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Abstract. Cutting tool wear in machining processes reduces the product surface quality,
a�ects the dimensional and geometrical tolerances, and causes tool breakage during the
metal cutting. Therefore, online tool wear monitoring is needed to prevent reduction in
machining quality. An Arti�cial Neural Network (ANN) model was developed in this study
to predict and simulate the tool ank wear. To achieve this aim, an experiment array
was provided using full factorial method, and the tests were conducted on a CNC lathe
machine tool. Vibration amplitude of the cutting tool and cutting forces were considered as
criterion variables in monitoring the tool ank wear. For designing the model, the cutting
parameters, cutting forces, and vibration amplitude were de�ned as model inputs, and tool
ank wear was selected as an output. The model was also introduced as a simulation block
diagram to be used as a useful model in online and automated manufacturing systems.
The estimated and measured results were then compared with each other. Based on the
comparison results, maximum squared error values are under 6 � 10�14 mm, and R2 is 1,
meaning that the designed model can predict the results with high and reliable accuracy.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, Tool Condition Monitoring systems (TCM)
are essential to establish unmanned and automated
manufacturing systems. However, tool monitoring is
a di�cult task due to the nonlinear system of most
machining processes [1]. Monitoring the cutting tool
wear during the machining is one of the important
phases of the tool condition monitoring. Cutting tool
wear failures increase machining operation time by
20%. Tool wear directly a�ects surface roughness,
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dimensional precision, and cost of the �nal product.
Also, cutting tool wear causes sudden tool breakages,
resulting in a costly machine tool damage.

Two methods are available for tool wear mea-
surement: direct and indirect methods. In the direct
method, tool wear can be obtained directly. For
instance, Kurada and Bradley [2] applied direct method
using laser to acquire tool wearing. In indirect methods
of wear estimation, the obtained signals are applied
into signal features, used to predict the values of wear
by a suitable wear model. Sche�er and Heyns [3] and
Balazinski et al. [4] reported that most TCM systems
employ forces and only a few systems utilize vibration
signal as input parameters. Combinations of both
force and vibration signals are more appropriate to
improve the performance of prediction models. Various
methods have been used by researchers to estimate and
predict the tool wear during machining process. Zhou,
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Kasashima, and some other researchers used a new
method that makes use of wavelet techniques to moni-
tor the cutting process and estimate tool failure in face
milling operation [5]. Bhattacharyya and Sengupta
used an OLTCM method based on time features And
Multiple Linear Regression (MLR) models by using
force signal to introduce a statistical model [6]. These
studies have gained di�erent degrees of success in tool
wear prediction; however, using modern methods to
recognize the tool wear will increase the performance
of the developed models. Among the modern methods,
Arti�cial Neural Networks (ANN) are a robust tool in
the prediction and estimation of the nonlinear incidents
such as tool wear in machining. Also, ANN has a
lot of other important applications in various �elds
of engineering sciences. Many review studies were
reported with applications of ANN in the �eld of
drying processes for forecasting, atmospheric sciences,
sizing of solar photovoltaic systems, and modeling of
energy systems, such as modeling of heat exchangers,
estimation of heat exchanger parameters, etc. [7,8].

In the �eld of machining, ANN method has
been used by various researchers to model the cutting
processes in recent years. Bukkapatnam et al. [9]
developed an ANN for predicting the tool ank wear.
In this model, the extracted features are given to the
ANN model and the ank wear is estimated. J.T.
Lin et al. [10] used the regression analysis and ANN
method for monitoring the tool wear. _Ibrahim et
al. [11] developed a new method for monitoring the
tool wear using ANN method.

Cutting force is one of the best variables which
reects the condition of the cutting process during
the machining [12,13]. Therefore, the procedure of
the cutting force monitoring has received attention of
many researchers to detect the tool condition, work
piece accuracy, etc. [14-21]. Many studies have been
conducted to implement an e�ective tool to prevent
the tool breakage by monitoring the cutting force [22].

Vibration sensing methods are one of the other
important approaches which have been tried for tool
wear monitoring and estimation by various researchers
in recent years [23-25]. The vibration types generated
during the machining operation are divided into vibra-
tions which are:

(i) Dependent on the cutting process and tool wear;

(ii) Independent of the cutting process and tool wear.

Since the tool wear is a result of the cutting operation,
vibrations during the machining operation must be
monitored and saved to generate the vibration and
tool wear relationships. Tool wear happening causes
an increase in cutting tool vibration amplitudes which
can be used as a criterion for tool condition wear and
tool life [23].

The goal of this study is to establish a robust tool
wear estimation model for improving the extenuation
of the past studies. So, by applying the cutting force
and vibration amplitude values, the tool ank wear is
predicted in turning operation. MATLAB program was
applied for designing the prediction model. Arti�cial
neural network model was utilized for the prediction of
ank wear in this system. In the ANN model, cutting
parameters, vibration and cutting forces were regarded
as the inputs, and the wear rate was considered as
the output parameters. Signals were obtained directly
from the sensor by the experimental data. Then, wear
rate is predictable from the obtained result of ANN
method. To enhance the performance of the method in
relation to the other studies, the model was simulated
to be applicable to machine tools, adaptive control, and
automated systems. Therefore, the created simulation
block diagram can be easily used with machine tool
feed and spindle drive block diagrams to establish
an adaptive cutting force control system. Also, the
introduced method in this study is more practical and
easy for small machining plants without any need for
any extra mathematical modeling. Moreover, based on
the obtained error values, the results of the developed
model in this study are more accurate and reliable.

2. Experimental work and procedure

In this study, in addition to cutting forces, vibration
amplitude was measured to estimate the amount of
wear. Two variables to estimate wear were used to
ensure the reliability of the estimation and monitoring
processes. The experiments were designed using full
factorial method (Table 1). A turning CNC machine
tool (JohnfordTC-35 CNC) was used for conducting
the experiments. A Sandvik-Coromant insert (TNMG
1604-QM H13) was selected as the cutting tool along
with a TIZIT Simple (CTANR 2525M16) tool holder.
The insert geometries are given in Figure 1 and Table 2.
The material used for machining was SAE 4140 with
�100 � 1000 mm of dimension. Chemical properties
of the work piece are given in Table 1. Chemical
composition and mechanical properties of the mate-

Figure 1. Geometry of the insert and tool holder.
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Table 1. The used experiment array.

N V f d a F Vb
Vb

(model)
N V f d a F Vb

Vb
(model)

1 110 0.22 0.75 1.89 526.183287 0 0.0069 55 135 0.17 1.25 2.21 795.3483514 0.2 0.196
2 110 0.22 0.75 2.18 547.6474923 0.1 0.105 56 135 0.17 1.25 2.41 841.8509369 0.3 0.297
3 110 0.22 0.75 2.36 594.0177922 0.2 0.197 57 160 0.17 1.25 1.92 616.4862577 0 0.0074
4 110 0.22 0.75 2.52 639.1632557 0.3 0.298 58 160 0.17 1.25 2.11 681.8696716 0.1 0.101
5 135 0.22 0.75 1.91 476.5769542 0 0.0069 59 160 0.17 1.25 2.33 792.0298596 0.2 0.195
6 135 0.22 0.75 2.03 507.906423 0.1 0.103 60 160 0.17 1.25 2.51 830.876766 0.3 0.295
7 135 0.22 0.75 2.22 549.6707408 0.2 0.196 61 110 0.22 1.25 1.91 869.5817518 0 0.0069
8 135 0.22 0.75 2.41 607.8317817 0.3 0.296 62 110 0.22 1.25 2.06 918.6134585 0.1 0.097
9 160 0.22 0.75 1.92 425.9882627 0 0.0069 63 110 0.22 1.25 2.38 1071.060142 0.2 0.197
10 160 0.22 0.75 2.1 461.3686162 0.1 0.103 64 110 0.22 1.25 2.59 1105.857864 0.3 0.303
11 160 0.22 0.75 2.31 494.4350311 0.2 0.197 65 135 0.22 1.25 1.94 745.2126387 0 0.0071
12 160 0.22 0.75 2.49 550.7640148 0.3 0.298 66 135 0.22 1.25 2.06 796.4092002 0.1 0.098
13 110 0.17 0.75 1.87 488.4653561 0 0.00694 67 135 0.22 1.25 2.22 870.6964902 0.2 0.196
14 110 0.17 0.75 2.11 542.4516931 0.1 0.103 68 135 0.22 1.25 2.49 911.0525741 0.3 0.303
15 110 0.17 0.75 2.29 590.8054524 0.2 0.197 69 160 0.22 1.25 1.98 752.4570921 0 0.0067
16 110 0.17 0.75 2.4 619.5714961 0.3 0.298 70 160 0.22 1.25 2.16 793.7415099 0.1 0.102
17 135 0.17 0.75 1.89 431.1191696 0 0.00695 71 160 0.22 1.25 2.39 888.3170206 0.2 0.201
18 135 0.17 0.75 2.01 457.529607 0.1 0.102 72 160 0.22 1.25 2.61 914.8680253 0.3 0.297
19 135 0.17 0.75 2.19 505.4190845 0.2 0.196 73 110 0.27 1.75 1.97 1381.073858 0 0.0069
20 135 0.17 0.75 2.38 542.4799135 0.3 0.296 74 110 0.27 1.75 2.12 1460.15102 0.1 0.096
21 160 0.17 0.75 1.88 421.4033879 0 0.00694 75 110 0.27 1.75 2.51 1542.516775 0.2 0.197
22 160 0.17 0.75 2.03 461.4182598 0.1 0.101 76 110 0.27 1.75 2.75 1643.350237 0.3 0.295
23 160 0.17 0.75 2.22 513.6738995 0.2 0.197 77 135 0.27 1.75 2.01 1312.025489 0 0.0066
24 160 0.17 0.75 2.39 566.2579763 0.3 0.295 78 135 0.27 1.75 2.13 1390.799955 0.1 0.103
25 110 0.27 0.75 1.91 605.464956 0 0.0071 79 135 0.27 1.75 2.31 1472.302039 0.2 0.195
26 110 0.27 0.75 2.21 670.7321351 0.1 0.102 80 135 0.27 1.75 2.61 1570.53505 0.3 0.299
27 110 0.27 0.75 2.39 679.2722398 0.2 0.195 81 160 0.27 1.75 2.01 1239.966532 0 0.0075
28 110 0.27 0.75 2.58 681.4264433 0.3 0.298 82 160 0.27 1.75 2.22 1318.344271 0.1 0.106
29 135 0.27 0.75 1.91 578.6207739 0 0.0068 83 160 0.27 1.75 2.51 1373.1128 0.2 0.204
30 135 0.27 0.75 2.09 609.4374455 0.1 0.103 84 160 0.27 1.75 2.72 1413.593272 0.3 0.296
31 135 0.27 0.75 2.28 641.8808301 0.2 0.198 85 110 0.17 1.75 1.92 941.9855529 0 0.0068
32 135 0.27 0.75 2.48 662.4801884 0.3 0.298 87 110 0.17 1.75 2.41 1133.158665 0.2 0.203
33 160 0.27 0.75 1.94 564.6502556 0 0.0068 86 110 0.17 1.75 2.06 1030.021216 0.1 0.096
34 160 0.27 0.75 2.15 585.6491377 0.1 0.101 88 110 0.17 1.75 2.6 1178.000535 0.3 0.304
35 160 0.27 0.75 2.33 626.9278266 0.2 0.202 89 135 0.17 1.75 1.92 918.1398415 0 0.0082
36 160 0.27 0.75 2.53 653.8333929 0.3 0.301 90 135 0.17 1.75 2.08 1023.888617 0.1 0.095
37 110 0.27 1.25 1.93 928.5471262 0 0.0062 91 135 0.17 1.75 2.23 1128.235685 0.2 0.195
38 110 0.27 1.25 2.09 956.3385088 0.1 0.105 92 135 0.17 1.75 2.5 1164.430332 0.3 0.301
39 110 0.27 1.25 2.45 1000.902305 0.2 0.196 93 160 0.17 1.75 1.94 891.9758965 0 0.0067
40 110 0.27 1.25 2.64 1054.147666 0.3 0.296 94 160 0.17 1.75 2.16 983.5141077 0.1 0.101
41 135 0.27 1.25 1.96 863.3643016 0 0.00722 95 160 0.17 1.75 2.39 1089.082641 0.2 0.2
42 135 0.27 1.25 2.09 921.2229525 0.1 0.103 96 160 0.17 1.75 2.6 1133.880505 0.3 0.301
43 135 0.27 1.25 2.26 967.0207161 0.2 0.197 97 110 0.22 1.75 1.95 1183.488707 0 0.0075
44 135 0.27 1.25 2.56 1000.436551 0.3 0.298 98 110 0.22 1.75 2.07 1291.051105 0.1 0.102
45 160 0.27 1.25 1.96 806.514104 0 0.0074 99 110 0.22 1.75 2.45 1337.684274 0.2 0.196
46 160 0.27 1.25 2.17 871.29157 0.1 0.101 100 110 0.22 1.75 2.73 1353.697416 0.3 0.301
47 160 0.27 1.25 2.36 925.3075165 0.2 0.203 101 135 0.22 1.75 1.99 1159.960631 0 0.00827
48 160 0.27 1.25 2.57 962.1112202 0.3 0.304 102 135 0.22 1.75 2.11 1241.587415 0.1 0.103
49 110 0.17 1.25 1.89 670.5687521 0 0.0072 103 135 0.22 1.75 2.28 1290.81065 0.2 0.197
50 110 0.17 1.25 2.03 711.5042912 0.1 0.098 104 135 0.22 1.75 2.55 1326.516853 0.3 0.296
51 110 0.17 1.25 2.34 796.2878718 0.2 0.197 105 160 0.22 1.75 1.97 1151.613924 0 0.0068
52 110 0.17 1.25 2.51 857.1547418 0.3 0.297 106 160 0.22 1.75 2.19 1224.685614 0.1 0.104
53 135 0.17 1.25 1.91 639.6655376 0 0.0068 107 160 0.22 1.75 2.43 1260.990692 0.2 0.197
54 135 0.17 1.25 2.03 697.5514318 0.1 0.102 108 160 0.22 1.75 2.68 1287.31628 0.3 0.298
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Table 2. Geometric speci�cations of the cutting tool.

Insert Sandvik TNMG 16 04 04-QM H13A

Geometric
values

Insert thickness
(S)

I.C size
(IC)

Nose radius
(RE)

Insert weight
(WT )

Cutting edge length
(L)

4.7625 mm 9.525 mm 0.4 mm 0.007 kg 16.4978 mm

Table 3. Chemical properties of the work piece.

Work piece SAE 4140 (AISI 4140)

Chemical
compositions

(%)

C Si Mn Cr P S Mo

0.38 0.15 0.75 0.80 0.035 0.04 0.15

-0.43 -0.30 -1.00 -1.10 -0.25

Table 4. Mechanical properties of the material.

Work piece SAE 4140 (AISI 4140)

Properties of
the material

Tensile strength
(MPa)

Yield strength
(MPa)

Treatment Hardness
(HB)

Impact strength
J (Izod)

Elastic resistivity
(10�9 
-m)

655 417.1 Annealed at 815�C 197 54.5 222

rial are given in Tables 3 and 4. A Dino Capture
microscope was applied to measure the ank wear
during the test conducting. A TV300 type vibration
sensor was used for measuring the vibration signal
amplitudes. To evaluate the vibration conditions, the
displacement, acceleration and velocity variables can
be measured by the sensor. The sensor measures
the Root Mean Square (RMS) of the variables. The
accelerations between 10 Hz-10 KHz were measured
as the monitoring variable in this study. The signals
were received from cutting region and transferred to
data viewer program for the analysis of the results.
Cutting forces were measured using a Kistler 9272 4-
component dynamometer in three directions including
Fc (cutting force), Ft (thrust force), and Fr (radial
force). Tool ank wear values were measured on the
clearance face between 0-0.3 for a new and worn tool,
respectively, based on ISO3685 standard. Figure 2
shows the experimental setup of the tests.

The tool ank wear (Vb) limits were selected
from 0 to 0.3 mm as: 0, 0.1, 0.2, 0.3 mm for new,
relatively worn, highly worn, and worn out tools before
starting the tests. By applying the wear values and
full factorial method, a total of 108 experiments were
conducted to measure the magnitude of cutting force
and vibration amplitude during the machining process.
The experiments have been conducted in di�erent
cutting speeds (V ), cutting depth (d), cutting feed (f),
cutting force (F ), and vibration amplitude (a). As
mentioned earlier, among the measured variables by
the vibration sensor, the amplitudes of the acceleration
signals were saved and used for tool wear monitoring.
Indeed, there are three forces in the machining area
including Fc (cutting force), Ft (thrust force), and Fr

Figure 2. Experimental setup of the tests on CNC
machine tool including dynamometer and vibration sensor.

(radial force), resulting from the metal cutting process.
The value of the resultant cutting force was used as
the cutting force variable in tool wear monitoring as
follows:

F =
q
F 2
c + F 2

t + F 2
r : (1)

3. Arti�cial neural networks

Neural networks are data processing systems consisting
of a large number of simple, highly interconnected
arti�cial neurons in an architecture inspired by the
structure of the brain. They have the ability to
learn from the experience in order to improve their
performance and to adapt themselves to changes in the
environment [26,27].
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Figure 3. Architecture of a typical multi-layer
feedforward neural network.

The typical network has 1 input layer, 1 or more
hidden layers, and 1 output layer. Each layer has
some units corresponding to neurons. The units in
neighboring layers are fully interconnected with links
corresponding to synapses. The strengths of the
connections between 2 units are called \weights." The
back propagation neural network model is one of the
most commonly used ANN models, whose application
stretches to almost every �eld of the sciences. As shown
in Figure 3, a typical back propagation neural network
has three layers: the input layers, the hidden layers,
and the output layers. The optimization procedure
of the network is conducted by training the network
based on the experiments. The method employed in
the training of the ANN may depend upon the ANN
architecture, the intended purpose of the ANN, and
even the resources available in developing the system.
The used method in this study, i.e. supervised learning,
implies that there is prior knowledge of the system to be
modelled in the form of input-output pairs. Therefore,
the conducted experiments are used to estimate the
output values.

In every hidden and output layers, the processing
unit sums its input from the previous layer, and then
applies the activation function to compute its output to
the next layer according to the following equations [28]:

v =
nX
i=0

wijxi; or v =
nX
i=0

wijxi + b; (2)

where wij is the weight from node i in the input layer
to node j in the hidden layer; xi is the ith input
element; n is the number of nodes in the input layer.
In the �rst stage, the values of weights are selected
arbitrarily. After obtaining the results, a nonlinear
activation function is used to regulate the output of
a node, shown as follows:

y = F (v); (3)

where F (v) is the output of the jth node in the hidden
layer. Subsequently, output from the hidden layer is

used as inputs to the output node. Finally, the overall
response from the network is obtained via the output
node in the output layer. The sum of error squares for
the nth iteration is de�ned as [28]:

kX
i=1

Ei =
1
2

kX
i=1

(hi � yi)2; (4)

where (hi � yi)2 square of error is signal at the output
neuron and is the di�erence between desired response
(h) and computed response (y). Based on the errors,
the weights are updated in such a way that the error
signal is minimized to the required threshold.

After training the network and obtaining the
weights, all of the parameters are normalized and
adjusted between 0 and 1. The weights of the �rst
layers are applied into Eq. (2) to aggregate the neuron
values.

Then, the results of the above equation are
substituted into the following equation to obtain the
activated value.

F (v) =
2�

1 + e(�2�v)
� � 1: (5)

The above mentioned process is conducted for all
of the connections, and the results of the activation
function are assigned to the neurons of the second
layer. The same process is continued for the second
and third layers to �nd the predicted result of the �rst
experiment.

For activating the values of any neuron, an acti-
vation function is applied to ANN modeling. There are
many activation functions used in modeling the linear
and nonlinear incidents. However, hyperbolic tangent
sigmoid (Tansig) and linear function (Purelin) are the
most common used activation functions. Hyperbolic
tangent sigmoid represents a nonlinear function as
follows:

T =
2�

1 + e(�2�x)
� � 1: (6)

Also, the linear function is de�ned as follows:

P =

8><>:1 x > 1
x� 1 < x > 1

�1 x < �1
(7)

The diagrams of the tansig and purelin activation
functions are given in Figure 4.

4. Results and discussion

4.1. ANN modeling
For accurately selecting the input parameters for ANN
model, an analysis should be used to determine the
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Table 5. ANOVA e�ect tests.

Parameters Nparm DF Sum of squares F ratio Prob > F

Cutting speed, V (m/min) 1 1 0.03545450 18.4915 < 0:0001
Cutting feed, f (mm/rev) 1 1 0.17786155 92.7646 < 0:0001
Cutting depth, d (mm) 1 1 0.14689249 76.6125 < 0:0001
Resultant cutting force, F (N) 1 1 0.12922667 67.3988 < 0:0001
Vibration amplitude, a (m/s2) 1 1 0.12594594 65.6877 < 0:0001

Figure 4. Diagrams of the tansig and purelin activation
functions.

signi�cant parameter inuencing the tool wear [29].
Therefore, the e�ects of parameters were examined on
tool ank wear by taking advantage of the ANOVA
analysis. As shown in Table 5, since the P -value for all
inputs is less than 0.05, the e�ects of all materials on
tool ank wear are meaningful. However, the maximum
F -ratio for cutting feed (92.76) among the cutting
parameters and the highest F -ratio for the cutting force
(67.39) among the variables were found as the most
e�ective factors.

As is obvious in Table 5, the P -values for all of the
considered inputs in statistical analyses are under 0.05.
It means that the selected variables are meaningful in
the estimation of tool wear rates. Therefore, these vari-
ables were selected as input values to design the ANN
model of the tool wear prediction system. In order
to create the ANN model, three cutting parameters,
including cutting speed (V ), cutting depth (d), and
cutting feed (f) and also control variables, including
the vibration amplitude (a) and cutting force (F ), were
entered into the system as input parameters. Also,
the tool ank wear was de�ned as output parameters.
The cutting parameters were selected based on the
mentioned standard, and the control variables were
measured using vibration and cutting force sensors
during the machining operation. For creating the
model, three-layer feedforward neural network (new�)
was selected as the network. Di�erent algorithms
were tested for training and `Levenberg-Marquadt'
was preferred as the optimal one. 21 neurons and
1400 epoch number were selected for designing the
model. The numbers of neurons located in the �rst,
second, and third layers are 14, 6, and 1, respectively.
\Tansig", \Purline" and \Purline" functions were used
as activation functions among input and �rst, �rst and
second, and second and third layers, respectively. The

Figure 5. The structure of the developed ANN model.

Figure 6. Error reduction during the training process.

structure of the designed arti�cial model is shown in
Figure 5.

Based on the de�ned parameters and ANN struc-
ture, the training was conducted using a developed
program in MATLAB. During the training period,
the decreasing rate of the squared error between the
target and the estimated value is shown in Figure 6.
According to the �gure, training chart varies with the
increase of the epoch size. The ANN trainer program in
the �rst step selects the weights randomly and adjusts
the weights after obtaining the results and comparing
them with the real results. Adjusting process continues
until reaching a minimum error. The training process
was conducted too many times to reach a good �tting
diagram without any over�tting or overtraining. For
creating the ANN model, 70% of the experiments are
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Table 6. Weight values for the �rst layer.

Weights
Number of inputs

1 2 3 4 5

w1;1 -1.97074177 18.3546981059298 0.0334895472648057 0.0013590785549760 -,1.944069036241

w1;2 2.88914032 19.7055115697428 0.0391651527827321 0.0014170179388367 0.4999694573194

w1;3 -1.77086886 -18.877158745686 0.0728794019676506 0.0003879983576415 -1.9587552527737

w1;4 -3.4779353 0.79486056997682 -0.086904724119701 0.0054379373306922 2.4616544158284

w1;5 1.59241309 -4.4059792586338 0.0024586022213639 -0.0095617136547518 2.6309216664133

w1;6 -0.65575505 -19.732238115851 -0.046961827356179 -0.0009893966123647 -3.1520155770673

w1;7 -1.73035579 21.6751055971839 -0.097610509456990 0.0081464456259026 0.9672802099854

w1;8 -2.69758207 28.1249098957808 0.0574501628469547 -0.0020104194798799 -1.3731700552428

w1;9 -2.17063471 6.99520230121540 0.0200817137638607 0.0028928931160888 2.7061477430860

w1;10 -0.92824786 -36.315619596745 0.0287517183324107 -0.0064612706451211 1.9261638427807

w1;11 -3.61038965 -20.392373602904 -0.044040045145653 0.0053617773296879 -1.8614153299422

w1;12 2.63746593 20.2416707237956 8.99905974557e-005 -0.0072943525986559 -1.8581084043978

w1;13 -0.51526015 -21.935223301000 0.4510180492263223 -0.1218730340949915 2.8837186862469

w1;14 -0.59471770 -15.192789805593 0.0106622343722436 0.0027952230927028 3.2082025479812

used for training, 15% are kept for testing, and 15% for
validation. For establishing an online prediction model,
all of the obtained weights and bias values during the
training are saved and used in mathematical model and
program.

The model structure has 5 inputs connected to
14 neurons in the �rst layer. Therefore, there will be a
total of 70 connections between the inputs and the �rst
layer neurons. It implies that the number of weights
for the �rst layer is 70 and the number of biases is 14.
All of the estimated weights and all bias values of the
�rst layer are given in Tables 6 and 7, respectively. In
Table 6, the i indices shows the number of layer and j
shows the number of �rst layer neurons.

There are 14 and 6 neurons in the �rst and second
layers, respectively. Therefore, there are a total of
84 connections between the �rst layer and the second
layer. It is implied that there are 84 weights and
6 biases in the second layer needed to formulate the
results of the second layer neurons. All available 84
weight values are given in Table 8. Also, the bias values
that must be gathered by weight values are given in
Table 9.

The number of weights in the third layer is 6 based
on 6 connections between the second and third layers
due to 6 neurons in the second layer and 1 neuron in
the third layer. Also, there is only 1 bias value which
is equal to 1 neuron in the last layer. The weight
and bias values of the last or third layer are given in
Table 10.

Making an ANN prediction model is a time-
consuming process due to a large number of weight and
bias values. To eliminate this process, the simulation

Table 7. Bias values for the �rst layer.

Biases First layer

B1 -7.0789329969940793

B2 2.5179018818487413

B3 4.7485242378162704

B4 6.6937787138683325

B5 3.1640591505230589

B6 18.628574291499405

B7 -1.0110257151509474

B8 -4.9142447720322169

B9 -10.498695451961783

B10 5.4051552263109226

B11 13.852649299020378

B12 4.5307357794522964

B13 5.1769721889169595

B14 -6.1287801118826621

model of the developed ANN model was designed as
a block diagram. In this block diagram, the cutting
parameters are given in the model and the cutting
forces and vibration amplitudes received from sensors
are applied as the variables to the input of the simula-
tion model. The tool ank wears are then predicted and
shown as the model result. The simulation model can
also be applied to machine tool adaptive control and
automated manufacturing systems. The block diagram
and the simulation result for a certain values of the
cutting parameters are given in Figure 7. Based on the
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Table 8. Weight values for the second layer.

Number of second
layer neurons

Weights

w2;1 w2;2 w2;3 w2;4 w2;5 w2;6

1 -0.249161 1.7165847141 1.51623360164 -0.160327461704 -0.553972842280 0.1148804747

2 -1.386316 0.0223005780 0.80393850731 -0.671652702282 0.3276705925057 0.1891440784

3 -0.447742 -0.756985057 -1.01702360063 -0.112111758000 0.7167586521491 -0.863314389

4 -0.685702 -0.078538124 -0.91098573606 -0.842465704700 0.2181940845534 0.9927338719

5 -0.207756 0.1093681865 -0.65271439051 0.2279751827289 -0.193874069576 1.2848288166

6 -0.761786 0.0248821859 -0.11074540659 -0.540133363614 -0.016166519042 -1.361348065

7 -0.824518 -0.304871896 -0.59492771273 0.5075889503368 -0.233226430791 1.1358160454

8 0.5495813 -0.048972786 1.86236362547 0.3216769985963 -0.008963779130 1.0877815214

9 -0.373099 0.4000200685 -1.38351256835 0.9121855468975 -0.444833258690 -0.628093320

10 1.6219110 0.0042583521 -0.85723804008 -0.744670482205 0.5054538646639 1.1993671841

11 0.5820378 0.1755388856 -1.00767355397 1.4699866632162 -0.503951268593 -0.533127176

12 0.0946864 0.2523338025 -0.36396884778 0.4435617981503 0.1535519729778 -2.003687298

13 -0.124563 0.4437133763 -1.12761881920 0.0994813607436 0.4269724928679 0.0599503575

14 0.5754625 0.0369025283 0.67921273499 -1.210346010927 0.0156948625931 -0.897582821

Table 9. Bias values for the second layer.

Bias Second layer

B1 -2.5385669124682031

B2 -1.6659015715359653

B3 -0.2173213072485988

B4 0.83509230203994311

B5 -0.89746047923562522

B6 -1.7677705247849465

simulated result, the tool ank wear increases during
the machining process.

Graphical simulation of the model is given in
Figure 8. As seen in the �gure, the tool ank
wear values are constant in relation to the cutting
parameters, while they are increasing by making any
increase in the cutting forces. The �tting graphic of
the model for all of the experiments resulted from the

simulation model is also given in Figure 8. Based on the
ANN simulation model, the predicted and measured
diagrams overlap each other.

Distribution of the errors was simulated, illus-
trated in Figure 9. As seen in the �gure, the er-
rors are ignorable. It means that the model can
predict the results with almost no error. According
to the all experiments input, �tting graphics of the
predicted values are also given in Figure 9. Once
again, it has been determined that the errors values
are so low and so close to zero. As a result of
this prediction system, when the values are compared,
R2 value was obtained as 1. In comparison to
the other mathematical prediction methods, arti�cial
neural networks demonstrate a little more reliability
when the training is conducted with a large number of
the experiments. The comparison of performances of
ANN, fuzzy logic, and mathematical models has been
discussed in detail in a study published by the authors
of this paper [30].

Table 10. Weight and bias values for the third layer.

Number of third
layer neurons

Weights
Bias Third layer

w3;1

1 0.018378636412932706

B1 0.94136400108751483

2 -0.071468766806288497

3 0.34486231546358831

4 -0.15022510933066349

5 -0.31887119866466068

6 0.70814248154860204
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Figure 7. Block diagram of the model and the simulated result for v = 110 m/min, d = 1:25 mm and f = 0:17 mm/rev.

Figure 8. Graphical simulation of the model for all of the input parameters and estimated and measured results.

5. Conclusion

An ANN model was developed to predict the tool
ank wear and to simulate the wear process in turning
in this study. The results represented that ANN
is a robust and reliable tool for predicting the tool
wear rate in machining operations. Moreover, it was
found that online monitoring of the tool wear rate is
possible by creating a simulation model of the ANN.

In this simulation model, the cutting parameters are
selected and the cutting force and vibration data are
received from the sensors and given to the model
as input parameters during the cutting process. By
processing the data, the wear rates are estimated
online in a real-time mode. Furthermore, one of the
most important applications of the simulated model
is in establishing the Flexible Manufacturing Systems
(FMS) and Computer-Integrated Manufacturing sys-
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Figure 9. The result comparisons and error distributions.

tems (CIM). This model can be used as a useful method
for conducting the adaptive control systems on the
machine tools. The developed model in this study can
be used in small manufacturing workshops due to its
user-friendly speci�cation. Using multi-sensor system
for developing a tool wear monitoring model is one of
the other speci�cations of this study in which the highly
reliable and accurate results are achieved. In this
designed model, the obtained R2 value in comparison
with the result is 1, con�rming the model accuracy.
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