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Abstract. The present study is mainly focused agvelopment othe fragility curve for the sidesway collapse
limit state. One importardaspeciof derivingfragility curves is how uncertainties are blended and incorporated into
the model under seismic conditionsi€lcollapsefragility curve is influenced Y different uncertainty sourcedn

this paper in order to redutiee dispersion of uncertaintieddaptive Neuro Fuzzy Inference System (ANFIS) based
on fuzzy Gmeans algorithm used to derive structural colldpagility curve, considering effects of epistemic and
aleatory uncertainties associated with seismic loads and structural modeling. This approach is applied to a Steel
Moment Resisting Frame (SMRF) structural model whose releva@rtainties haveot ben yetconsideredy the
others in particulaby using ANFIS methodor collapse damage state. The results show the superiority of ANFIS
solution in comparison with exaing probabilisticmethodse.g.,First Order Second Moment Method (FOB&hd
Monte Carb (MC)/Response Surface Method (RSM) to incorporate epistemic unceriaimgyms ofredudng
computational effort and incrdag calculation accuracyAs a result, it can be concluded that comparing with
proposedmethod rather thaklonte Carlo method the mean and the standard deviation are increa2 and10

% respectively.

Keywords. ANFIS C-means algorithmCollapse fragility curveFirst order sscondmoment methodEpistemic
uncertainty Aleatory uncertaintyincremental dynamic analysis.

1. Introduction

Seismic fragility curves descri@obability of structures bearing assorted damage steps versus seismic
intensity [1]. Sideway collapse that is described as lateral instability of structures excited by strong
earthquakes the concernof many recentstudies[2]. Complete evaluation of the risk of earthquake
induced structural collapse demands a robuoatyéical model with nonlinear behavior and at the same
time a clear observation of the various significant sources of uncerfdjnBactors leading to changes in
collapse capacityf a building are divided into twocategories aleatory and epistemic uncertainties.
Accordingly, aleatoryrecordto-record uncertainty consists of factors that possess random features or
according toour current knowledge and data, cannot be accurately predisefar as is knownthe
earthquake ground motions contain of the main source of uncert@igéyding to other identified
sources Sitespecific seismic hazard curve describes uncertaintiegraond motion intensitywhich
maintains a connection betwe#me spectral intensity anthe mean annual frequency of exceedance.
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Recordto-record variability stands for the extra uncertainties allied with frequency content and other
characteristics ahe ground motion records.

There areother uncertaintiesassociated with theimulation of the structurakesponsg in the analysis
approacksanddevelopnentof idealized model desciiig real behaviorThe epistemic uncertainties can

be reduced by devading knowledge boarders. The effect of this uncertainty factors can be reduced by
collecting more data or using more appropriate analytical model. The parameters of modeling
assumptions (analytical modlere mainly sources of epistemic uncertaintigsich are propagated into

the structure responses through numerical analjdis To simulate structural resporssedetailed
nonlinear response history analysis is usually appliedfamsiourceof elementary uncertainty modeling

is placed in description of ¢hmodel parameters especially the strentth,deformation capacitythe
stiffness and energy absorption properties of the building compd&gnts

Some simple methods from FiGrderSecondMoment to more complicated method like crude Monte
Carlo method haveeen used to combine such uncertainf@sCrude Monte Carlo simulation method
needs a lot of simulation to cover all probabilistic distributions allied with each source of uncertainty
which would be completely time&onsuming. For solving this problem, the response surface in
combination wih Monte Carlo simulation method has been suggested to reduce computing effort.
Besidesthe response surface method could be replaced with Artificial Neural Network method (ANN) to
imply effects of uncertainties in reliabilitynodeb[7-8]. The predictionof the mean andstandard
deviationof collapse fragility curveisingpermanent function e most important limitation of response
surface method. Moreover, taking advantage of the higher level of response functionssdeorarghta

to compute coefficients. It was represented that ANNs can be applied to any estimated form of functions.
ANN appraaches have been applied fieriving fragility curves in a limited number of studies. Lagaros
and Fragiadaki$9] used ANN for the quick assessment of the exceedance probabilities for each limit
stateat a particularhazard level They have appliedMonte Carlo simulation based on ANN while
randomnessncorporatedn materialand geometryparametersn addition toconsideringuncertainty in
seismic loadingMitropoulou and PapadrakakiglO] suggested Monte Carlo simulation based on ANN
for the sensitivity analysis of large concrete dams. ANN metivad used by Mitropoulou and
Papadrakakig10] to establish fragility curves for different limit states of concrete structures. They
suggested that strong ground motion parametedsthespectralacceleratiorat different limit stateswvere
regarded as input and output layers, respectividlis studywasexpandedy deriving the fragility curve
considering various uncertaintie€ardaliaguet and Euvrafdl] applied an ANN algorithm to estae

a function and its derivatives in control theory. [li2] indicated that any multivariate performance
measureand its existing derivatives could be coincidentally estimated by a radial basis ANN while the
presumptioron the performanceererelevantlymild. Chapman and Crosslafti3] showed an example

of ANN application for prediction of the failure probability of pipe work under different working
situation.

While ANN was employed to develop fragility curves in mentioned several works, Adaygive Neuro
Fuzzy Inference SystenfANFIS) i n t his respect t o t he aut hor ' s
Advantages such as better matching between input and output, faster computation in complex problems,
lower encountered error and hence more accresalts may be considered for ANFIS in comparigon

ANN in various application fieldsl@, 15]. The main objectiveof this paper is to show effectiveness of
ANFIS method in deriving collapse fragility curves. Moreover, modeling parameter uncertaintis effec
areincorporatedn this study. ANFIS is trained and tested according to limited numbers of simulations
derived from nonlinear analgs of structure under strong ground motion excitations. The responses of
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structure simulated by modeling parameters ungimund motion excitation aracquired through
application of Incremental Dynamic AnalygkDA) method. The nean andhe standard deviation of

collapse capacity'Y ) arederivedas the results dmplementingANFIS. To explain the capability
of the suggested method, a thetery momentesisting steel frame is modeledths case study in this
work. Results ofproposed methodre comparecgainst results of FOSM and Monte Carlo simulation
alongwith responselgface methodn view of developingcollapse fragilitycurves. Inthis study, ANFIS
with Grid Partition (GP)Subtractive Clustering (S@nd FCM algorithmareappliedto predict mean and
standard deviationf fragility curve for the first time and finallgompare with Monte Carlo and FOSM
methods.

2. Development of analyticalfragility curve s

IDA is a common method in evaluating fragility curves for different limit states of structures affected by
different earthquake intensity. Each IDA curvedisveloped by implementing successivenonlinear
dynamic analyss of structure, while it is influenced amplifying intensities of strong ground motions
[16]. These curves show sttucal response parametédeformation or force quantity)named as
EngineeringDemand Parameter (EDP), versus features of affected strong ground motion, named as
IntensityMeasure (IM).

2.1 Collapse fragility curve

Based orselectionof key variables,the collapse fragilityfunction can be written in IMBased or EDP
Based formatg14]. IM-Based formulation, which uses IM as controlling variablegxsibited by
equation (X

P(Collapse|lM= im) =R im >I\) E (im 1)

Using EDP as intermediate variable, EBRsed formulation ipresented bgquation (2):

P(Collaps¢ M= im) =& H EDP >EDP| EDP =dn IM ifh. P EDP egf
all edp,

2
Where,P (Collapse | IM=im) estimates probability ofcollapse givenM. P (EDPs>EDP. | EDP; = edp,
IM=im;) specifies the probability of applied engineering demd&idR;) exceedingassociatedollapse
capacity of structurein the form of Engineering demand parametéDP;). Each random value of
capacity édpi) and intensity measuredr) should be caldated in above equation. Moreover, the
expression PEDP. = edp.) specifies the probability that the structure's capacity equalspbeific
capacity ofedp.
In equation (1);O  "Qd is the cumulative probability distribution functidor the specific limit state
described by intensity measure of imposed strong ground motion, which is olitaimeghapplication
of IDA to the structure. Derivation ofhe parameters of this probability distribution function demands an
explanation oM and a process to propagate the epistemic and aleatory uncertainties invoMegd]in
The collapse limit state, considered in this paper, is described B8 tfestrong ground motion in which
the structure experiences the lateral dynamic instability in a sidexlapsemode. In other word$M.
is described as the laspnverged result on an IDA curterough implementation of successivenlinear
dynamicanalygs [17]. In this study, IMbased formulation is used to calculate collapse fragility curve of
structures. Usinghis approach, for a set of IDA curves points whishindication of specified IM
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exceedegbrobability of collapse limit statén this method, the random variable is defined as the collapse
capacity in the form of intensity measunéM{). The collapse fragility curves areften definedby
lognormal probability distributiongd]. The fragility cunes obtained from IDA analysis is representgd
equation(3)

P(C|IM)=0 & ©)
¢

In thisequation 3 (.) is the standar@aussian distribution function argl, andf arethemean andhe
standard deviation of collapse fragility curve, respectiy/esy.

2.1.1 Treatmentof epistemic uncertainty

There are different types of methods focorporatingepistemic uncertainties ia seismic reliability
analysis, likehesensitivity analysisghe neanestimatemethod[19], the onfidenceintervalmethod[19],

the FirstOrderSecondMoment Method (FOSM)the Monte Carlo simulation methodslong with the
Response Surface Methd@®RSM) [20,21Jor other inference methodsuch asthe Artificial Neural
Network (ANN) [7, 10]. In sensitivity analysis, the effect of each random variable on structural response
is distinguished by changing a single model parameteraedr@a | uat i ng the structure’
method has been used to choose the most influential paramdeamtingf performance assessment of
structures. Inhe mean estimate method, it is assumed that only variance of fragility curves is changed
epistemic uncertaintiesin thecontrary,in the confidence interval methodhe mean values are affected

by episemic uncertainties and variance remains unchanged. Unlike these simplifying assumptions, it is
shown that epistemic uncertainty causes a shift in bwhmean andhe standard deviation values of
collapse fragility curves.

A general version of the FOSM thed is formulated in standard Gaussian sg&€e 21], and has an
advantage in comparison with some other methods since it involves a small number of structuesl analys
Moreover, the mean seismic capacity &sdvariance can be estimated without understanding the actual
probability distribution of the performance function @ ( Q., € ,n) wereQ., @, é ,.refpesent a set

of input random variablef22]. FOSM is an approximation method for computitg mean andhe
standard deviation of a function of variahledich are shownby probability distributions. Considering
variabledy which is a function of mandom variable8 , the mean andhe standard deviation @ can be
approximated byexpansion offunction usingTay |l or ' s seri es, about t he e:;
variables. In FOSMmethod first-order terms ofTaylor series and the first two mamts of expected
function®are considered. The mean ahdstandard deviation abis computed afollows [4, 23].

e,= (%) 4)

n
or W H 0
Uz=a & <~ b (5)
s HQ @ o N
In equaions (4) and (5)t and A are the first two moments of functiak, ” stands for the
correlation coefficient between two variablesind0 ,, is variance o) andt is the number of input

variables.



In this study, the output function is the mean of collapse fragility curve and input variables composed
of —h— fr are defined in Section Equations (6)arewritten as follows for evaluation dhe mean
andthestandard deviation of output function.
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According to advantages su@s capability of modeling various modes of component deterioration,
refinement of parameters definitioModified IbarraKrawinkelr model is used here. Modeling
parameters of steel moment resisting connections are considered as epistemic uncertairtties, and
effects on collapse fragility curves are investigated in this stady— fy . Calculation of derivatives
requires determination dhe mean values of - for various values of modeling variables. Derivatives
may be computed by orsde methodor two-side method whichis shown by equation7) and @),
respectively

vz (m)_z( @) -Z( gm0 of

- ™
HO nsq

w _z(m-ns) -2( g of @

MQ 2ns,

In Crude Monte Carlo method, thousands of simulations for modeling parameter values based on their
statistic distributions are implemedtand then the structure is analyzsted on thessmulated values.
Thousands of the probability of collapse verBdsvalues denoted as collapse fragility curves involving
effects of epistemic uncertainties resulted from this rigorous analyses. This method is very elaborative in
practice dudo the runtime needed for sevetimhe-consumingnonlinear dynamic analyses dfisture

for each simulated value of modeling parameR&@sponse surface method in combination with Monte
Carlo simulation is used for seismic vulnerability assessmerseweral structure e.gsteel framed
structure 4], horizontally curved steel briég[25] and concrete building structurd26]. In addition
response surface methdds beerusedto derive the fragility curve$27]. Monte Carlo simulation
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applying a predefined regressed function, as response surface, has been proposed as an alternative to
substitutetime history dynamic analysiand to reduce the computational effort in the context of the
previous researches. In this method, first, fixed formats oétfons were interpolated to the limited
number of simulations of modeling variables as inputlich lead to resultant means and standard
deviations of collapse fragility curves and as outputs of the function. In the next step, means and standard
deviatims of collapse fragility curves for a large number of simulations of modeling parameters are
calculated applying derived analytical functions. Tdwest of reducing analysis time in the response
surfacebased methods loss of accuracy in approximated collapse fragility curves. To overcome this
deficiencyandto reduce the simulation runtime, the Monte Carlo along with inference method such as
ANN and ANFIS Methods in lieu of Response Surface method mayudgested In this paperANFIS
Methodis used for prediction the mean atine standard deviatioof fragility curves for the first time.

2.1.2 The ANFIS method

ANFIS is a fuzzy inference system performed in the structure of adaptive networks. The presented model
can build an inputoutput mapping based on both human knowledge in the form of fuzzy rules and
stipulated inpubutput data pairdn the present studyt proposed a Sugertgpe fuzzy system in five

layer network(Figure 1) [B]. The node functions in the ro& layer are of the same function family as
explainedbelow:

Layer 1: Every nodein this layer is a square node with a node function

O'=m (x) ©)

In whichis the inputto nodeandd i s t he | inguistic | abel (such as
this node function. In other words, is the membership function 6f and it defines theabree to which

the givenwfulfills the quantifierd . Any continuous and various function, such as generally applied bell
shaped, trapezoidal or triangukttaped membership functions are efficient candidates for node function

in this layer.

Layer 2: Every node in this layer is a circle node terntethat multiples the incoming signals and sends

the product out. For example:

wo=m (x)2m(y), i %2 (10)

Each node output describes thendrm operators that combine the probable input membership grades in

order to calculate the firing strength of a rule.

Layer 3: Every node in this layer is a circle node terMetihei™ node computes the ratio of tHer ul e’ s
firing strength to the sum of all/ rules’” firing si

W, =—1, i =1,2 (11)

For accessibility, outputs of this layer will be labeled normalized firing streligitnsre 2)
Layer 4: Every nodein this layer is a square node with a node function



O'=w,f, :Wi(px @y ir-)- (12)

Where0 is the output of layer 3, andj{j i is the parameter set. Parameters in this layer will be

applied as consequent parameters that are adaptable.

Layer 5:The single node in this layer is a circle node (adaptive node) texmed hat <cal cul at es
output as the summation of all incoming signals, i.e.

v a
O° =overall output f £
i p :a W | a W

(13

It is not adaptable.
[Figure 1 near here]

[Figure 2, near here]

For having knowledge of ANFIS, a combination of two methods of dpackagation (gradient descent)

and least squares estinoatare applied. First, parameters of the introduction section are assumed stable,
and final parameters are estimated applying least squares method. Then, final parameters are assumed
stable and error baghkropagation is applied to correct the parametersitobduction. This procedure is
repeated in each learning cy¢g9).

Two methods are generally applied to create ANEI®d Partition (GP) andSubtractiveClustering (SC).

ANFIS with GP algorithmapplya hybridlearning algorithm to recognize parameters of inference system.

It uses a combination of the least square method and thepbagigation gradient descent method for
training ANFIS membership function parameters.

Grid partition divides the data space into rectangularspatzes applying axigaralleled partition based

on predefined number of MF and their category in each dimension. The number of rules is based on the
number of input variables and on the number of MF applied per variable, and this partition strategy
requires a small number of membership function for each input. It faces problems when we have a
moderately large number of inpy&Q].

Clustering is a task of selecting a set of data into groups named clusters to find structures and patterns in a
datasetand the radius of a cluster is the maximum distance between all the points and the centroid. There
are two most important clustering methods: the hard clustering and the fuzzy clustering. The hard
clustering is based on categorize each point of theatgtes to one cluster. In fuzzy clustering, objects

on theborderlines between several clusters are not forced to fully relate to one of them. The subtractive
clustering method (SC) as a hard clustering was suggeésifed

The SC method fposes that per data point is a potential cluster center and computes the potential for
each data point based on the density of surrounding data points. The capacity of potential for a data point
is a function of its distances to all other data pointsafagboint with manyurrounding data points will

have a high potential value. The data point with highest potential is chosen as the first cluster center, and
the potential of data points near the first cluster center is demolished. Therefore data phoitite w



highest remaining potential as the next cluster center and the potential of data points near the new cluster
center are demolished.

It is remarkable that the important radius of clusterital for deciding the number of clusters and data
pointsoutside this radius has little effect on the poterdédision Also, a smaller radius results in many
smaller clusters in the data space, which leads to more[8lles

In this study, GP, SC, and another technique which is ndfoedy C-means(FCM) are applied to
generate the ANFIS model. FCM is a strong unsupervised algorithm. FCM clustering was first informed
by Dunn[32]. It was extended by Bezdek (1981). FCM is an algorithm where per data point has a
membership degree between 0 and 1 to each fuzzy subset. In other words, each data in FCM can be
related to all groups with various membership grades. The algorithm generatetsnzal c partition by
minimizing the weighted within group sum of squared error funatiof82] :

c

=4 and’(x,v) (14)
i=1j 2

In which w  @hofB o N 'Y is the dataset in the-dimensional vector spach,is the number of

data items, c is the number of derswithin 2 @ 0h 6 is the degree of membershipefin thej™"

cluster, m is the weighting proponent on each fuzzy membership, the prototype of the center of
clusterj, Q @hy is distance measure between objband cluster center .

To generate an ANFIS with FCM, data are clustered by FCM algorithm and then ANFIS method is used
for clustering data.

3. Case study andinalytical modeling

To evaluatehe effects of various sources of uncertainties and their interaction on the collapse fragility
curves, a 3toreyintermediate moment steel buildings designed for a specified site (Tehran) where
located in a high seismic zonEhe seismic design of aastudy structures performed based on UBZ7
provisions B3]. This building assumed to be constructed on soil typ¢hB &eragevelocity of shear
waves in the top30 mof soil would be 360750 ms) and located in seismic zone Bhe buildings are
square in plan anii consiss of three bays of 5.0 m in each direction davingthe story heightsf 3.2

m thatareshown in Figure8 and4.

[Figure 3, near here]

[Figure 4, near here]

A rigid diaphragm can be assumed accordingh® floor building systems existing in common steel
concrete composite floor structural systems. The values of response modification factors (i.e. R) which
are utilized by UBE37 (considering R=8.%or special moment resisting frajng83]. Gravity loads are
supposed to be similar to common residential buildings in Iran. Table 1 give cross sections for all
members. The fundamental period of frame is 1.075 s.



[Table 1, near here]

Opersees finite element program @mployedfor modeling and analysis of the structuresll frame
members are modeleuth the two-dimensional prismatic beam element corsx$tsemirig id rotational
springs at the ends and an elastic beam element in the middle (see 3yiglihe analytical model
developedby Ibarra et al. referred to as Ibaiveedina Krawinkler (IMK) model, is applied in this
study[34]. It has been shown that—h— hy have more effects than other modeling parameters on
collapse performance of structurgl]. It simulates nonlinearbehavior of frame members. The IMK
modelcreates strength bounds based on a monotonic curve as shown inBFigure
Definitions of modeling parameters, shown in Figéyrare as follows
—: Cap rotation
0 : Effective yield moment
—: Effective yield rotation
—: Ultimaterotationcapacity — : Plastic rotatiorcapacity— : PostCapping rotatiortapacity.
The hysteretic behavior of the connectiendefined based on deterioration ruladich are defined
according to hysteretic energy dissipated in deatideformationcycle.
The deterioration of basic strength, post capping strength, unloading stiffness and reloading stiffness
could be considered in this model.
The energy dissipatiorcapacity of the component, by which deterioration rules are formulated, is
described af35]:

E.=s M, (15
In equation (%), ¥ is the rate of cyclic deterioration and is estimated according to calibration of
experimental results. It has been represented théit— ¢ 0 have moreinfluencesthan other
modeling parameters on collapse performance of structuogsormalprobability distribution function
is employedto show uncertainties die— h— & ¢ ‘R The mrameters of these probability distributions,
based on laboratory tests, are presentdabie 2.

[Figure 5, near here]
[Figure 6, near here]

[Table2, near here]

The inelastic beamcolumn joint behavior of the steel framie simulatedby nonlinearpanel zoneof
Krawinkler mode| whichis shown in Figire 7. This model holds the full dimension of the panel zone
with rigid links and controls the defornian of the panel zone by using two bilinear springs that simulate
a tri-linear behaviof36).

[Figure 7, near here]

A set of 40 strong ground motions represented by Meldifa hamed as LMSR records, éhosen to
consider recordo-record variabity in estimating collapse capacity of the structure. Ivbased
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formulation is used to derive collapse fragility curves frparforming IDA of the sample structure.
These records are normal strong ground motions recorded in California region and do not involve pulse
type neaffield features that isntroducedin Table 3. The hunt&fill tracing algorithm is used to scale
records in IDA methd to achieve good performande].

Fragility curves are developed by ANFIS based on fuzaye@ns algorithm. To achieve input data and
train ANFIS, five realizations for each modeling random variable$-- & £ ) areconsideredlt is to

be notedthat they are related to mean, mean minus andgulastandard deviation and mean minus and
plus two standard deviationgnean, mean +1x standard deviation, mean *2.0x standard deviation,
Totally 125 simulations)The tree diagram of realizations for input variables is shown in FRjUgach
branch of the tree shows a value for one of input variables. For each realization of input vdDabies
performed and collapsed fragility curves are derived based oni@y(d}. The selected parameters for
intensity measureljl) and damage measure (DM) should appropriately indicate the impact of an
earthquake and behavior of a construction, respectivéaximum inter-story drift ratio among the
common parameters is clersfor estimating DM. FoiM parameter, spectral acceleratiafiTs, 5%), at
fundamental elastic natural period among other intensity measures is selected. It was indicated that both
advantages of efficiency and sufficiency far iBtensity measure whilesed versusMaximum inter
storeydrift ratio [16].

[Table 3, near here]

[Figure 8, near here]

A total of number of40% 12E IDA curves are develope train and test the proposed ANRi8twork
which 125 various of these-h— ¥ parameters are input data for ANFIS systédbjective data in

ANFIS method are mean and standard deviation of collapse fragility cwhieh are similar to output
functions in FOSM method.

A sampleof IDA curves and fragility curn&for 10 cases are prsted in Figure® and 10, and the
architecture of represented neural networks to predict mean and standard deviation values of collapse
fragility curves is shown in Figurgl. As it is shown in this figure, after analyzing for each scenario
which includes epistemic uncertaintANFIS predicts mean and standard deviation of collapse fragility
curves Thereare125 available data for ANFIS while 88 casesapplied for training, 37 remaining data
areused for testing the model.

[Figure 9, near here]
[Figure 10, near here]

[Figure 11, near here]

The performance of model configuratimestimated based on coefficient (R) adeéarSquareError
(MSE) of the linear regression between the predicted values from the neural network model and the
desired outpts, as follows

n, a,n;l(Y. - 9. )2
(ni - l)a in;l(Yi )2

RMSE= (16)
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Re=y g0l 3
g a.v)

Wherey andware actual and predicted values, respectively;rarsdthe number of testing samples. The

smallerRMSEand the largeR? are generallyindicative of betteperformanceTo find the best results

based on GP, SC, and FCM methods, datasetpplied randomly and many modele established. It

is discovered that the FCM modslmuch faster than the other two methods and the algorithm of GP was

more timeconsuning process than othefdoreover the results of the best models that obtained from SC

methodis lower than both GP and SC methods. In the SC method, radius of the clustertehdedihed

before modeling. The smaller radius will create the greater auwfbunknown parameters. In Table 4,

the best results obtained by the SC algorithm for the test phase are presented. According to this table, the

best modehas0.89 and 0.02%or R and RMSEof the meanvalue of fragility curve, respectivelylt is

found that the GP algorithm had less error, but needed more rules tohsopr@blem. It is observed that

to evaluate standardeviation FCM algorithm has bettegfficiency than othertwo methods. To create

ANFIS with FCM algorithm, the number of classis predefined for the model. Therefore, to get the

proper state, many models with various number of clustrersstablished. The best model in the test and

thetrain properties fothemean andhe standard deviation are presented in Table 5.

(17)

[Table4, near here]

[Table5, near here]

The performance of ANFIS for evaluatitige mean values of test data for developing fragility curve is
shown inFigure 12. Therelevant value fothe standard deviation is shown in Big 13, where ANFIS
outputvalues are plotted versus the results achievgeebprmingfull IDA.

[Figure 12, near here]

[Figure 13, near here]

Two different training sets dhe mean andhe standard deviation have been testeds tound that both
performed equally well; henc&NFIS with FCMis chosen since it requires less computing time and
better performance for preparing the training and testing set. To pthdioteans andhe standard
deviations of collapse fragility curves, ANFIS based on fuzayp&ans algorithm simation is applied.
Thesemodelsarecalibratedfrom 10000 realizations of input random variables thaatedinside interval
[-2s, +2s] and then, collapse fragility curve is derived through fitting andomal probability
distribution. It is observed in Table 6 thhe mean andhe standard deviation of fragility curve in ANFIS
method with FCM, are 87623and0.4256 respectively As a result,tican beconcludedhatcomparing
with ignoranceof modeling uncertaintiesthe mean is reduced 25 % and the standard dewiasi
increased 9.%6. The comparisobetweerFOSM approximationn inclusion of modeling unctainties in
developing fragility curvesand resultedfragility curve with neglecting modeling uncertainties
noteworthy The mean value doesn't change using FOSM approximation. As it is presented in Table 6,
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mean and standard deviation of collapse fragility curve of sample structure with neglecting modeling
uncertainties are 0.6292 and 0.3894, respectively. ApplicatidfO8M method tanvolve modeling
uncertainty remains mean value unchanged and standard deviation is changed to 0.5190 and 0.4417, for
oneside and tweside formulations represented éguations ) and(9), respectively.

Results of quadraticesponsesurface method andporoposed method are compared in view of collapse
fragility curves. To obtain input data to evaluate response surface, five realizations for each modeling
random variables—+ h— hr) are considered, which corresponds to mean, mean mamasplus one
standard deviation and mean minus and plus two standard deviations (totally 125 simulations). For each
realization of input variables, IDA is implemented and collageegacity spectral acceleration is derived

for each record.

[Table6, near lere]

Response functions, applied to estimate mean and standard deviation of collapse fragility curves, are
shown in equations 8 and @9). The constant coefficients of these equati@me evaluated through
implementingnonlinear regression analysisstimated coefficients are listed imfles 7

Implementing response surface functions in conjunction with Monte Carlo simutiroredthe mean
andthestandard deviation of fragility curve of 0.4866 and 0.4762 respectively (depicletlm 6).

hc :CO -E:lq G2 pg C? C4-|BLZC wS p+pc

18
iChe L €, § G ig C* L "9

b, =Co' €1 q @2- od C"o(' Céll"b s C/CS F

. . R (19
+C6qpc L @7 é C-g pg C9+ L

Resuled collapse fragility curve using (ANFIS) based on fuzzy @Geans algorithm simulation in
addition to collapse fragility curve ignoring effects of modeling uncertainties (while modeling parameters
are €t as their mean values) are presented in Fitieand15.

[Table7, near here]
[Figure 14, near here]

[Figure 15, near here]

4. Conclusion

In this paper, ANFIS and FCNraining'validation algorithmas an efficient and effectiveethod are
introducedto predictthe mean andhe standard deviation values of collapse fragility cureés case
study threestory SMRF building. Themodified IbarraMedina-Krawinkler moment rotation model are
considered as modeling parametér r f r a me. The fragdityn buevessire derivedthrough
implementatiorof IDA on the structure, while limited realizations of values for modeling parameters are

12



presumed.To this end, three inputér, . & n d) andl two output data valugsnean andstandard
deviatior) are consideed The systems trained by a dataset of 125 values obtained from 3000

curves Then, dataset consisting of 10000 inmresapplied to predict a basis fragility curve with aleatory

and epistemic uncertaintyAs a resultinvolvement of modeling uncertainties redu¢ks mean and
increases the standadgviationof obtained fragility curvesTo compare theesults,collapse fragility

curves ofsampleframe are derivedsingother approaches such BOSM and RSM methods. Molitey
parameters involved in momentot at i on relationship pplindcoAneatio
considered as epistemic uncertain parameters. The effects of epistemic uncertainties, on collapse fragility
curves, are estimated by aforementioned methbthny ANFIS models based on GP, SC, and RCM
expanded, and is understood that the ANFHBCM predicts the fragility curve with higher accuracy than
othermethodqGP, SC) GPis more timeconsuming process than otlreethodsandneedsmore rules to

solve the problemand in the SC methodthe problem isradiusvalue of the clusterwhich should be

defined before modelindiencethe smaller radius will create the greater number of unknown parameters.

In this respect FCM algorithm has hter efficiency than other two methodiherefore FCM algorithm

in comparison witiMonte Carlo methoa@re known asprecise methodology. Nevertheless, fiieposed

method presented here demonstrates a small prediction errégaaisdtocomparableesultswith those
obtained usingvonte Carlomethod
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Table 1 Design sections fdhecase studgtructure

Story Ci Cz B1 B2
1 BOX 180x180x1.6 BOX 200x200x1.6 IPE 300 IPE 330
2 BOX 180x180x1.6 BOX 200x200x1.6 IPE 300 IPE 330
3 BOX 180x180x1.6 BOX 200x200x1.6 IPE 300 IPE 330

Table 2.Mean and dispersion and correlation calibration of modeling parameters

MedianB, 0 ([rad) Median By O p@ad) Median/A On Pop,6pc Pop, A  Popc, A
(rad) (rad)
0.025 0.43 0.16 0.41 1.00 0.43 0.69 0.44 0.67

Table 3.Strong ground motiagused for dynamic Analys

NO. Record ID Event Name My R (Km) PGA (9)
1 IV79CAL Imperial Valley 6.5 23.8 0.078
2 IV79CHI Imperial Valley 6.5 28.7 0.27
3 IV79CMP Imperial Valley 6.5 32.6 0.186
4 IV79E01 Imperial Valley 6.5 155 0.139
5 IV79E12 Imperial Valley 6.5 18.2 0.116
6 IV79E13 Imperial Valley 6.5 21.9 0.139
7 IV79NIL Imperial Valley 6.5 35.9 0.109
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8 IV79PLS Imperial Valley 6.5 31.7 0.057

9 IV79QKP Imperial Valley 6.5 23.6 0.309
10 IV79WSM Imperial Valley 6.5 151 0.110
11 LP89AGW Loma Prieta 6.9 28.2 0.172
12 LP89CAP Loma Prieta 6.9 145 0.443
13 LP89G03 Loma Prieta 6.9 14.4 0.367
14 LP89G04 Loma Prieta 6.9 16.1 0.212
15 LP89GMR Loma Prieta 6.9 24.2 0.226
16 LP89HCH Loma Prieta 6.9 28.2 0.247
17 LP89HDA LomaPrieta 6.9 25.8 0.279
18 LP89HV Loma Prieta 6.9 31.6 0.134
19 LP89SJIW Loma Prieta 6.9 32.6 0.112
20 LP89SL Loma Prieta 6.9 36.3 0.194
21 LP89SVC Loma Prieta 6.9 28.8 0.207
22 NOR94CEN Northridge 6.7 30.9 0.322
23 NOR94CNP Northridge 6.7 15.8 0.42
24 NOR94FAR Northridge 6.7 23.9 0.273
25 NOR94FLE Northridge 6.7 29.5 0.24
26 NOR94GLP Northridge 6.7 25.4 0.206
27 NOR94HOL Northridge 6.7 25.5 0.231
28 NOR94LH1 Northridge 6.7 36.3 0.087
29 NOR94LV06 Northridge 6.7 37.7 0.063
30 NOR94NLVO01 Northridge 6.7 38.5 0.178
31 NOR94NYA Northridge 6.7 22.3 0.159
32 NOR94PIC Northridge 6.7 32.7 0.186
33 NOR94SAT Northridge 6.7 13.3 0.368
34 NOR94STC Northridge 6.7 30.0 0.474
35 NOR94VER Northridge 6.7 39.3 0.153
36 SF71PEL San Fernando 6.6 21.2 0.174
37 SH87BRO Superstition Hills 6.7 18.2 0.156
38 SH87ICC Superstition Hills 6.7 13.9 0.358
39 SH87PLS Superstition Hills 6.7 21.0 0.186
40 SH87WMOR Superstition Hills 6.7 13.3 0.172
Table 4.The results of the best models that obtained from ANFIS by SC algorithm
Number of Number of rules R RMSE
clusters

The standard
deviationof 0.64 14 0.98 0.12
fragility curve

The neanvalueof

. 0.62 9 0.89 0.029
fragility curve

Table 5. The results ofhe best models that obtained from ANFIS by FCM algorithm

Number of Partition Matrix Maximum Number of Initial Step Size
Clusters Exponent Iterations
The standard 14 1.41 200 .01
deviationof
fragility curve
The neanof 12 1.56 100 .01

fragility curve
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Table 6.Results of FOSM, ANFIS andSM on parameters ofollapse fragility curves

Without uncertainty FOSM-one FOSMtwo Monte-Carlo based Monte-Carlo based
side side FCM RSM
Meanvalueof 0.6292 0.6292 0.6292 0.47623 0.4866
fragility curve
Thestandard 0.3894 0.519084 0.441702 0.425699 0.4762
deviationof

fragility curve

Table 7. Thecoefficients ofRSM functions for mean and standard deviawbriragility curves

Co Ci C2

Cs Cs

Cs

Cs C7 Cs Co

The
mean of
fragility

curve

-3.47 24410 3.29

1.10 -45.32

-5.25

1.09 -4655.55 -6.48 -.38

The
standard
deviation

of
fragility
curve

11.27 -816.28 -5.39

-0.8725 174.92 31.98 0.356 15162.48 2.61 0.0018
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