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Abstract 

Smoothed finite element method (SFEM) was introduced by application of the stabilized conforming 

nodal integration in the conventional finite element method. In this method, integration is performed 

on “smoothing domains” rather than elements. Smoothing domains are created based on cells, nodes 

or edges for two dimensional problems. Based on the smoothing domain creation method, different 

types of SFEM are developed that have different properties. It has been shown that these methods are 

insensitive to mesh distortion and are generally more computationally efficient than mesh-free and 

finite element methods for the same accuracy level. Because of their interesting features, they have 

been used to solve different problems. This paper investigates the performance of these methods in 

coupled hydro-mechanical (consolidation) analysis, by solution of some problems using a developed 

SFEM/FEM code. Biot’s consolidation theory is reviewed, and after introduction of the idea and 

formulation of SFEMs, discretized form of equations is given. Requirements for creation of stable 

coupled hydro-mechanical models are discussed and based on them, two methods for creation of 

stable SFEM models are introduced. To investigate the effectiveness of the methods, a number of 

examples are solved and results are compared with the finite element and analytical ones.  

Keywords: Smoothed Finite Element Method, The Finite Element Method, Coupled Hydro-

mechanical Analysis, Consolidation, Biot’s Theory 

 

1. Introduction 

The finite element method (FEM) has been used widely to solve partial differential equations 

for many years. Although this method has been applied widely, its mesh dependency has 

restricted its application in some problems. For example, when there are large deformations 

or crack propagation, the method cannot be used effectively. To overcome these 

shortcomings, different types of mesh-free methods (MMs) have been developed (e.g. [1-4]). 

In some types of MMs, computing shape functions, and a large number of Gauss points that 

are required to decrease the integration error of the discretized weak form, increase their 

computational cost, compared to the FEM [1,2]. 

To eliminate the Gauss integration, nodal integration of the EFG method was proposed by 

Beissel and Belytschko [5] that eliminates integration on background cells. Direct nodal 



 

 

integration often causes numerical instability, because the derivatives of the shape functions 

vanish at the nodes. It also decreases convergence rate and accuracy due to the violation of 

the integration constraints in the Galerkin weak-form formulations. To avoid these, Chen et 

al. [6] introduced Stabilized Conforming Nodal Integration (SCNI). The SCNI uses a strain 

measure calculated as the spatial average of the compatible strain field (the symmetric 

gradient of the displacements). This technic is called “Strain Smoothing”. 

Liu et al. [7], using incompatible Point Interpolation Method (PIM) shape functions and the 

SCNI, introduced a mesh-free linearly conforming point interpolation method; that was later 

called the Smoothed Point Interpolation Method (SPIM) [8]. Later, by application of the 

SCNI (which was successfully applied in MMs) in the FEM, the Smoothed Finite Element 

Method (SFEM) was introduced [9].  

Based on how the strain smoothing procedure is done, there are three main types of SFEM: 1- 

Cell based SFEM (CSFEM) [9], 2- Node based SFEM (NSFEM) [10], and 3- Edge based 

SFEM (ESFEM) [11]. In the CSFEM, strain smoothing is done on domains that are created 

by dividing the elements of the original FEM mesh into sub-cells; the NSFEM uses nodes to 

create smoothing domains, and in the ESFEM smoothing domain creation is based on the 

edges of the elements. 

SFEMs have some interesting properties. They are insensitive to mesh distortion, because 

isoparametric mapping used in the conventional FEM is not needed. Using the divergence 

theorem, area integration on smoothing domains reduces to integration on boundaries, and 

shape function derivatives are not required. SFEMs are generally more computationally 

efficient than MMs, and even the FEM, for the same accuracy level [8].  

Because of their interesting features, SFEMs have been applied to solve different problems. 

Problems such as vibration and dynamic analysis [12,13], elastic–plastic analysis [14,15], 

fracture mechanics [16,17,18], heat transfer [19,20], structural acoustics [21,22,23], contact 

problems [24], adaptive analysis [25,26], impact problem [27] and many more. These 

researches show that compared with the FEM, SFEMs have many advantages in treating 

different problems, specifically when there are large deformations and nonlinear material 

behavior. On the other hand, like any other numerical method, SFEMs may have some 

drawbacks. Some of them that are related to solution of coupled problems are discussed later 

in this paper. Investigating other possible shortcomings, for example excessive damping of 

sharp gradients, needs further research. 

In this paper, using a developed SFEM/FEM code, different types of smoothed finite element 

method are applied to solve the consolidation problem. Performance of different strategies for 

application of these methods in solution of coupled hydro-mechanical problems is studied, 

through solution of a number of examples. Results are compared to those obtained using the 

FEM and analytical methods and the best scenario for incorporation of SFEMs in 

consolidation analyses is indicated. 

Following the introduction, Biot’s consolidation theory, its formulation and equations are 

reviewed. Smoothed finite element method’s theories and formulations are presented next. 

Later, discretized form of the coupled hydro-mechanical equations of consolidation, using 

SFEM for spatial discretization, is obtained. In the last section, some examples are solved and 

results are investigated. Finally conclusion is given.  



 

 

 

2. Biot’s Consolidation Theory  

Biot’s theory of consolidation [28], explains the coupled hydro-mechanical behavior of 

elastic saturated porous media. It combines equation of equilibrium, Terzaghi’s principle of 

effective stress, fluid continuity equation and Darcy’s seepage law to develop two equations 

with displacement and pore water pressure as the main variables. 

The first governing equation in the Biot’s consolidation theory is the equation of equilibrium, 

which in tensor notation is written as: 

, 0ij j ibs + =                                  (1) 

In this equation „  is total stress tensor and ὦ the unit body force. Terzaghi’s principle of 

effective stress shows the relationship between total stress and pore water pressure in 

saturated porous media: 

'ij ij ijPs s d= +                       (2) 

which „ᴂ is effective stress tensor, ὖ is pore water pressure and ‏  is Kronecker delta. The 

constitutive equation of solid skeleton is used to obtain displacements, using the equilibrium 

equation. First, the constitutive equation gives a relationship between stress and strain 

tensors: 

'ij ijkl klDs e=                        (3) 

where ‐  is the strain tensor and Ὀ  is the tensor of elastic moduli, because only linear 

isotropic elastic problems are considered. Then, the relationship between strain and 

displacements, with the assumption of small displacements and ignoring geometric 

nonlinearity is written as: 
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Here, ό is displacements in ὼ and ώ directions. 

The second governing equation in the Biot’s consolidation theory, is the fluid continuity 

equation. It is expressed as: 

,v i iqe=                            (5) 

where ‐ is the time derivative of volumetric strain that is written as: 

,v i iue=                        (6) 

and ή is water discharge in the Ὥth direction. Darcy’s seepage law gives the relationship 

between discharge and pore water pressure: 
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In this equation ὑ  is the permeability tensor of solid skeleton and ‎ is the unit weight of 

water. 

By combining Eqs. (5-7) and writing displacements in incremental form to be integrated over 

time, the first partial differential equation for coupled hydro-mechanical analysis of porous 

media is given as: 
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The second governing equation is written by combining equation of equilibrium and 

Terzaghi’s effective stress equation. Since displacements in Eq. (8) appear in incremental 

form, stresses will be written in incremental form as well: 

' '
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where „  is the effective stress at time step ὸ and ɝ„ is the increment of the effective stress. 

 

3. Smoothed Finite Element Method 

In this section, first, formulation of the finite element method is reviewed. For smoothed 

finite element, formulation is largely the same and is discussed next. Different types of SFEM 

are also introduced here.  

In a domain of interest, ɱ, subjected to body forces ὦ, Ὀ as a tensor of material moduli and ὸӶ 

the known traction on the natural boundary ɜ; integration is performed over elements to form 

the discrete equations of the FEM using the Galerkin weak form: 
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here, ᶯό is the symmetric gradient of the displacement field, ό is a trial function and ‏ό is a 

test function. 

The FEM uses the following trial and test functions: 
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where ὔὖ is the number of the nodal variables of the element, Ὠ is the nodal displacement 

vector and ὔ ὼ is the matrix of shape functions. 



 

 

By replacing the approximations ό  and ‏ό into the weak form, and since virtual nodal 

displacements are arbitrary, the discretized system of equations is obtained: 

FEMK d f=                      (13) 

where ὑ  is the element stiffness matrix and Ὢ is the element force vector, which are 

written as: 
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the strain matrix, ὄ ὼ is defined as: 

() ()I s IB x N x=Ð                     (16) 

In SFEM, the integration required in the weak form of the FEM is not performed based on the 

elements, but it is done on the smoothing domains, by the strain smoothing technic. In other 

words, these methods do not use the compatible strains (Eq. 16), but strains “smoothed” over 

smoothing domains. Therefore, the stiffness matrix integration is not based on the elements, 

but it is done on local smoothing domains.  

In the cell based SFEM, smoothing domains are created by further dividing the elements of 

initial mesh into smoothing domains (Fig. 1). A major difference between SFEM and the 

FEM is that in all types of SFEM, elements can be polygons of arbitrary number of sides. The 

domain, ɱ, should be discretized into ὔ smoothing domains in such a way that ɱ ɱ ᷾

ɱ ᷾Ễ ᷾ɱ  and ɱ ᷊ɱ ‰ȟ   Ὥ Ὦ. It is also required that number of smoothing 

domains be greater than number of elements. 

In the node based discretization, after discretization into elements, the domain is divided into 

smoothing cells associated with nodes, in a non-overlapping and no-gap manner (as in the 

CSFEM). For ὲ-sided polygonal elements, the cell ɱ  associated with the node Ὧ is created 

by connecting sequentially the mid-edge-point to the central points of the surrounding ὲ-

sided polygonal elements of the node Ὧ as shown in Fig. (2). As a result, each ὲ-sided 

polygonal element will be divided into ὲ four-side sub-domains and each sub-domain is 

attached with the nearest field node. The cell associated with the node Ὧ is then created by 

combination of each nearest sub-domain of all elements around the node Ὧ. 

Similarly, in the edge based discretization, the local smoothing domains that should be non-

overlapping and have no gap between them, are constructed based on edges of the elements. 

For triangular and quadrilateral elements, the smoothing domain ɱ associated with the edge 

Ὧ is created by connecting two end points of the edge to two centroids of two adjacent 

elements as shown in Fig. (3), for the latter one. Extending the smoothing domain ɱ  

associated with the edge Ὧ to ὲ-sided polygonal elements is straightforward. 

After creation of the smoothing domains, using the compatible strains, ‐ ᶯό, smoothed 

strains can be obtained by performing the smoothing operation over domain ɱ  as: 
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where ɮ ὼ is a given smoothing function that satisfies at least unity property: 
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The simplest local constant smoothing function usually used is [8]: 
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Here ὃ ᷿ Ὠɱ
 

 is the area of the smoothing domain ɱ . Considering the divergence 

theorem and by using this function, the smoothed strain can be obtained that is constant over 

the domain ɱ : 
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where ɜ  is the boundary of the domain ɱ , and ὲ ὼ is a matrix formed using 

components of the outward normal vector on the boundary ɜ . For 2D problems it is written 

as: 
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Usually, the trial function, ό ὼ, for SFEM is the same as that of the FEM (Eq. 11) and 

therefore, the force vector, Ὢ, in SFEM is written similar to the FEM. 

Substituting Eq. (11) into Eq. (20), the smoothed strain on the smoothing domain ɱ  can be 

written based on nodal displacements: 
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where ὔ  is the number of nodes that are directly connected to node Ὧ for NSFEM and total 

number of nodes of elements containing the common edge Ὥ for ESFEM. For CSFEM, ὔ  

is the number of nodes of the element that contains the current cell. ὄ ὼ  is termed as the 

smoothed strain matrix on the smoothing domain ɱ : 
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and is calculated using this equation:  
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A linear compatible displacement field along the boundary ɜ  needs only one Gaussian 

point for line integration along each segment of boundary ɜ  of ɱ . In that case, the above 

equation can be further simplified as: 
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where ὓ is the total number of the boundary segments of ɜ , ὼ  is the midpoint (Gaussian 

point) of the boundary segment of ɜ , with its length and outward unit normal denoted as 

ὰ  and ὲ , respectively. 

Eq. (25) shows that in SFEM, only shape function values at some particular points along 

segments of boundary ɜ  are needed and no explicit analytical form is required. 

Using triangular elements, the smoothed strain matrix ὄ ὼ  can be written in another way: 
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where ὔ  is the number of elements associated with the smoothing domain Ὧ, ὃ  and ὄ 

are the area and the strain matrix of the Ὦth element associated with the smoothing domain Ὧ, 

respectively, and ὃ  is calculated as: 
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As can be seen in this formulation, only the area and the usual compatible strain matrices, ὄ, 

(Eq. 17) of triangular elements are needed to calculate the global stiffness matrix for SFEM. 

The global stiffness matrix, ὑ, is then assembled by a procedure similar to the FEM: 
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where ὔ  is the number of smoothing domains and ὑ  is the smoothed stiffness matrix 

calculated on the smoothing domain ɱ  that is calculated by: 
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4. Numerical Formulation 

Spatial discretization of Biot’s consolidation equations is done, based on smoothed finite 

element method, as described in previous section. After discretization, first and second partial 

differential equations for coupled analysis of porous media (Eqs. 8 & 9) will become: 
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where, ▓  is the smoothed mechanical stiffness, ▓  is the smoothed fluid conductivity, 

and ╬ is the smoothed coupling matrix. Furthermore, █ is the external loading and body 

forces, ◊ is nodal displacements and ◊  is nodal excess pore pressures vector. 

As described in previous section, the smoothed mechanical stiffness matrix, ▓ , and the 

smoothed fluid conductivity matrix, ▓, are written as: 
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Here, ὔ  is the number of smoothing domains and ὃ  area of each one. These equations are 

basically the same, where ║ and ╣ are similar and represent the mechanical and hydraulic 

smoothed gradient matrices, as described for ║ previously. It is also restated that ╓ and ╚ are 

matrices of elastic moduli and permeability, respectively. Summation here indicates the 

assembly procedure to form the global matrices from smoothing domain matrices; similar to 

the conventional FEM, where global matrices are formed using the element matrices. 

Another main matrix in Eqs. (30 & 31), is the smoothed coupling matrix, ╬. In two 

dimensions, generally the coupling matrix is formed by the following integration: 

 u
p

N
N dxdy

x

µ

µ
ļ                     (34) 

The first derivative here comes from displacement shape functions, and second term indicates 

pore pressure shape functions. Using SFEM, the smoothed coupling matrix is written as:  
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Using Eq. (24), ║  is defined as: 

( ) ( )c Ix k Iy kb x b xè ø=ê úB                    (36) 

and ╝  is matrix of pore pressure shape functions. 



 

 

In Eqs. (32 & 33), since gradient matrices (║ and ╣) are constant over each smoothing 

domain, no transformation to natural coordinates is needed and ▓  and ▓ are easily 

evaluated. But calculation of ╬ is not readily done, because ╝  is not constant over each 

smoothing domain. Here, ║  is constant over each smoothing domain, so we will have: 
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The integration in this equation is evaluated over each smoothing domain, using the Gauss 

integration method with proper number of quadrature points. 

Writing Eq. (30) in incremental form, the first equation of coupled system will be obtained; 

then, by linear interpolation in time using the — method, we will have: 
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Now, Eq. (31) can be written based on — method, to give expressions for derivatives. After 

some simplifications, this final global system of equations will be achieved for coupled 

analysis of porous media using Biot’s equations and SFEM: 

[]

[]

{ }

{ }

{ }

{ }
0

m

T
w c wc

ttq

è øè ø ë ûDë ûDê ú î î î îé ù =ì ü ì ü
è øé ùD Dè øî î- D í ýî îê úí ýê úê ú

k c fu

u k uc k
                (39) 

— can vary from zero (fully explicit scheme) to 1.0 (fully implicit scheme). The 

approximation is unconditionally stable when — 0.5, but for any value of — 1,the 

numerical solution can exhibit a spurious ripple effect [1]. 

 

5. Numerical examples 

In coupled hydro-mechanical problems, when permeability approaches zero and/or solid and 

fluid phases become incompressible, there may be a spurious oscillation in results for 

pressure field. It happens when same order shape functions (without any stabilization 

technique) are used for both mechanical and hydraulic components. To prevent this problem, 

elements have to satisfy the so-called Babuška-Brezzi condition [29,30] or the patch test [31]. 

These conditions basically state that the shape function used for interpolation of mechanical 

field must be of an order higher than the shape function used for interpolation of hydraulic 

field. 

In the conventional FEM, to satisfy the Babuška-Brezzi condition or the patch test, mixed 

elements with different orders of shape functions are used. For example, 6-node triangles 

(T6) for mechanical field combined with 3-node triangles (T3) for hydraulic field. Prevention 

of spurious oscillatory results in SFEM is more complicated, and needs more considerations. 

Many methods for creation of a coupled SFEM with acceptable results were investigated, that 

two of them showed better performance and are discussed here.  



 

 

 

5.1. Different coupled hydro-mechanical SFEM models  

A major shortcoming of smoothed finite element methods is that using higher order elements 

deteriorates their accuracy. SFEMs using quadratic 8-node quadrilateral elements (Q8) does 

not pass the patch test [32]. Further investigation by authors showed the same shortcoming 

for quadratic 6-node triangular elements. When strain smoothing is applied to higher order 

elements, nonlinear gradients are replaced with piecewise-linear smoothed gradients that 

reduces the accuracy of solution. As a result, mixed elements are not applicable for solution 

of coupled hydro-mechanical problems using SFEMs. 

Since the mixed elements method is not applicable in SFEM, a number of other methods 

were investigated to create stable coupled models. The first method discussed here, is based 

on different properties of different types of SFEM. A major cause of oscillatory results in 

coupled analysis is volumetric locking of hydraulic phase, because stiffness of that phase is 

very much higher than the solid phase [31]. On the other hand, ESFEM gives stiffer results 

than the exact solution, while NSFEM is volumetric locking free [8]. In this way, ESFEM 

may be used for mechanical part to give ultra-accurate results, and NSFEM for hydraulic part 

to solve the volumetric locking problem that causes spurious oscillations. The model created 

by this method is a mixed ESFEM/NSFEM model. 

When mixed T6/T3 elements are used in the conventional FEM, T3 elements reduce overall 

accuracy and may cause problems such as volumetric locking, due to their low order. The 

other method for creation of coupled SFEM models is intended to overcome this problem. 

Application of strain smoothing to T3 elements only (and leaving alone T6 elements), 

improves their performance and makes them more accurate [8]. Using this method, only the 

fluid conductivity matrix, ▓, in Eq. (39) is smoothed and other components of the overall 

stiffness matrix are written as in the conventional FEM.   

Performance of these different strategies for application of SFEMs in solution of coupled 

hydro-mechanical problems is investigated through solution of typical consolidation 

problems. Results are obtained using a developed SFEM/FEM code. SFEM results are 

compared with the FEM and also analytical solutions.   

 

5.2. One-dimensional consolidation analysis 

The problem consists of a saturated layer of soil, with thickness H=10 m and large horizontal 

extent, considered as one dimensional. Standard geotechnical boundary conditions are 

imposed for displacements and soil layer is only drained on top. Problem domain, discretized 

in different ways, is depicted in Fig. (4). Where quadrilateral elements are used, problem 

domain is discretized into 4 elements with sides’ length of 2.5 meters, and where triangular 

elements are used, problem domain is discretized into 8 elements with perpendicular sides of 

that length. Other parameters are: θ=1, elasticity modulus, E=10000 kPa, Poisson’s ratio, 

ν=0, permeability in vertical direction, Ky=5×10-8 m/s and in horizontal direction, Kx=0 as 

problem is considered one dimensional. A surcharge of σ=20 kPa is applied on the surface 

and body loads are ignored. Analyses were performed in 700 time steps with a uniform size 

of 8640 s (0.1 day), that represent a total of 70 days. 



 

 

The closed form solution for one-dimensional consolidation is given by Terzaghi as follows 

[33]: 

Excess pore water pressure: 
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Degree of consolidation: 
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Surface settlement: 
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First, performance of the mixed ESFEM/NSFEM model is investigated. Initial analyses 

showed that application of T3 elements in this method will result in large errors, therefore, 

those analyses are not mentioned; But Q4 elements’ results are notable and are discussed 

here. Although it seems more rational to use ESFEM for mechanical and NSFEM for 

hydraulic part, as discussed previousely, each type of SFEM was used for both hydraulic and 

mechanical parts to make a thorough investigation.  

Excess pore pressure results, obtained at the bottom of the domain, are shown in Fig. (5). In 

Fig. (5a), analytical results are shown and FEMQ4(mech.)/FEMQ4(hyd.) results are 

compared with ESFEMQ4(mech.)/NSFEMQ4(hyd.) and 

NSFEMQ4(mech.)/ESFEMQ4(hyd.) results. As discussed before, FEMQ4/FEMQ4 model 

does not satisfy the Babuška-Brezzi condition, and initial oscillations are obvious in first time 

steps’ results. However, possibility of using different strain smoothing technics instead of 

using mixed elements method was questioned in the research, and therefore this model is 

analyzed for comparison purposes. Furthermore, effect of using different strain smoothing 

technics for mechanical and hydraulic parts is investigated.  

Fig. (5b) shows the absolute relative error in results, compared with analytical ones. It is 

shown that in contrary to what was expected, NSFEMQ4/ESFEMQ4 approach reduces 

overall errors of the FEM with same order elements much more in comparison with 

ESFEMQ4/NSFEMQ4, and the latter approach even increases FEM errors in most time steps. 

Although NSFEMQ4/ESFEMQ4 method greatly reduces errors of the FEM using same order 



 

 

elements, but initial oscillations are still not acceptable. As a result, it is concluded that using 

different smoothing technics cannot replace using mixed elements. 

After revealing shortcomings of the first method, the second one is investigated. As described 

before, the other method is to apply SFEM only for hydraulic part of the mixed T6/T3 

elements, which uses lower order T3 elements. All three smoothing technics are possible to 

use with this method. Among them, cell based method gives identical results with FEM when 

using T3 elements [8] and is not discussed here. Results are compared with FEM 

T6(mech.)/T3(hyd.) and analytical ones. Fig. (6) shows excess pore pressure results, obtained 

at the bottom of the domain. 

In Fig. (6a) results of the method using two different smoothing technics are compared. It is 

shown that while using NSFEM for hydraulic part of T6/T3 elements deteriorates the results, 

ESFEM makes them closer to analytical ones. As concluded in investigation of the first 

method, it is concluded here that node based technic is not suitable for smoothing the 

hydraulic part in coupled hydro-mechanical formulations. This is possibly because of its 

over-softness that makes it unstable in temporal analyses. But, while NSFEM increases the 

error in excess pore pressure results, ESFEM can make them more accurate. 

Fig. (6b) shows absolute relative errors. Here it is shown that using an identical mesh (Fig. 4), 

replacing FEMT3 with ESFEMT3 in T6/T3 elements greatly improves the accuracy. On a 

same computer, analysis using FEMT6/ESFEMT3 elements lasted less than twice the 

computational time needed for FEMT6/FEMT3 elements. On the other hand, taking an 

average for all time steps in Fig. (6b) shows that using FEMT6/ESFEMT3 has reduced the 

mean relative error by nearly four times. 

The conventional method for increasing the accuracy of T3 elements in FEMT6/FEMT3 

models is increasing the order of the shape function of T3 elements and using T6 elements 

instead. But when T6 elements are also used for mechanical part, this is not feasible. As 

discussed before, FEMT6/FEMT6 model violates the Babuška-Brezzi condition. Fig. (7) 

shows spurious oscillation in initial results of this model, although it can greatly decrease the 

overall absolute relative error in excess pore pressure. The remaining conventional option for 

increasing the accuracy of FEMT6/FEMT3 models is replacing both T6 and T3 elements 

with higher order elements. But, Fig. (7) shows that using FEMT6/ESFEMT3 is an 

appropriate method to improve the accuracy of FEMT6/FEMT3 elements, without using 

higher order elements that need high computational effort. Error reduction of this method is 

comparable to using high order elements.                                                                                                                     

Fig. (8) shows surface settlement results for this problem. In Fig. (8a), results using different 

methods seem identical to analytical ones. But, a closer look on relative error in first five 

days in Fig. (8b) reveals that FEMT6/ESFEMT3 gives results with less error for settlement 

compared with FEMT6/FEMT3. It is concluded that for current problem, strain smoothing in 

FEMT6/ESFEMT3 can give more accurate results for both excess pore pressure and 

settlement.  

To study the effect of mesh properties on performance of the second method, the problem 

described in this section was solved with different meshes. Problem domain was discretized 

using 4 different unstructured triangular meshes, with maximum edge lengths (Hmax) of 2.5, 

1.5, 1, 0.5 meters. Meshes are depicted in Fig. (9) and number of elements for each one is 



 

 

indicated. Both FEMT6/FEMT3 and FEMT6/ESFEMT3 models were solved with identical 

disretizations and results for excess pore pressure are compared. Fig. (10) shows absolute 

relative error in excess pore pressure results of both methods for different meshes. In all 

cases, although error reduction is not observed for every time step, but the 

FEMT6/ESFEMT3 elements have less error in initial ones. Since the results does not have an 

obvious trend, recommending a general procedure to choose element and time step sizes for 

creation of efficient coupled SFEM models, using the proposed method needs further 

research. 

 

6. Conclusion 

In this paper, considering the Biot’s consolidation theory, smoothed finite element methods 

were introduced and numerical formulation of coupled hydro-mechanical problems using 

SFEM was described. Two methods for creation of coupled SFEM models were advised: one 

by usage of mixed ESFEM/NSFEM elements, and the other by smoothing only the lower 

order elements of the hydraulic part in FEMT6/FEMT3 models. It was shown that although 

using mixed ESFEM/NSFEM method can improve accuracy of the results of the FEM model 

using same order Q4 elements, but large initial oscillations in excess pore pressure results 

will make the method not applicable. It was also concluded that while using ESFEM for 

hydraulic part reduces overall errors, switching that method by NSFEM deteriorates the 

results, in contrary to what was expected. Further investigation revealed the same condition 

for performance of the node based and edge based methods in smoothing the hydraulic part 

of mixed FEMT6/FEMT3 elements. In second method, by using strain smoothing for T3 

elements to make them FEMT6/ESFEMT3, performance improved and both excess pore 

pressure and settlement results became more accurate. It was shown that using 

FEMT6/ESFEMT3 elements is an appropriate method to improve the accuracy of 

FEMT6/FEMT3 models, without using higher order elements. However, selection of 

appropriate element and time step sizes need further research.   
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Figure 1. A domain discretized into 10 nodes, 4 elements and 16 cell based smoothing domains                                               

(solid line: element borders, dashed line: smoothing domain borders) 

Figure 2. A domain discretized into 10 nodes, 4 elements and 10 node based smoothing domains                                             

(solid line: element borders, dashed line: smoothing domain borders) 

Figure 3. A domain discretized into 10 nodes, 4 elements and 13 edge based smoothing domains                                                 

(solid line: element borders, dashed line: smoothing domain borders) 

Figure 4. Discretization of problem domain in different ways (o: nodes for mechanical part, *: nodes for hydraulic 

part): (a) FEMQ4(mech.)/FEMQ4(hyd.), (b) FEMT6(mech.)/NSFEMT3(hyd.), (c) FEMT6(mech.)/FEMT3(hyd.),                                                 

(d) ESFEMQ4, (e) NSFEMQ4, (f) FEMT6(mech.)/ESFEMT3(hyd.) 

Figure 5. (a) Excess pore pressure at the bottom of domain for one-dimensional consolidation problem using different 

methods (b) Absolute relative error in excess pore pressure results (method 1) 

Figure 6. (a) Excess pore pressure at the bottom of domain for one-dimensional consolidation problem using different 

methods (b) Absolute relative error in excess pore pressure results (method 2) 

Figure 7. Absolute relative error in excess pore pressure results using different methods  

Figure 8. (a) Surface settlement for one-dimensional consolidation problem using different methods 

 (b) Relative error in surface settlement 

Figure 9. Different domain discretizations 



 

 

Figure 10. Absolute relative error in excess pore pressure results of analyses using different meshes 
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