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Abstract. This paper investigates an analytical solution for the axisymmetric interaction
of rigid disc inclusion embedded in bonded contact with the surfaces of a penny-shaped
crack and a transversely isotropic medium. By using a method of potential functions
and treating dual and triple integral equations, the mixed boundary value problem is
written in the form of two coupled integral equations, which are amenable to numerical
treatments. The axial sti�ness of the inclusion and the shearing stress intensity factor at
the tip of the penny-shaped crack for di�erent degrees of material anisotropy are illustrated
graphically. Useful limiting cases such as a rigid disc inclusion in an uncracked medium
and in a completely cracked solid are recovered.
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1. Introduction

The category of problems that examines the mechanical
behavior of contact regions constitutes an important
branch of applied mechanics with extensive engineering
applications [1]. Nowadays, composites play a very
important role in geomechanical engineering. It is
common knowledge that all existing structural ma-
terials contain di�erent inter- and intra-component
defects (cracks, delaminations, etc.) [2]. Analysis of
interaction between cracks and inclusion has important
applications to the study of micro-mechanics of multi-
phase materials and to the examination of anchoring
devices embedded in geological media [3].

Sneddon [4] considered the distribution of stress
produced in the interior of an elastic solid by the
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opening of an internal crack under the action of
pressure applied to its surface (see also [5,6]). By
considering various boundary conditions of the crack
surfaces, Sneddon and Lowengrub [7] as well as Kas-
sir and Sih [8] obtained associated stress intensity
factors. Sih [9] considered the in
uence of plate
thickness on the stress distribution around the crack.
Erdogan and Arin [10] investigated the axially sym-
metric elastostatic problem for a layer bonded to a
half-space with di�erent material properties. Rah-
man [11] investigated dynamic stress intensity factor
for a penny-shaped crack embedded in an in�nite
elastic medium under time harmonic torsional body
forces. Selvadurai et al. [12] studied an in�nite domain
containing a penny-shaped crack, which is loaded
axially by a rigid disc inclusion in an isotropic elastic
medium. Selvadurai [3] performed analysis of the
problem pertinent to the complete indentation of a
single face of a penny-shaped crack by a rigid smooth
inclusion. The problem of examining the axial tensile
loading of a rigid circular disc, bonded to the surface
of a half-space weakened by a penny-shaped crack,
was considered by Selvadurai [1]. Selvadurai [13]
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studied the axial loading of an annular crack by a
rigid disc inclusion and presented the shearing stress
intensity factor and the axial sti�ness of the inclusion
for di�erent ratios of the inner and outer radii of
the annular crack. Vrbik et al. [14] studied the
symmetric indentation of a penny-shaped crack by a
smoothly embedded rigid circular disc inclusion in a
thick layer.

Recently, Eskandari et al. [15] discussed sep-
aration of dissimilar piezoelectric half-spaces by a
rigid disc inclusion. Shodja et al. [16] analyzed the
interaction of the annular and penny-shaped cracks
in an in�nite piezoelectric medium (see also [17]).
Singh et al. [18] performed the study of indentation
of an elliptic crack by a rigid elliptic inclusion in the
anti-plane shear mode. Eskandari-Ghadi et al. [19]
presented a mathematical formulation for the analysis
of a transversely isotropic half-space containing a disc-
shaped crack buried at an arbitrary depth. Fab-
rikant [20] considered a transversely isotropic body
weakened on the plane perpendicular to the planes of
isotropy of the transversely isotropic body (see also [21-
23]). Yang and Zhao [24] investigated the in
uence
of a capillary bridge or a liquid droplet on the crack
opening and stress intensity factor of a penny-shaped
crack under a far-�eld tensile stress. Shahmohamadi
et al. [25] studied the axial interaction of a rigid disc
with a penny-shaped crack in a transversely isotropic
full-space. Moreover, Antipov and Mkhitaryan [26]
studied the plane problem of interaction between a
thin rigid inclusion and a �nite crack. Amiri-Hezaveh
et al. [27] examined the dynamic indentation of a
rigid circular plate embedded in a non-homogeneous
transversely isotropic full-space. Eskandari-Ghadi et
al. [28] presented an analytical solution for a two-layer
transversely isotropic half-space containing a penny-
shaped crack located at the interface of layers.

In this paper, the main objective is to investigate
the interaction of a rigid disc in bonded contact with
the surfaces of a penny-shaped crack and an in�nite
transversely isotropic medium. By virtue of appro-
priate displacement-potential functions and Hankel
and Abel transforms, the solution of the problem is
reduced to two coupled Fredholm integral equations,
which are amenable to numerical treatments. The
axial sti�ness of the inclusion and the mode II stress
intensity factor at the tip of the crack are obtained
for several types of hypothetical transversely isotropic
materials.

From a practical viewpoint, in geomechanical
applications, the rigid disc-shaped inclusion represents
the behavior of an earth or rock anchor that is created
by the hydraulic fracture of the earth or rock mass. The
inclusion represents the resinous or cementing material
that is used to transfer anchoring loads to the geological
medium [29].

2. Statement of the problem and the
governing equations

Consider a rigid circular disc inclusion of radius a
surrounded by a penny-shaped crack of radius b in an
in�nite transversely isotropic medium while the disc
is in perfect contact with the surfaces of the crack
(see Figure 1). The disc is subjected to a central
force T which induces a rigid-body displacement �
in z direction. Because of symmetry, it su�ces to
limit attention to one half-space (0 � z < 1).
The mixed boundary conditions of the problem under
consideration in terms of displacement vector u and
Cauchy stress tensor � are as follows:

uz(r; 0) = �; 0 � r � a; (1)

ur(r; 0) = 0; 0 � r � a; b � r <1; (2)

�zz(r; 0) = 0; a < r <1; (3)

�rz(r; 0) = 0; a < r < b: (4)

For axisymmetric problems, the equilibrium equations
of the static motion for a homogeneous transversely
isotropic elastic solid in terms of displacement and in
the absence of the body forces can be expressed as
follows [30]:

c11

�
@2ur
@r2 +

1
r
@ur
@r
� ur
r2

�
+ c44

@2ur
@z2

+ (c13 + c44)
@2ur
@r@z

= 0;

Figure 1. Axial translation of a rigid disc inclusion
embedded in a penny-shaped crack.
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where ur and uz are the displacement components in
r and z directions, respectively, and cij represents the
elastic constants of the solid. The displacement and
stress �elds for a semi-in�nite transversely isotropic
medium (0 � z <1) are as follows [31]:
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Z 1

0
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(6)

where A0(�) and B0(�) are unknown functions and

�1 =
c12 + c66

c66
; �2 =

c44

c66
; �3 =

c13 + c44

c66
: (7)

Herein, s1 and s2 are the roots of the following equation
that, in view of the positive-de�niteness of the strain
energy, are not zero or pure imaginary numbers [30]:

c33c44s4 � [c213+2c13c44�c11c33]s2+c11c44 =0: (8)

Introducing the substitutions:

[A(�);B(�)] =
1
�2 [A0(�);B0(�)]; (9)

and using Eq. (6), boundary conditions (1)-(4) can be
reduced to the following system of integral equations:

Z 1
0

M(�)J0(�r) d� = �; 0 � r � a; (10)Z 1
0

N(�)J1(�r) d� = 
1

Z 1
0

M(�)J1(�r) d�;

0 � r � a; b � r <1; (11)Z 1
0

�M(�)J0(�r) d� = 
2

Z 1
0

�N(�)J0(�r) d�;

a < r <1; (12)Z 1
0

�N(�)J1(�r) d� = 0; a < r < b; (13)

where 
k (k = 1; 2) and functions M(�) and N(�) are
mentioned in Appendix A.

2.1. Dual integral equations
By making use of Eqs. (10) and (12) the following
system of dual integral equations is obtained:Z 1

0
M(�)J0(�r) d� = �; 0 � r � a; (14)Z 1

0
�M(�)J0(�r) d� = 
2

Z 1
0

�N(�)J0(�r) d�;

a < r <1: (15)

The integral equations (14) and (15) yield the follow-
ing:

M (�) =
2
�

�
� sin (�a)

�
+
Z 1
a

F (u) cos (�u) du
�
;

(16)

where:

F (t) = 
2

Z 1
0

N (�) cos (�t) d�: (17)

2.2. Triple integral equations
By making use of Eqs. (11) and (13), the following
system of triple integral equations is obtained:Z 1

0
N(�)J1(�r) d� = 
1

Z 1
0

M(�)J1(�r) d�;

0 � r � a; (18)Z 1
0

�N(�)J1(�r) d� = 0; a < r < b; (19)Z 1
0

N(�)J1(�r) d� = 
1

Z 1
0

M(�)J1(�r) d�;

b � r <1: (20)

Taking the following assumption:
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Z 1
0

�N(�)J1(�r) d�=

8><>:f1(r); 0<r<a
0; a<r<b
f2(r); b < r<1 (21)

By employing the inverse Hankel integral transform to
Eq. (21), the following relation is obtained:

N(�) =
Z a

0
rf1(r)J1(�r) dr +

Z 1
b

rf2(r)J1(�r) dr:
(22)

Inserting Eq. (22) into Eq. (11), we have:

I1(r) + I2(r) = g(r); 0 < r < a; (23)

I1(r) + I2(r) = g(r); b < r <1; (24)

where:

Ij(r) =
Z
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g(r) = 
1

Z 1
0
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and the limits of integration in Eq. (25) can occupy
(0; a) and (b;1) ranges depending upon the value of j.

Using the procedure presented in [32], Eqs. (23)
and (24) can be rewritten as follows:Z r
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where:
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Z s
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Eqs. (28) and (29) are the Abel type integral equations,
whose solutions are as follows:
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Using the following relations:

d
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and Eq. (27), we have:
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Insertion of Eqs. (36) and (37) into Eqs. (32) and
(33) yields the following coupled Fredholm integral
equations:
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We can rewrite Eqs. (38) and (39) in the general forms:

�1(s) +
Z a

0
�1(u)K11(u; s) du

+
Z 1
b

�2(u)K12(u; s) du = L1(s)�;
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b
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b < s <1; (41)

where we have assumed that F1(s) and F2(s) admit
representations of the form:

[F1(u);F2(u)] =

1u
�

[�1(u);�2(u)]; (42)

and kernel functions Kij (i; j = 1; 2) are expressed as
follows:

K11(u; s) =
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�
uln
����a� sa+ s
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����� ;
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2u

ln
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�����
+ �4

1
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1
2s

ln
����u+ s
u� s
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+ �4

1
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ln
����a+ u
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Constants R and �k (k = 1; :::; 4) are given by:

R = 1� 
1
2;

�1 = � 2
�2 
1
2; �2 = 
1
2;

�3 =
2
�

(1� 
1
2); �4 =
2
�

1
2; (44)

and functions L1(s) and L2(s) are de�ned by:

L1(s) = ln
����s+ a
s� a

���� ; L2(s) =
�a
s
: (45)

3. Contact-load distribution and axial sti�ness

A practical interesting result is the load-displacement
relationship. The resultant force, T , acting on the disc
is calculated by:

T = 2
Z 2�

0

Z a

0
r�zz(r; 0) drd�; (46)

where the axial stress, �zz, in the inclusion region is
given by:

�zz(r; 0) =
Z 1

0
�M(�)J0(�r) d�

� 
2

Z 1
0

�N(�)J0(�r) d�; 0 < r < a:
(47)

By employing the identities M(�) and N(�) as
de�ned in Eqs. (16) and (22), Eq. (46) simpli�es to:

T = 8a�4 +
8
1�3

�2

�Z a

0
�1(u)ln

����a+ u
a� u

����du
+ �a

Z 1
b

�2(u)
u

du
�
: (48)

4. Stress intensity factor at the crack tip

A quantity of physical interest, which is applicable in
fracture mechanics, is the stress intensity factor. Due
to asymmetric deformation about z = 0, the only
non-zero stress component is �rz. The mode II stress
intensity factor is de�ned by:

Kb
II = lim

r!b+[2(r � b)]1=2�rz(r; 0); (49)

where:

�rz(r; 0) =
Z 1

0
�N(�)J1(�r) d�; r > b: (50)

Utilizing Eq. (21), we �nd that:

�rz(r; 0) =
2F2(b)

�r(r2 � b2)1=2 +
2
�r

Z r

b

F 02(s)ds
(r2 � s2)1=2 :

r > b: (51)

Inserting Eqs. (42) and (51) into Eq. (49), the mode II
stress intensity factor can be expressed as follows:
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Kb
II =

2
1�2(b)
�2
p
b
: (52)

5. Special cases

Before proceeding to the numerical solution of the
general problem, it is relevant to examine some limiting
cases whose solutions are available. Herein, �ve special
cases are inferred: (i) intact medium; (ii) completely
cracked solid; (iii) direct loading of a penny-shaped
crack; (iv) s2 ! s1; and (v) e�ect of incompressible
materials.

5.1. Inclusion in an uncracked elastic solid
full-space

The force T required to achieve the disc displacement �
in z direction is equal to the following (see Figure 2(a)):

T =
8c44c33a�(s1 + s2)
c44 +pc11c33

; (53)

where a transversely isotropic medium [33] and an
isotropic medium simpli�es to [34] are simpli�ed to:

T =
32Ga�(1� �)

3� 4�
; (54)

in which G and � are the elastic shear modulus and
Poisson's ratio for an isotropic medium, respectively.

5.2. Disc inclusion embedded between two
half-space regions

Considering the limit a=b ! 0 (with a 6= 0), the
problem turns into the disc inclusion which is em-
bedded between two identical half-space regions (see
Figure 2(b)). In this case, the total force is:

T =
2a��

Htanh (��)
; (55)

where H and � are mentioned in Appendix B. This rela-
tion, corresponding to a transversely isotropic medium

as reported by Fabrikant [35] and for an isotropic
medium, simpli�es to [36]:

T =
8Ga� ln(3� 4�)

1� 2�
: (56)

5.3. Direct loading of a penny-shaped crack
The exact mode II stress intensity factor of a penny-
shaped crack in an in�nite transversely isotropic
medium due to a axial point force parallel to the z-
axis applied at the center of the crack is obtained as
follows [37]:

Kb
II =

T
2�b3=2

�
m1s1

m1 � 1
+

m2s2

m2 � 1

�
; (57)

where mk (k = 1; 2) is de�ned in Appendix B, which,
for the isotropic case, simpli�es to [8]:

Kb
II =

T (1� 2�)
8�(1� �)b3=2

: (58)

In this study, as a! 0 (see Figure 2(c)), implying
the inclusion disappears, parameter T in Eqs. (57)
and (58) can be obtained from Eqs. (55) and (56),
respectively.

5.4. s1 and s2 become equal
By substituting s1 = s2 into Eq. (6), terms with forms
of 0=0 will be encountered. This occurs in transversely
isotropic materials when pc11c33 � c13 � 2c44 = 0.
In this case, one can obtain s1 = s2 = (c11=c33)1=4.
Therefore, in order to obtain displacement and stress
potential relations of the case of s1 = s2, it is required
to take the limits by setting s2 ! s1. The results are
presented in Appendix C.

5.5. Material incompressibility e�ect in an
isotropic medium

In the limiting case of material incompressibility (� =
0:5), Eqs. (54) and (56) reduce to the same result as
follows:
T = 16Ga�: (59)

Figure 2. Axial translation of a rigid disc inclusion located on a cracked plane: Limiting cases: (a) An intact full-space
medium, (b) two half-space regions, and (c) direct loading of a penny-shaped crack.
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From the above relation, it is evident that, in the
incompressible elastic materials, the extent of cracking
and an increase in the value of b, on the plane
containing the rigid inclusion, have no e�ect on the
axial sti�ness of the inclusion (see [38]).

6. The numerical evaluation of the governing
integral equations

The simultaneous coupled Fredholm integral equations
of the second kind (40) and (41) governing the ax-
isymmetric interaction of a penny-shaped crack and
a rigid disc inclusion are not amenable to solution in
an exact form. A variety techniques was proposed for
the numerical solution of coupled systems of Fredholm
integral equations of the general type described by
Baker [39] and Atkinson [40].

To solve these coupled integral equations numeri-
cally, integration intervals (0; a) and (b;1) are divided
to N1, N2 segments, respectively, and end points of the
segments can be expressed as follows:

xi = (2i� 1)h1 with i = 1; 2; : : : ; N1;

ti = ti�1 + �(ti�1 + ti�2);

with i = 3; 4; : : : ; N2 + 1; (60)

where h1 = a=2N1, t1 = b, t2 = b + a=N1, and �
is a constant of proportionality such that the interval
(b;1) is approximated in the numerical scheme. For
the treatment of coupled integral equations (Eqs. (40)
and (41)), according to standard quadrature method,
the integral equations can be written in the discretized
form as:�

D1 D2
D3 D4

��
�1(s)
�2(s)

�
=
�
L1(s)
L2(s)

�
; (61)

where:

D1 =�ij +
N1X
i=1

N1X
j=1

wj�1

u2
j � s2

i

�
uj ln

����a� sia+ si

����
� siln

����a� uja+ uj

�����; i 6= j; (62)

D1 = �ii +
N1X
i=1

wi�1

2si

�
2asi
a2 � s2

i
+ ln

����a� sia+ si

����� ;
i = j; (63)

D2 =
N1X
i=1

N2X
j=1

wj�3

"
� si
s2
i � u2

j
+

1
2uj

ln
����si + uj
si � uj

����#
+ �4

1
2uj

ln
����a+ si
a� si

���� ;
(64)

D3 =
N2X
i=1

N1X
j=1

wj�3

"
� uj
u2
j � s2

i
+

1
2si

ln
����uj + si
uj � si

����#
+ �4

1
2si

ln
����a+ uj
a� uj

���� ;
(65)

D4 = R�ij +
N2X
i=1

N2X
j=1

wj�2
a
siuj

; (66)

where �ij is the Kronecker delta, and wj , as the weight
function, is as follows:

wj =

8<: a
N1

; 0 < r < a

ti+1 � ti; b < r <1 (67)

The total load acting on the inclusion from
Eq. (48) is:

T
�

=8a�4 +
8
1�3

�2

� N1X
i=1

wi�1(ui)ln
����a+ ui
a� ui

����
+ �a

N2X
i=1

wi
�2(ui)
ui

�
: (68)

It can be written in terms of axial sti�ness which is
de�ned as follows:

�T =
T

c44a�
: (69)

The stress intensity factor, de�ned by Eq. (52), can be
expressed in the form of:

Kb
II =

2�
1�2(b)
�2
p
b

: (70)

The normalized stress intensity factor can take the
following form:

�Kb
II =

Kb
IIb3=2

c44a�
: (71)

7. Numerical results and discussion

To con�rm the validity of the present solution and
evaluate the e�ects of anisotropic materials on the
results, several synthetic types of isotropic (material 1)
and transversely isotropic materials (materials 2-9) are
selected. The material properties are given in Table 1,
where E and E0 are the Young's modules on the
plane of isotropy and perpendicular to it, respectively;
�0 is Poisson's ratio that characterizes the e�ect of
horizontal strain on the complementary vertical strain;
� is the Poisson's ratio which characterizes the e�ect of
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Table 1. Properties of synthetic materials.

Material E E0 G G0 E=E0 G=G0 �; �0 c11 c12 c13 c33 c44 c66

1a 5 5 2 2 1 1 0.25 6 2 2 6 2 2

2b 5 10 2 2 0.5 1 0.25 5.6 1.6 1.8 10.9 2 2

3b 5 25 2 2 0.2 1 0.25 5.4 1.4 1.7 25.9 2 2

4b 5 5 2 1 1 2 0.25 6 2 2 6 1 2

5b 5 5 2 0.67 1 3 0.25 6 2 2 6 0.67 2

6b 5 5 2 0.4 1 5 0.25 6 2 2 6 0.4 2

7b 10 5 4 2 2 2 0.25 14 6 5 7.5 2 4

8b 15 5 6 2 3 3 0.25 26 14 10 10 2 6

9b 25 5 10 2 5 5 0.25 110 90 50 30 2 10

aIsotropic; bTransversely isotropic.

Figure 3. Axial sti�ness for synthetic materials: (a) The e�ect of E0, (b) the e�ect of G0, and (c) the e�ects of E and G.

vertical strain on the horizontal one; and G0 stands for
the shear modulus on the plane normal to the plane of
isotropy. Regarding the positive-de�niteness of strain
energy, the following constraints for material constants
cij have been checked (for example, see [41])

c11 > jc12j; (c11 + c12)c33 > 2c213; c44 > 0: (72)

Axial sti�ness as a function of the inclusion-crack
aspect ratio is plotted in Figure 3. The in
uence of
E0=E ratio is shown in Figure 3(a), implying that an
increase in E0=E leads to a remarkable increase in the
axial sti�ness. From Figure 3(b), one might notice that
by decreasing G0=G, the sti�ness increases signi�cantly.
It can be concluded that anisotropic parameters E0
and G0 have the major in
uence on the axial sti�ness.
In contrast, from Figure 3(c), one can observe that
the increase of E=E0 and G=G0 has little e�ect on
the results. However, anisotropic parameters E and
G are found to be of minor importance for the axial
interaction of crack-inclusion.

The results of the synthetic transversely isotropic
materials for the normalized shearing stress intensity
factor are presented in Figure 4. As indicated in

Figure 4(a), the larger the value of E0=E is, the higher
the response rate will be. Figure 4(b) shows that the
reduction of G0=G leads to a slight increase in the mode
II stress intensity factor. As shown in Figure 4(c),
changing the ratios of E=E0 and G=G0 has a signi�cant
in
uence on �rz and Kb

II .
In the limiting a ! b, the normalized stress in-

tensity factor decreases sharply, which is due to the os-
cillatory stress singularity. Selvadurai [12] showed that
such oscillatory stress singularities have virtually no
in
uence on the accuracy of the translational sti�ness.
In this study, �Kb

II is depicted for the interval (0,0.9).
Hilbert solution has been suggested to overcome this
problem in the integral transform method.

8. Conclusions

The analytical treatment of the interaction crack-
inclusion in a transversely isotropic full-space was
revisited. By virtue of appropriate potential functions,
the mixed boundary value problem was reduced to dual
and triple integral equations. By employing suitable
representations and Abel transforms, the results were
expressed in terms of the solution of two coupled Fred-
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Figure 4. Normalized mode II stress intensity factor for synthetic materials: (a) The e�ect of E0, (b) the e�ect of G0, and
(c) the e�ects of E and G.

holm integral equations, solved by using a numerical
method. The available closed-form results derived
from the literature, such as the inclusion in an intact
medium, were recovered as the limiting cases of the
current study. The axial sti�ness of the inclusion and
the shearing stress intensity factor at the tip of the
crack were obtained for some synthetic transversely
isotropic materials. The e�ects of material anisotropy
on the results were also highlighted.
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Appendix A

The parameters in Eqs. (10)-(13) are:


1 = �C2

C1
; (A.1)


2 = �C3

C4
; (A.2)

C1 = � 1 + �1 + s1s2�2

c44 (s1 + s2) (1 + �1)
; (A.3)

C2 =
�1� �1 + s1s2 (�3 � �2)

(s1 + s2) (1 + �1)
: (A.4)

Eqs. (A.5) to (A.8) are shown in Box A.I.

Appendix B

The parameters in Eqs. (55) and (57) are:

mk =
c13 + c44

c33s2
k � c44

(k = 1; 2); (B.1)

� =
1

2�
ln

"p

01
02 + �p

01
02 � �

#
; (B.2)

H =
(
01 + 
02) c11

2� (c11c33 � c213)
; (B.3)

� =
pc11c33 � c13

c11 (
01 + 
02)
; (B.4)


0k = s�1
k =

r
mkc33

mkc44 + c13 + c44
(k = 1; 2): (B.5)
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C3 =
c33
�
1 + �1 � s2

1�2
� �

1 + �1 � s2
2�2
�� c13 (1 + �1 + s1s2�2)�3

c44 (s1 + s2) (1 + �1)�3
; (A.5)

C4 =
c33
�
1 + �1 � s2

1�2
� �

1 + �1 � s2
2�2
�� (c13 + c33s1s2) (1 + �1 + s1s2�2)�3 + c13s1s2�2

3

(s1 + s2) (1 + �1)�3
; (A.6)

A(�) =
(N (�) +M (�) c44)

�
1 + �1 � s2

2�2
�

+M (�) c44s2
2�3

�c44 (s2
1 � s2

2) (1 + �1)�3
; (A.7)

B(�) = � (N(�) +M(�)c44)
�
1 + �1 � s2

1�2
�

+M(�)c44s2
1�3

�c44 (s2
1 � s2

2) (1 + �1)�3
: (A.8)

Box A.I

uz(r; z) =
Z 1

0

�z�1 (N (�) +M (�) c44) +M (�)!1 (�) c44s1�3

2c44s1 (1 + �1)�3
e��s1zJ0 (�r) d�; (C.1)

ur(r; z) =
Z 1

0

(N (�) +M (�) c44)!2(�) +M (�) c44s2
1�3 (1 + �s1z)

2c44s1 (1 + �1)
e��s1zJ1 (�r) d�; (C.2)

�zz (r; z) = �
Z 1

0

c13�3�1 (�) + c33�2 (�)
2c44s1 (1 + �1)�3

�e��s1zd�; (C.3)

�rz(r; z) = �
Z 1

0

�z�1N (�) + �3s1!3 (�)N (�) + c44�z�2M (�)
2s1 (1 + �1)�3

�e��s1zJ1 (�r) d�: (C.4)

Box C.I

Appendix C

Displacement and stress potential relations of the case
of s1 = s2 are shown in Box C.I, where:

�1 =
�
1 + �1 � s2

1�2
�2; (C.5)

�2 =
�
1 + �1 + s2

1 (�3 � �2)
�2; (C.6)

!1 (�) = (2 + �s1z) (1 + �1)� �s3
1�2z; (C.7)

!2 (�) = (�s1z � 1) (1 + �1)� s2
1�2 (1 + z�s1) ;

(C.8)

!3 (�) = (�s1z � 2) (1 + �1)� �s3
1�2z; (C.9)

!4 (�) = 1 + �s1z; (C.10)

!5 (�) = 1� �s1z; (C.11)

�1 (�) =!5 (�) (N (�) +M (�) c44)�
(1+�1)+s2

1�2
��!4 (�)M (�) c44�3s2

1;
(C.12)

�2 (�) =� !5 (�)�1 (N (�) +M (�) c44)

+M (�) c44�3s2
1

�
!4 (�) (1 + �1)

+ !5 (�) s2
1�2

�
: (C.13)
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