SI BIAS

F1 f+; �; �; �g 0.0835 0.0732 10.1635 0.1183 0.0139
F2 f+; �; �; �; sin (x) ; cos (x)g 0.1048 0.0926 12.5872 0.1484 0.0296
F3

n
+; �; �; �; sin (x) ; cos (x) ; jxj ; p ;Power

o
0.0988 0.0772 10.9509 0.1400 {0.0011
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Table 8. Comparison between the GAA and GP models.

Model Statistic parameters

RMSE MAE %� SI BIAS

GAA 0.0774 0.0631 8.6560 0.1096 0.0229

GP 0.0835 0.0732 10.1635 0.1183 0.0139

ow =
��0:100 0:142 0:323 0:030

�T ; (17)

b1 =
�
6:737 17:422 �15:387 �10:120 �9:627 0:481

�
;

(18)

b2 =
�
1:595 �1:609 �0:531 �0:122

�
; (19)

b3 = [0:536]: (20)

In Figure 2, the calculated mean bed shear stress of
the GAA and GP models for the training step were
presented in the form of a scatterplot. As can be seen,
the GAA model predicts the mean bed shear stress
better than the GP model does for training processes.
The GAA model estimates were found to be closer to
the corresponding observed values than those of the
GP model were. As seen, the two models' predictions
underestimated shear stress values for some cases and
overestimated for other cases. Figure 3 illustrates the
estimates of the GAA and GP models in the form of
a scatterplot for test dataset. It can be clearly seen
from the scatterplots that the estimates of the GAA
model are less scattered and closer to the exact line
than those of the GP model. According to the results,
performance of the GAA model in estimating bed shear
stress is higher than that of the GP model. Therefore,
the GAA model was selected as the best model to
estimate bed shear stress in rectangular channels with
at bed.

Table 9 shows the comparison between the ob-
tained equation of the best model (GAA) and the
presented equation by Knight [2]. The results show
that the GAA model has a lower error of mean bed
shear stress (RMSE = 0.0731, MAE = 0.0607, and
%� = 8:0451) for a rectangular channel with rough
boundaries than that of the equation of Knight [2]
(Figure 4). According to these results, the GAA model
is much closer to the exact line than the equation of
Knight [2], and hence, is more accurate. Therefore,

Figure 2. Observed versus computed mean bed shear
stress of the GAA and GP models for a training test.

the obtained equation by the GAA model is more ap-
plicable in rectangular channel with rough boundaries
and can be used instead of the equation proposed by
Knight [2].

In the proposed equation, the Froude and
Reynolds numbers are e�ective in calculating the mean
bed shear stress, in addition to the aspect ratio;

Table 9. Comparison between the GAA models and the equation of Knight [2].

Model Statistic parameters

RMSE MAE %� SI BIAS

GAA Model 0.0731 0.0607 8.0451 0.0974 0.0046

Equation of Knight [2] 0.0804 0.0683 9.0925 0.1044 {0.0192
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Figure 3. Comparison of the GAA and GP mean bed
shear stress estimates with the observations in the test
status.

however, in the equation presented by Knight [2],
the aspect ratio is the only e�ective parameter. In
Figure 4, the GAA model data overestimate the value
of the mean bed shear stress for ��b

�ghS > 0:73 and
underestimate the value in ��b

�ghS < 0:73. In addition,
in the GAA model, fewer data are in the range of the
�10% error. Equation of Knight [2] underestimates
the mean bed shear stress value more than the GAA
model does. When the underestimated values predict
bed shear stress, the erosion occurs in the channel
since the actual values of shear stress are higher than
the predicted values, and the designed channel is poor
in erosion. Therefore, the equation is used which is
obtained by the GAA due to designing more stable
channels.

Figure 4. Comparison of the performance of the GAA
model with the equation of Knight [2].

4. Conclusions

The distribution of the bed shear stress is e�ective in
the shape of the bed topography channels in sediment
transportation. In this study, the GAA and GP
models, as two methods of the GA, were compared
to predict the mean bed shear stress in a rectangular
channel with non-homogeneous roughness. Both soft
computing models were extended and the performance
of each model in each step was evaluated. For each
model, several input combinations and �tness func-
tions were studied to recognize the best state among
them. The statistical parameters were used to evaluate
predicted mean bed shear stress values of the GAA
and GP models. The results showed the best program
for the GP model obtained by input combination (ii),
MSE �tness function, and (+;�;�;�) mathematical
functions. The best formula in the GAA model was
concluded with input combination (ii), MSE �tness
function, and log-pur transfer function. The accuracy
of the GAA and GP techniques in predicting this object
was investigated, and the GAA model was introduced
as a more powerful model compared with GP model.

The results showed that the GP model has the
ability to estimate the mean bed shear stress, but the
GAA model has smaller values of statistical parameters
(RMSE = 0.0731, MAE = 0.0607, and %� = 8:0451),
and hence performs better than the GP model. Finally,
the obtained equation with the GAA model was com-
pared with that presented by Knight [2]. In addition
to being simple, this equation was better in estimating
the mean bed shear stress than that of Knight [2].
The obtained equation by the GAA method can be
used instead of the equation proposed by Knight [2] in
calculating mean bed shear stress. This study suggests
that the proposed GAA model is strong and useful in
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predicting the mean bed shear stress in a rectangular
channel with rough boundaries.
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