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Abstract. This paper discusses the time-varying characteristics of the output signals
resulted from Linear Time Variant (LTV) systems using level-crossing properties. These
systems, used for generating synthetic records based on a target record, contain two
identi�cation processes: 1) amplitude modulating function; and 2) time-varying Impulse
Response Function (IRF) parameters. To track the IRF parameters e�ciently, the zero-
crossing and positive minima/negative maxima cumulative curves are usually utilized as
the measures of the instantaneous spectral power. Using spectral moments, analytic
relations for zero-crossing and positive minima/negative maxima cumulative count are
developed with respect to the IRF's evolutionary power spectrum. In order to investigate
the low-frequency components of the output records e�ciently, the zero-crossing rate of
the velocity and the displacement records are tracked and rigorous analytic equations
for their descriptions are developed. Some of the issues concerning application of the
developed equations are explored using two LVT models, and the limitations of the
proposed procedures are explained. Through introduction of new compatibility measures,
the necessity of implementing Monte Carlo simulations would no longer be needed, and
it would be possible to generate synthetic acceleration records with desirable evolutionary
characteristics with much shorter computation time.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Considering the growing tendency toward nonlinear
dynamic analyses of structures and sensitivity of these
methods to ground motion excitation [1], the existing
database of the recorded accelerograms does not ful�ll
the required variability among ground motions used [2].
Evaluating the reliability of the structures subjected
to ground motion excitations in the regions without
su�cient recorded data requires careful simulation of
earthquake accelerograms [3]. Contrary to the physical
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models which are based on modeling the physics of the
earthquake phenomenon [4], the stochastic methods
have been used for years to regenerate the recorded
ground motions from signal processing point of view.
Some believe that deterministic physical methods are
more reliable for lower frequencies in heterogeneous
models due to the existing di�culties in accurately
representing the incoherency of source radiation and
wave propagation at higher frequencies [4] and the
lack of site's soil information [5]. However, other
researchers have shown the e�ciency of these models
for frequencies up to 10 Hz [6]. The stochastic methods
can provide enough accuracy and exibility for large-
scale performance-based design applications. Because
of the importance of the e�ects of dispersion at high
frequencies, most of the stochastic simulations are able
to predict the ground motion at frequencies greater
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than 1 Hz [7]. In general, when the number of strong-
ground motion recordings is limited with good seismo-
logical network data available, application of stochastic
methods could relate the physics of the earthquakes
to the wave propagation-related issues through simple
relations [8]. Despite numerous studies on engineering
models of earthquake motion, there is still a lack of
direct experimental evidence con�rming stochastic or
deterministic nature of the earthquake phenomenon [3].

There are essentially two types of stochas-
tic ground-motion models: `source-based' and `site-
based' [9]. Although the source-based models have
the bene�t of using the physical parameters obtained
through simulation processes, these parameters vary
signi�cantly from region to region. In the absence
of detailed seismological information, or in the case
of not using that information, the site-based models
are more applicable where the number of instrumental
recordings is limited [10]. Due to the capability of
the stochastic methods in generating high-frequency
signals [11] and availability of fast computers, pure
\physical models" have evolved to the \hybrid models"
using stochastic methods for scenario-based earthquake
simulation [12].

The development of the time-frequency methods
to extract the evolutionary characteristics of the signals
has made a great impact on the identi�cation of
the records' characteristics and replication of their
results. The ease of use and capability to regenerate
recorded data are essential factors for a method to
be implemented in the process of designing structures
subjected to earthquake excitation.

According to the time variation of the amplitude
and the frequency content, an earthquake accelerogram
as a signal can be classi�ed either as a stationary
or non-stationary realization. The amplitude non-
stationarity is de�ned as the change in the amplitude or
intensity of the acceleration record versus time, while
the frequency non-stationarity indicates the change of
its \instantaneous power spectrum" [9]. Contrary to
the amplitude non-stationarity, it is more di�cult to
simulate or even capture the frequency non-stationarity
of the signals. Accurate detection of the frequency
content evolution demands utilization of complex time-
frequency distributions (such as quadratic distribu-
tions) or multi-resolution analyses (such as wavelet
or Hilbert-Huang transforms). On the other hand,
the proper representation of these variations requires
a considerable amount of data.

Frequency non-stationarity of the signals results
from the dynamic nature of the ground motion that
is mainly due to the faster propagation speed of high-
frequency waves in the soil media [2]. Many studies in-
dicate the signi�cance of the frequency content change
on the seismic-induced linear or nonlinear response
of structures [13,14]. The coincidence of sti�ness

degradation together with the arrival of low-frequency
surface waves could lead to disastrous results and even
collapse of these structures [15]. Some approaches have
been introduced for considering the non-stationarity of
the records, especially in the frequency domain, with
most of them having a large number of parameters
involve [10,16,17].

Rezaeian and Der Kiureghian [9,18] presented
a method for record generation based on matching
the zero crossing and also positive minimum, negative
maxima (pos. min./neg. max.) of the recorded and
ensemble of the generated accelerograms. In spite of
the simplicity of the proposed method, the spectral
responses of the generated accelerograms deviate from
those of original records for the long-period region of
the spectrum.

Moreover, the results show that for some records,
the methods suggested by Rezaeian and Der Ki-
ureghian [9,18] do not lead to a suitable amount of
damping values for the proposed model since the rates
of pos. min./neg. max. are less than those obtained for
the values of �f (damping ratio of LTV �lter) from 0 to
1. Figure 1 shows the above problem for the Northridge
1/17/94, Sandberg-Bald MTN accelerogram. It should
also be emphasized that the frequency and damping
ratios of a high-pass �lter, i.e. fc and �c, that are used
to eliminate unwanted low-frequency power spectral
amplitudes greatly a�ect the low-frequency response
spectrum region. Furthermore, the assumption of the
linear variation of the frequency �lter with time leads
to the 2nd order polynomial cumulative zero-crossing
curve which is not the case for some records.

This paper introduces a new method for stochas-
tic generation of a non-stationary acceleration record
based on the zero-crossing properties of the accelera-
tion, velocity, and displacement records. A high-pass
�ltered, time-varying double-frequency model with

Figure 1. The comparison of the pos. min./neg. max.
curves for the Northridge 1/17/94, Sandberg-Bald MTN
records with those obtained from [9,18].



Z. Waezi and F.R. Rofooei/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2817{2831 2819

time-variant parameters is introduced to develop a
frequency-wise, non-stationary process. The proposed
model does not depend on sophisticated mathematical
transformation and uses time-domain characteristics of
the records to simulate seismic signals.

In the following, the concept of non-stationary
records, Linear Time-Variant (LTV) systems, and
method of level crossing for identi�cation of the model
parameters will be briey described. Then, the pro-
posed LTV model as well as the procedure for using
all this information for synthesizing the earthquake
records will be explained. Finally, the suggested
method for the simulation of ground motions according
to a scenario case will be discussed.

2. Basic de�nitions

2.1. Frequency and amplitude
non-stationarities

The most important step in regenerating the synthetic,
yet realistic, accelerograms is the identi�cation of
the properties of the recorded ground motions. The
idea of an \instantaneous dominant frequency" for
non-stationary signals has always been appealing to
scientists because of its easier interpretation. One of
the earliest approaches towards this purpose has been
de�ned through re-writing a signal as a multiplication
of amplitude and a harmonic part. Since its intro-
duction by Gabor, one can easily transform a real
signal, like x(t), to \analytic" complex signal x+(t)
using Hilbert transform without loss of information [19]
as in the following:

x+(t) = x(t) + iv(t); (1)

where i is the imaginary unit. Here, v(t) is called
Hilbert transform of x(t) and is de�ned as:

v(t) =
1
�
P:V:

�Z 1
�1

x(�)
t� � d�

�
; (2)

where P:V: stands for the principal value of the integral.
The analytic signal can be described in a canonical form
by its amplitude A(t) and phase angle �(t) de�ned as
follows:

A(t) = jx+(t)j; �(t) = a tan
v(t)
x(t)

: (3)

Using the above formula, it is possible to de�ne the
Instantaneous Frequency (IF) of a signal as !(t) =
d�=dt as long as A(t) has distinct frequency band from
those of harmonic part. Huang et al. [20] introduced
the Empirical Mode Decomposition method (EMD)
to decompose every non-stationary signal into sev-
eral single-component sub-signals called Intrinsic Mode
Function (IMF). Then, it is easy to estimate the instan-
taneous frequency of every component through Hilbert

transform, which is commonly known as Hilbert-Huang
Transform (HHT). Huang also introduced the normal-
ized HHT method to normalize IMFs as Frequency
Modulated (FM) as well as Amplitude Modulated
(AM) signals [21]. According to a weighting function
based on each IMF's amplitude, the obtained IF from
each FM can be averaged to estimate the Weighted
Instantaneous Frequency (WIF) of the signal as follows:

WIF(t) =
Pn
j=1Aj(t)IFj(t)Pn

j=1Aj(t)
; (4)

where Aj and IFj represent the amplitude and in-
stantaneous frequency of the jth IMF. One of the
most important advantages of the canonical form of
a signal is the ability to use spectral moments for its
description. The Fourier transform of the analytic
signal, X+(!), is:

X+(!) = 2U(!)X(!); (5)

where X(!) and U(!) are the Fourier transforms of
the signal and unit step function, respectively. General
mean frequency, �!x, and mean bandwidth of signal, ��2

x,
can be de�ned as follows:

�!x =
1

2�Sx

Z 1
0

!
��X+(!)

��2 d!;
��2
x =

1
2�Sx

Z 1
0

(! � �!x)2 ��X+(!)
��2 d!; (6)

where:

Sx =
1

2�

Z 1
0

��X+(!)
��2 d! =

Z 1
�1
jx+(t)j2dt: (7)

On the other hand, when the response of the systems
subjected to these signals is of concern, the estimation
of their time-varying power spectrum is of greater
importance for which two classic approaches are de�ned
by Page [22] and Priestley [23]. Introducing the
\instantaneous power spectrum", Page extended the
concept of energy density of stationary processes to
the non-stationary ones through the change of spectral
power in time. For a non-stationary process fa(t)g,
\the instantaneous power spectrum" �(t; f) at time t
for frequency f is de�ned as follows:

�(t; f) = 2
Z 1

0
a(t)a(t� �) cos(2�f�)d�: (8)

On the other hand, Priestley's Evolutionary Power
Spectral Density (EPSD) can rigorously describe the
energy distribution of a random process in the vicinity
of time t. If a non-stationary process fa(t)g can be
written in the following form:

a(t) =
Z 1
�1

m(t; !)ei!t)dz(!); (9)
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where m(t; !) is a complex modulating function, dz(!)
is a complex-valued random process, and its EPSD
S(t; !) can be de�ned as follows:

S(t; !) = jm(t; !)j2 d�(!); (10)

where E
�jdz(!)j2� = d�(!) represents the PSD of the

stationary random process used in Eq. (9). Saragoni
and Hart [24] de�ned the EPSD for �nite-time re-
gions, while Liu [25] developed a method to calculate
the EPSD for a better demonstration of the non-
stationarity in earthquake accelerograms. Considering
the evolutionary model of Priestly in the form of
Eq. (9), the uniformly-modulated model is one of the
primary ones to generate stochastic ground motions as
follows:

a(t) = m(t)s(t); (11)

where a(t), s(t) and m(t) represent ground acceleration
process, stationary process, and a real-valued modu-
lating function, respectively. The models introduced
by Amin and Ang [26] and Shinozuka and Sato [27]
belong to this category of stochastic simulation of non-
stationary signals. Using a time-scale modulator, Yeh
and Wen's model [14] also considers the same form
as in Eq. (11), but adjusts the dominant frequency
of the ground motion. Conte and Peng [13] modeled
the earthquake records using a bundle of waves with
di�erent arrival times using the evolutionary model
of Priestly. Liang et al. [28] used the Priestley's
evolutionary model to derive a cosine series formula to
simulate the non-stationary Gaussian processes based
on spectral representation. They have proposed three
methods to estimate the evolutionary energy content
using short-time Fourier transform, wavelet transform,
and Hilbert-Huang transform. Yamamoto and Baker
used wavelet transform to approximately estimate
the evolutionary spectrum of the earthquakes [16].
They calibrated the parameter of wavelet transform
to relate them to the ground motion parameters.
Kaveh and Mahdavi used the wavelet transform and
an improved optimization technique to decompose the
original ground motions to several levels multiplied by
a variable in order to get better spectral matching for
the simulated ground motions [29]. Papadimitriou used
the 2nd order di�erential equation with time-variable
coe�cients subjected to white noise excitation [30].
In a di�erent approach, Rezaeian and Der Kiureghian
used a �ltered white noise, whose non-stationarity is
separated into uncorrelated amplitude and frequency
non-stationarities [9,18]. They used the time-domain
characteristics of the output signal, instead of fre-
quency domain, to adjust the model parameters.

The amplitude non-stationarity can usually be
described by a modulating or envelope function. There
are di�erent de�nitions for the envelope of a random

process. While Rice's envelope [31] is based on the
expansion of the process about a \mid-band" fre-
quency, Dugundji used Hilbert transform to calculate
the pre-envelope process corresponding to the random
process, and then they estimated the envelope of the
process [32]. Sgobba et al. [33] used this idea to
evaluate the envelope functions of the accelerograms
and approximated that with a Husid Envelope Func-
tion (HEF) according to the lognormal distribution.
The envelope of Crandall and Mark [34] is estimated
according to an \energy" function de�ned using the
process and its derivative. A number of well-known
modulating functions are presented in Table 1. Un-
like most of these methods' �tting procedures which
are based on the minimization of the Arias intensity
di�erence between the target and simulated records,
Sta�ord et al. [10] used the Dugundji's de�nition [32] to
�t their proposed envelope function using a log-normal
probability distribution function. Despite having more
parameters, Amin and Ang's [26] piecewise model could
e�ectively capture a wider range of amplitude non-
stationarity for the recorded accelerograms. Methods
based on moving average techniques that are adopted
by some researchers to better consider the amplitude
change are not considered in this study due to the
di�culty in their application for the scenario-based
record simulation since they cannot be described by
an analytical expression.

2.2. LTV systems
A Linear Time-Invariant (LTI) SDOF system is iden-
ti�ed by its unit Impulse Response Function (IRF) to
the impulse applied on time � represented by h(t� �).
The output of such a system subjected to the Gaussian
white-noise excitation w(�) can be estimated using the
following convolution integral:

f(t) =
Z t

�1
h(t� �)w(�)d�: (12)

However, the LTV systems are characterized by a time-
varying impulse response h(t� �; �) that is dependent
on both impulse incidence time (�) as well as elapsed
time (t � �). Since the nonlinear systems can be
simulated as an LTV model, given that the system
characteristics are well-de�ned, their application in the
�eld of arti�cial record generation has gained much
attention. An LTV system, whose output to white
noise includes both types of non-stationarities, can be
de�ned by adjusting Eq. (12):

f(t) =
Z t

�1
h(t� �; �)w(�)d�: (13)

It is easy to impose the non-stationarity on the LTI's
IRF through making a set of model parameters to be
the functions of impulse incidence time (�), guarantee-
ing a time-varying Power Spectral Density (PSD) as
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Table 1. Some of the modulating functions used by researchers.

Authors Model name Expression
Bolotin [35] & Shinozuka

and Sato [27]
Exponential model q(t; �; �; ) = � fexp(��t)� exp(�t)g � < 

Amin & Ang 1968 [26] Piece-wise modulating q(t; �) =

8>>>>><>>>>>:
0 T0 � t
�1

�
t�T0
T1�T0

�2
T0 � t � T1

�1 T1 � t � T2

�1exp [��2(t� T2)�3 ] T2 � t

Saragoni & Hart 1974 [24] Gamma function q(t; �) =

8<:0 T0 � t
�1(t� T0)�2�1exp [��3(t� T0)] T0 � t

Arias et al. [36] Beta model mk(t) = �k
�
t
tf

��k �
1� t

tf

�k
Kiureghian & Crempien [15] Piece-wise linear mk(t) = �k(t� ti) + �ki; ti < t < ti+1 t1 < t2 < ::: < tn

Yeh [37] | AtB(D + tE)�1e�Ct

Sta�ord et al. [10] The Husid Envelope
Function (HEF)

E(t) =
r

4gIa
t��
p

2� exp
�� (ln(t)��)2

2�2

�
the IRF evolves. Nevertheless, given an Evolutionary
Transfer Function (ETF), i.e. H(!; �), obtained from
Priestley's [23] de�nition of the evolutionary spectrum,
one can �nd unit impulse function h(t; �) as:

h(t; �) =
1

2�

Z 1
�1

H(!; �)exp (i!(t� �)) d!

for t � �: (14)

Thus, more complicated non-stationary signals with
desired instantaneous properties may be generated
using this approach. In the proposed model by [9], the
ETF's dependence on parameters !f and �f determines
the dominant frequency and the bandwidth of the pro-
duced records. It is obvious that using a model similar
to Eq. (13) subjected to white noise results in the
generation of signals whose amplitude non-stationarity
is severely a�ected by its evolutionary spectrum. By
the idea of Rezaeian and Der Kiureghian [9], it is
possible to build an LTV with a separable amplitude
and power non-stationarity as long as the amplitude
and IRF's PSD's do not overlap:

f(t) = q(t)
�

1
�(t)

Z t

�1
(t� �; �)w(�)d�

�
; (15)

where q(t) and �2(t) represent the amplitude modulat-
ing function and the variance of the integral output,
respectively. Waezi and Rofooei used the following
EPSD along with Eq. (15) to de�ne an LTV compatible
system for the better simulation of the near-�eld pulse-
less records [38]:

S(!; t) = �
!

!f (t)

�4
�

1+
�

2�g!
!g

�2
�

�
1� !2

!f (t)2

�2
+
�

2�f (t)!
!f (t)

�2 �
1� !2

!2
g

�2
+
�

2�g!
!g

�2S0;
(16)

where �g and !g are constant model parameters and
�f and !f are the time-variant model parameters that
change linearly in time. For the same purpose, the
following EPSD as a Double-Frequency Model (DFM)
is de�ned here to be used in Eq. (15) which has non-
zero, low-frequency energy content:

S(!; t) =

1 +
�

2�f (t)!
!f (t)

�2�
1� !2

!2
f (t)

�2
+
�

2�f (t)!
!f (t)

�2

1 +
�

2�g!
!g

�2�
1� !2

!2
g

�2
+
�

2�g!
!g

�2 :
(17)

For the identi�cation of the output, only LTV dy-
namic systems, frequency domain, and time-domain
approaches can be used. Most of the frequency-domain
methods, such as Discrete Fourier Transform (DFT),
Fast Fourier Transform (FFT), etc., have their own
drawbacks in losing time-domain information. The
time-domain methods, such as autoregressive moving
average methods (ARMA) [39], have been utilized
to compensate for the weakness of frequency-domain
methods in the identi�cation of the local properties of
the signals.

Various time-frequency representations have been
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introduced for non-stationary signals from which Short-
Time Fourier Transform (STFT), wavelet, Hilbert-
Huang, and Wigner-Ville transforms have gained more
popularity. The time-frequency distributions, e.g.
Wigner-Ville distribution, use the quadratic integral
transformations which lead to a better frequency track
by eliminating some cross terms in the output [40]. The
Empirical Mode Decomposition (EMD) algorithm can
be employed along with Hilbert transform for a multi-
resolution analysis of non-stationary signals.

If the input and output of systems are known,
adaptive algorithms may be used to determine the
model parameters. The Least Mean Square method
(LMS) and Recursive Least Square method (RLS) that
use the steepest descent algorithm to determine the
unknown model' parameters are among these methods.
The applicability of such methods for the identi�cation
of LTV output-only systems is doubted due to the
large computational cost. According to the Basis
Expansion Model (BEM), the unknown IRF of the LTV
system can be described as the response superposition
of LTI systems (Single Input Multiple Output system
(SIMO)), which is adopted by some researchers to
better address LTV systems behavior [41].

Rofooei et al. used the averaged zero-crossing rate
of the acceleration signal to identify the non-stationary
Kanaii-Tajimi model's ground frequency, !g(t), while
keeping the ground damping ratio, �g(t), constant [42].
Rezaeian and Der Kiureghian used the zero-crossing
rate as well as the pos. min./neg. max. number of the
output signals to identify system parameters !f and �f
[9,18].

3. Evolutionary characteristics of the signal

3.1. Developing equations for level crossings
of the signals

When using HHT-based methods to extract the IF of
acceleration records, the obtained WIF in some cases
merely becomes a numerical average among a number
of modes with a similar energy level. Thus, it does
not relate to the physics of the phenomenon, and the
number of modes to be considered a�ects the resulting
IF. The zero crossing of a signal contains valuable
information of the evolutionary characteristics of the
signal. It is de�ned as the number of intersections of the
signal with zero-ordinate horizontal axis in any speci�c
time. According to Wiener-Khintchine theorem, for a
stationary Gaussian stochastic discrete process, Zt, of
length N with mean value, E[Zt] = �, and constant
covariance, there always exists a strictly ascending
function, F (!), for which one could have [43]:

k =
Z +�

��
cos(k!)dF (!); (18)

where k = E[ZtZt�k] de�ned for k = 0;�1; ::: is

the autocovariance of Zt. It can be proved that the
mathematical expectation of the total number of zero
crossing E[ZC1] is [44]:

cos
�
�E[ZC1]
N � 1

�
=

R �
�� cos(!)dF (!)R �
�� dF (!)

; (19)

where ! is the discrete frequency changing from �� to
�. Moreover, it can be shown that for Gaussian output
process obtained by the application of a linear �lter
L with transfer function H, the total number of zero
crossings ZCH1 can be obtained using [44]:

cos
�
�E[ZCH1]
N � 1

�
=

R �
�� cos(!)jH(!)j2dF (!)R �
�� jH(!)j2dF (!)

: (20)

By de�ning the 1st, 2nd, and kth derivatives of discrete
process, Zt, as rZt � Zt � Zt�1, r2Zt = r(rZt) =

Zt� 2Zt�1 +Zt�2, and rkZt �Pk
j=0

�
k
j

�
(�1)jZt�j ,

respectively, Eq. (20) can be used to determine their
corresponding zero crossings which are called ZC2,
ZC3, and ZCk+1, respectively, as follows:

cos
�
�E[ZCk+1]
N � 1

�
=

R �
�� cos(!)

�
sin !

2

�2k dF (!)R �
��
�
sin !

2

�2k dF (!)
:

(21)

These relations can be used to de�ne the spectral
power of any discrete signal in a procedure explained
by Kedem [44]. On the other hand, for a zero mean
Gaussian, twice di�erentiable, stationary signal fy(t)g
for �1 < t <1, with auto-covariance function R(�),
and autocorrelation function �(�), the zero crossing
rate, i.e. the total number of zero crossing in unit time,
can be determined according to Rice's Formula [31]:

E[ZC1] =
1
�
� _Y
�Y

=
1
�

"R1
0 !2S(!)d!R1

0 S(!)d!

# 1
2

; (22)

where S(!), � _Y , and �Y are the power spectral density,
standard deviation of fy(t)g, and f _y(t)g processes,
respectively. In this study, instead of total zero
crossing, the zero crossing with a positive rate will be
considered as an identi�cation tool denoted as ZC+. It
can be easily shown that for a Gaussian signal, ZC+ is
equal to the half of the total ZC obtained by Eq. (22).
Using a similar procedure, one can obtain ZC+ formula
for a non-stationary signal, y(t), with the stationary
frequency content as:

ZC+(t) =
�
1� �Y _Y (t; t)2� 1

2

2�
� _Y (t)
�Y (t)

=

�
1� �2

Y _Y (t; t)
� 1

2

2�
!c; (23)
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where �Y _Y and !c are the correlation coe�cient of
the process with its time-derivative and the central
frequency of the signal, respectively. Waezi and Ro-
fooei [38] recommended the following relation for ZC+

count of signals with non-stationary power spectrum
S(!; �), ignoring the e�ect of �Y _Y due to its negligible
e�ect on the �nal results and only considering the
slowly-varying system parameters:

E[ZC+]=
Z t

0

1
2��t

a cos

 R �
�� cos(!)S(!; �)d!R �
�� S(!; �)d!

!
d�;

(24)

where �t is the time step. While the zero crossing of
signals is related to the central frequency of the signal,
the frequency bandwidth is of equal importance for
some cases and can be related to the physical properties
of the system too.

In the case of an LTI, SDOF system, the band-
width of response of the system to white noise input
is dependent on its damping ratio. It can be proved
that the number of pos. min./neg. max. of a signal
corresponds to the frequency bandwidth of the signal.
For a stochastic Gaussian function of time, i.e. a(t), a
probability density function of the stochastic param-
eters can be de�ned as p(�; �; �) in which � = a(t),
� = _a(t), and � = �a(t). According to the central limit
theorem, it can be stated that the distributions of �
and � approach the normal distribution. The second
moment of this distribution can be estimated via the
prescribed de�nitions of �, �, and � as well as the
following correlation functions:

E[�2] =  0; E[�2] = � 000 ; E[��] = 0;

E[��] = 0; E[��] =  000 ; E[�2] =  (4)
0 : (25)

For every even number, k, it can be deduced that:

 (k)
0 = (�1)

k
2

Z 1
0

!kS(!)d!: (26)

Thus, given the covariance matrix of random vector
X = fX1; :::;XNgT de�ned according to [31] as Mij =
cov(Xi; Xj) = E [(Xi � �i)(Xj � �j)] where �i =
E(Xi), the multivariate normal distribution function
can be described as follows:

fx(x1; :::; xn) =
1p

(2�)njMjexp�
�1

2
(x� �)TM�1(x� �)

�
; (27)

where jMj is the determinant of matrix M de�ned as
follows:

M =

24 0 0  000
0 � 000 0
 000 0  (4)

0

35 : (28)

The Probability Distribution Function (PDF) of the
maxima can now be computed according to the follow-
ing multivariate normal distribution:

p(x; 0; �) =(2�)� 3
2 jM j� 1

2 exp
�

2
2jM j (M11x2

+M33�2 + 2M13x�)
�
: (29)

The probability of x having a maximum in the time
domain of [t; t+ dt] between x and x+ dx is equal to:

dP = �dtdx
Z 0

�1
p(x; 0; �)�d�: (30)

Integrating Eq. (30) over a � t � b would lead to a
number of maxima in that time period. For the total
number of positive minima in the time domain [t; t+dt],
one can write:

Pos Min = dt
Z 1

0
dx
Z 1

0
p(x; 0; �)�d�: (31)

Derivation of both sides of the above equations with
respect to time would yield the rate of negative maxima
occurrence, which can be easily calculated using the
assumed PDF described by Eq. (29):
d(Neg Max)

dt
=
d(Pos Min)

dt

=
1

4�

�s
� 

(4)
0
 000
�
s
� 000
 0

�
: (32)

Since the signal is Gaussian, it can be assumed that
the number of pos. min./neg. max. is equal; thus, the
total rate of pos. min./neg. max. is:

d(Pos Min & Neg Max)
dt

=
1

2�

�s
� 

(4)
0
 000

�
s
� 000
 0

�
=

1
2�

�s R1
0 !4S(!)d!R1
0 !2S(!)d!)

�
sR1

0 !2S(!)d!R1
0 S(!)d!

�
;
(33)

where  (k)
0 = (�1) k2

R1
0 !kS(!)d!. Based on the

foregoing discussion, Waezi and Rofooei [38] sug-
gested the following equation for pos. min./neg. max.
count for signals with non-stationary power spectrum,
S(!; �), considering slowly-varying system parameters
in Eq. (33):

E(Pos: Min: & Neg: Max:)

=
Z t

0

1
2��t

acos

 R �
�� cos(!) sin

�!
2

�2S(!; �)d!R �
�� sin

�!
2

�2S(!; �)d!

!
dt

�
Z t

0

1
2��t

acos

 R �
�� cos(!)S(!; �)d!R �
�� S(!; �)d!

!
dt: (34)
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4. Velocity and displacement zero-crossing

Velocity and displacement time histories contain ac-
centuated information about the power of the signal
harmonics with frequencies close to zero. Having
determined the velocity record's PSD, the zero crossing
of the stationary Gaussian signal can be determined
using the following formula provided by Rice (Eq. (22))
or Kedem (Eq. (19)):

cos
�

2�E[V +
1 ]

N � 1

�
=

R �
�� cos(!)SV (!)d!R �
�� SV (!)d!

; (35)

where E[V +
1 ] and SV (!) are the total number of zero-

crossing for velocity record and its PSD, respectively.
The PSD of velocity record is related to the PSD of
acceleration record, SA(!), via:

SV (!) =
SA(!)
!2 : (36)

Even though this is obtained for the stationary signals,
assuming the slow-varying conditions for the non-
stationary signals, this formula can as well be extended
to include those cases:

SV (!; t) =
SA(!; t)
!2 ; (37)

where SA(!; t) represents the EPSD of the acceleration
signal. It should be emphasized that for evolutionary
process, Y (t), de�ned by the Priestley's formula, the
time derivative of the process, i.e., Y (t), can also
be described using Eq. (9); but, the corresponding
modulating function, m̂(t; !), can be proved to have
the following relationship with m(t; !) [45]:

m̂(t; !) = _m(t; !) + (i!)m(t; !); (38)

where _m(t; !) is the rate of the evolution ofm(t; !) with
time. Since used in Eq. (14) projects the characteristics
of m(t; !) in the model introduced here, H(!; t) used
in Eq. (14) projects the characteristics of m(t; !), as
long as _m(t; !) is small compared to (i!)m(t; !) term,
the EPSD of the time derivative of any process _Y (t)
can be estimated as jH(!; t)j2!2d�(!) which is equal
to !2SY (t; !). Therefore, using numerical or analytical
evaluation, one can determine the validity of the slow-
varying assumption by comparing the values of _H(!; t)
and H(!; t)(i!).

The zero crossings of the velocity records result
from using the EPSD of a high-pass �ltered, and DFM
of Eq. (16) in a LTV system represented by Eq. (15)
is assessed to investigate the validity of the proposed
equations. Figure 2 shows the e�ciency of the proposed

Figure 2. Comparison of the zero-crossing number for the simulated and estimated velocity time histories using the Rice
(Eq. (22)) or Kedem's formula (Eq. (35)): (a) Zero crossing for �g = 13%, Fg = 2:14 Hz, Ff0 = 3:89 Hz, Ffn = 9:28 Hz,
�f0 = 21%, �fn = 10%, �c = 7%, Fc = 0:41 Hz, (b) zero crossing for �g = 47%, Fg = 5:39 Hz, Ff0 = 2:91 Hz, Ffn = 8:61
Hz, �f0 = 44%, �fn = 26%, �c = 73%, Fc = 0:86 Hz, (c) zero crossing for �g = 37%, Fg = 1:59 Hz, Ff0 = 8:04 Hz,
Ffn = 4:14 Hz, �f0 = 73%, �fn = 13%, �c = 28%, Fc = 0:09 Hz, and (d) zero crossing for �g = 11%, Fg = 5:8 Hz,
Ff0 = 4:51 Hz Ffn = 2:85 Hz, �f0 = 17%, �fn = 13%, �c = 47%, Fc = 0:25 Hz.



Z. Waezi and F.R. Rofooei/Scientia Iranica, Transactions A: Civil Engineering 24 (2017) 2817{2831 2825

relation in computing the zero crossing of a velocity
record calculated using Rice (Eq. (22)) or Kedem's
formula (Eq. (35)) versus Monte Carlo simulations. As
it is apparent, there is good agreement between the
simulated zero crossings and the corresponding values
determined by Kedem or Rice's formula.

The same procedure can be used to �nd the zero
crossing of the displacement records by substituting the
PSD of the displacement record in Eq. (35):

cos
�

2�E[D+
1 ]

N � 1

�
=

R �
�� cos(!)SD(!)d!R �
�� SD(!)d!

; (39)

where E[D+
1 ] and SD(!) are the total number of zero-

crossing for velocity record and its PSD, respectively.
The forgoing procedure of estimating velocity and dis-
placement zero-crossing for LTV systems was applied
to the DFM, and Non-Stationary Modi�ed Kanai-
Tajimi (NSMKT) model was introduced by Waezi
and Rofooei [38]. Figure 3 displays the di�erence
between the zero-crossing of the Monte Carlo sim-
ulations and those estimated by Rice (Eq. (22)) or
Kedem's (Eq. (39)) formulas. There is good agreement
between the zero-crossing estimation by Kedem's or

Rice's formulas and the simulated records. Part of the
di�erences between the Monte Carlo simulations and
the analytic results is due to initial conditions used
in the simulations while not being considered in the
analytic calculations.

For both cases, the resulting zero crossing of a
velocity time history fairly matches with those ob-
tained from Monte Carlo simulations. Even though
the displacement time history zero crossing obtained
for DFM is in good agreement with those of Monte
Carlo simulation, but in the case of NSMKT model,
the di�erences are signi�cant. The main reasons for
the di�erences between the proposed formulas based
on Kedem or Rice's relation with those obtained by
simulations include: 1) the smaller duration of the
simulated records; 2) normalization of the acceleration
record's standard deviation to one; and 3) the variation
rate of the model parameters. With regard to the
�rst reason, since the IRF obtained from EPSD has
in�nite duration while there is no excitation for t < 0;
therefore, for the beginning part of the records, the
output process will have a transient phase arising from
zero initial condition. For an LTV system, it can be
stated that:

Figure 3. Comparison of the zero-crossing number for the simulated and estimated displacement time histories for
ensembles corresponding to speci�c model parameters: (a) Displacement zero crossing �g = 49%, Fg = 0:6 Hz, Ff0 = 9:67
Hz, Ffn = 6:36 Hz, �f0 = 65%, �fn = 61%, �c = 24%, Fc = 0:37 Hz, (b) displacement zero crossing �g = 51%, Fg = 1:24 Hz,
Ff0 = 1:17 Hz, Ffn = 6:59 Hz, �f0 = 18%, �fn = 81%, �c = 55%, Fc = 0:45 Hz, (c) displacement zero crossing �g = 52%,
Fg = 4:05 Hz, Ff0 = 5:07 Hz, Ffn = 8:66 Hz, �f0 = 67%, �fn = 11%, �c = 60%, Fc = 0:50 Hz, and (d) displacement zero
crossing �g = 45%, Fg = 4:43 Hz, Ff0 = 5:69 Hz, Ffn = 5:69 Hz, �f0 = 73%, �fn = 73%, �c = 10%, Fc = 0:30 Hz.
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a(n) =
n�1X
k=0

w(k)h(n� k; k)

=
1X

k=�1
U(k)w(k)h(n� k; k); (40)

where w(k), U(k), and a(n) represent the ideal discrete
white noise, unit-step function, and the corresponding
output acceleration process, respectively. The evolu-
tionary Discrete-Time Fourier Transform (DTFT) can
be de�ned as follows:

A(!; n) =
n�1X
j=0

a(j)e�i!j

=
1X

j=�1

1X
k=�1

Rect(j; n)U(k)w(k)h(j

� k; k)e�i!(j) =
+1X

k=�1
U(k)w(k)e�i!k

+1X
j=�1

Rect(j; n)h(j � k; k)e�i!(j�k)

=
1X

k=�1
U(k)w(k)e�i!kĤn(!; k); (41)

where Ĥn(!; k) is
Pn�1
j=0 h(j � k; k)e�i!(j�k) and rep-

resents the result of DTFT of multiplication of a
truncation window, R(j; n), with n-size width and the
IRF represented by h(j � k; k). It is obvious that
as n gets larger, Ĥn(!; k) approaches the prescribed
evolutionary transfer function, H(!; k), de�ned by
Eq. (14) as follows:

H(!; k) =
+1X
j=�1

h(j � k; k)e�i!(j�k): (42)

However, for small values of n, Ĥn(!; k) is obtained
through the convolution integral of two DTFTs corre-
sponding to the n-sized rectangle window and the IRF
which changes the frequency content of the IRFs up
to the considered time. Figure 4 illustrates that as the
size of the symmetric truncation window decreases, the
output Fourier Transform deviates from the ideal Dirac
delta, �(!), and some energy leaks to the frequencies
other than zero. Due to the procedure of truncation,
the low-frequency part of the EPSD for the early
part of the output process is accentuated, and its
reection on the displacement record's power spectrum
is intensi�ed. Using the EPSD de�nition, it can be
concluded that:

Figure 4. The Fourier transform of the rectangular
truncation windows with di�erent widths.

jA(!; n)j2 = �2
w

nX
k=0

jĤk(!; k)j2; (43)

where �w is the standard deviation of the input white
noise.

For the second reason, the normalization of the
variance of the output signal from LVT system changes
the zero crossing of the displacement signal. This is
due to the fact that multiplication of the output signal
by q(t)=�(t) will a�ect the low-frequency part of the
power spectrum. By means of the relationship between
convolution output, a(t), and the resulted normalized
record, â(t)':

â(t) =
1
e(t)

a(t); (44)

where e(t) = �(t)
q(t) , one can estimate the zero-crossing

rate as follows:

ZCâ =
� _̂a
�â

=

s
ZC2

a � _e(t)2

e(t)2 : (45)

It is seen that while _e(t)2

e(t)2 term is negligible for a
smooth �(t), there is no much di�erence between ZCâ
and ZCa. However, the e�ect of multiplication by
1=e(t) may be signi�cant on the displacement signal
since it is highly sensitive to the low-frequency content.
Regarding the third reason, the violation of slow-
varying model parameters leads to the overestimation
of the displacement record zero crossing for NSMKT
model, as clearly seen in Figure 5.

To address this problem, the following analytic
equation for estimating �(t) of a(n) =

Pn
k=0 w(k)h(n�

k; k) is considered:

�(n)2 =E[a(n)2] =
nX
k=0

nX
j=0

w(k)w(j)h(n� j; j)h

(n� k; k) = �2
w

nX
k=0

h2(n� k; k): (46)

It can be claimed that using this analytic equation
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Figure 5. The overestimation of the displacement record
by analytic formula due to the normalization process.

instead of estimating the zero-crossing rate of the dis-
placement record directly from the normalized record,
one can extract a(n) from the initial record with
multiplication of the target record by �(n)=q(n), in
which q(n) is the amplitude envelope of the original
record.

The e�ciency of the proposed method in deter-
mining the zero-crossings of the displacement records is
investigated by examining the output signals obtained
from an LTV system with the NSMKT model de�ned
by Eq. (16). Monte Carlo simulations based on 5000
sets of model parameters, f!g; �g; !f0 ; !fn ; �f0 ; �fng,
are performed with 20 realizations for each set. Table 2
summarizes the methods used for the evaluation of
the displacement records of zero crossing based on the
proposed method. The second column of the table
indicates if the Rice or Kedem's formula (Eq. (22)
or Eq. (19)) has been employed in each method or
not. The third column describes the EPSD used
in the Rice or Kedem's formula which may be the
analytic EPSD of Eq. (16) or real-time evaluated EPSD

through autocorrelation function of the record. The
forth column indicates whether the instantaneous or
averaged EPSD (up to the desired time) of the record
has been used for the evaluation of the displacement
zero-crossing. The �fth column determines if the
methods use the modi�cations described by Eq. (43) to
get adjusted to the e�ects of the truncation. In order
to consider the e�ect of the normalization of the output
signal on the desired modulating function, one method
uses the convolution integral of the PSD for 1=e(t) and
a(t) in Eq. (44). Figure 6 shows the average error
for 5000 cases of the simulation between the simulated
and semi-analytically calculated displacement records
of zero-crossings for each method. As seen, using
the methods, which do not consider the truncation
error, leads to large estimation error. On the other
hand, even though the improved methods yield better
results, they do not necessarily end up with the perfect
estimation of the displacement time history's crossing.
The overall assessments indicate that impressive results
have been achieved by \ZC Kedem Truncated" with
an average error of 15%, while it does not include the
normalization e�ect and improves the performance of
the original Kedem formula by reducing its average
error by at least 70%. The undesirable results of the
\ZC Kedem Truncated Env." method that considers
the e�ect of the normalization are due to the fact
that the outcome EPSD of the multiplication of two
signals cannot be estimated by the convolution of their
respective EPSDs due to the missing phase information
of the signals. It seems that the contribution of the
normalization of the output to a desired modulating
function is of lower importance compared with that
caused by the truncation issue.

5. Simulation and results

Having de�ned the 4 time-domain measures of fre-
quency Non-Stationarity (NS) (acceleration, velocity,
and displacement time history records' zero-crossings

Table 2. The methods used for the evaluation of the displacement zero crossing.

Method Equation PSD
used

Averaged or
instantaneous

PSD

Truncation
e�ect

Envelope
function

e�ect
ZC Rice Rice Disp. HPF PSD Instantaneous No No

ZC Kedem Kedem Disp. HPF PSD Instantaneous No No
ZC Kedem mean autocorrelation Kedem Autocorrelation PSD Instantaneous No No

ZC Kedem mean displacement PSD Kedem Disp. HPF PSD Averaged No No
ZC Kedem instantaneous displacement Kedem Disp. HPF PSD Instantaneous No No

ZC Rice mean autocorrelation Rice Autocorrelation PSD Instantaneous No No
ZC Kedem truncation modi�ed Kedem Disp. HPF PSD Averaged Yes No

ZC Kedem truncation & envelope modi�ed Kedem Disp. HPF PSD Averaged Yes Yes
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Figure 6. The average error between the simulated displacement zero-crossing and the values obtained from the proposed
semi-analytic methods.

as well as acceleration pos. min./neg. max.) inde-
pendent of the Amplitude Non-Stationarity (ANS),
it is now possible to propose a novel algorithm for
the generation of the NS acceleration records for a
\target" record. In that regard, an appropriate EPSD
is adopted for which IRF is determined by inverse
Fourier transform. According to the four time-domain
measures, an objective function consisting of the sum
of the squares of the di�erence between simulated and
seed records is de�ned which can be minimized using
any optimization tool by adjusting model parameters.
Having obtained the IRF model parameters and taking
advantage of independency of FNST measures from
ANST, any amplitude modulating function may be
selected from Table 1.

Waezi and Rofooei [38] used the NSTMKT model
along with only acceleration record's zero crossing and
pos. min./neg. max. to simulate 106 near-�eld pulseless
records with Rrup less than 10 km. The optimized
model's IRF parameters, !g; �g; !f0 ; !fn ; �f0 ; �fn , are
determined according to the minimization of the fol-
lowing objective function:

F (!g; �g; !f0 ; !fn ; �f0 ; �fn) =
X�

PMNMsim

� PMNMTarget

�2

+
X

(ZCsim�ZCTarget)2; (47)

In the above equation, PMNM and ZC stand for
the cumulative counts of the pos. min. and neg. max.
and zero crossing of the acceleration process, respec-
tively. The \sim" and \target" subscripts represent
the obtained values of the simulated and the target
records, respectively. The synthetic records are sim-
ulated according to Eq. (15) where q(t) is assumed
to be the piece-wise modulating function of Table 1.
The appropriate modulating function's parameters are
determined in a way that their Arias intensity curve
�ts the original's record e�ectively.

The compatibility of the output records is inves-
tigated using the di�erence between spectral displace-
ments and zero crossing as well as pos. min./neg. max
[38]. Even though the simulations were satisfactory
for the low-period region of the response spectrum, the
outcome does not indicate such a proper long-period
spectral compatibility. A part of this outcome may
stem from the fact that the utilized criteria for the
estimation of the IRF parameters do not take into
account the low-frequency content of the PSD. To over-
come this problem, the same simulations are repeated
here, but the four compatibility criteria mentioned
in Section 4 are used to track the evolution of the
EPSD in time for both high and low-frequency regions
of the spectrum. The proposed approach capable of
considering truncation issue in the estimation of the
displacement record zero crossings has been utilized
in the process of target record simulations. Figure 7
compares the empirical distribution of the spectral
displacement error for the simulation of 106 near-�eld
pulse-less records used by Waezi and Rofooei [38] as
seed records. Two curves in this �gure show the results

Figure 7. The comparison of the empirical distributions
of the average Spectral Displacement (SD) error of 106
near-�eld pulse-less records simulation with/without
considering the velocity and displacement crossing
compatibility.
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of the simulation based on methods that are similar
in considering accelerations record's zero crossing and
pos. min./neg. max. counts, but di�erent in considering
velocity and displacement records' zero crossings in
the simulation process. The results indicate that via
contemplating the e�ect of low-frequency spectrum
by incorporating the displacement and velocity zero
crossings into the simulation process, the compatibility
of the resulted non-stationary records with the seed
records has been drastically improved. This outcome
provides the evidence for the necessity of including the
low-frequency-related indices, such as low-level cross-
ings in the simulation of the non-stationary records
based on LTV systems. It is also worthy to notice
that only time-domain characteristics of the target
records are used to evaluate the model parameters'
results for proper response spectrum compatibility of
the simulated records with the target one. In other
words, the results of [9,18,38] show that �nding the
model's parameters to satisfy the compatibility of the
acceleration processes' zero-crossing and pos. min. &
neg. max. ensures the compatibility of the short-
period region of the response spectrum. But, in order
to get acceptable response spectrum match in the long-
period region, other indices should be added, such that
velocity and displacement's zero crossings are shown to
be the best candidates to do so. This is an indication
that instead of tracking the EPSD or the response
spectrum matching, one can use the time-domain
EPSD-related indices of the energy content evolution,
and these criteria could lead to proper agreement in
the response spectrum of the simulated records with
those of target record. A similar notion of tracking
the non-stationarity of the ground-motion by means of
time-domain indices is also used by Rezaeian et al. [46]
to track the nonstationary characteristics of the 1994
Norhtridge earthquake records.

6. Conclusion

This paper introduces a new method for investigat-
ing the evolutionary spectrum of the output signals
from LTV systems with time-varying IRF. Using the
assumption of semi-stationarity, the analytic expres-
sions describing zero crossing and pos. min. /neg.
max. cumulative curves are derived for the NST
signals with known EPSD resulted from LTV systems
subjected to white-noise input. Due to the insu�-
ciency of these two measures for proper tracking of
the low-frequency energy contents, the velocity and
displacement zero crossings of the output signals are
suggested as further criteria of EPSD compatibility.
Considering the common issues concerning the eval-
uation of these two measures, the analytic method
of estimation is introduced and their drawbacks are
discussed using the results obtained from 5000 Monte

Carlo simulations. Finally, a general algorithm to
generate the earthquake acceleration records according
to a seed record is suggested using LTV systems and
the aforementioned four time-domain measures. The
proposed algorithm is applied to simulate 106 near-�led
pulse-less acceleration records, and the results indicate
the improved compatibility of the generated records
with the target one because of the four-part objective
function and the modi�cation to the displacement zero-
crossing estimation.
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