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Abstract. This paper investigates the e�ects of velocity gradients and secondary currents
on distribution of the shear force between the walls and bed of rectangular open channels.
This paper shows that neglecting the e�ect of secondary currents and assuming zero-
shear division lines do not yield acceptable results. Then, accordingly, a method was
introduced to determine the percentage of the total shear force acting on the walls and bed
of rectangular open channels, taking both velocity gradients and secondary currents into
account. Using the channel bisectors, along which there is no secondary ows e�ect, and
orthogonal trajectories to isovels, along which there is no shear stress, the channel's cross-
section was divided into three major subsections: bed, wall, and shared areas. The geometry
of each subsection was derived with respect to the location of the maximum velocity. The
share of the bed and wall shear forces from the shared area were calculated afterwards.
The results for bed and walls shear forces are in agreement with the experimental data
containing an average relative error of less than 5% for regular ows and the ows carrying
suspended sediment. This method also provides a physics-driven range for the wall and
bed shear forces, which nicely covers the experimental data.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

In a uniform ow, total shear force acting on the wetted
perimeter can be calculated in terms of bed slope, hy-
draulic radius, and uid density. While measuring the
total shear force is useful in many engineering problems
such as loss estimations in hydraulic structures [1],
there is a need for the distribution of the shear force on
the wetted perimeter in many more problems. Despite
recent advances and applications of modern techniques
such as soft computing [2-4] and entropy concept [5],
calculating the portion of the shear force acting on
side walls and the channel bed is a subject of research
even after decades [6-8]. Calculating the shear force
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acting on the bed and channel walls is important in
hydraulic engineering studies. For example, the bed
mean shear stress is required to calculate the bed
load [9], and the wall mean shear stress is required
to study bank erosion, channel migration, and river
morphology. Moreover, the knowledge of shear force
ratio is required in laboratory ume studies. Given that
empirical results of ume studies are often subject to
sidewall friction e�ects, a procedure based on the shear
stress ratio can be used to remove these e�ects, referred
to as the sidewall correction procedure [10,11].

The present paper introduces a method to deter-
mine the percentage of the total shear force acting
on the walls (%SFw) or bed (%SFb) based on the
location of the maximum velocity on the centerline of
a rectangular channel cross-section. Incorporating the
location of the maximum velocity gives an advantage
to the proposed method compared to the previous
ones, making it more accurate for the cases in which
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this location can be obtained. For channels not
open to measurements, the location of the maximum
velocity can still be found through the instrumentality
of empirical equations.

Among di�erent methods for local shear stress
calculation, a series of simple, yet popular, methods
exist that rely on splitting the channel cross-section
into several subsections. In these methods, it is
assumed that the shear force along its corresponding
wetted perimeter balances the weight component of
the uid inside each subsection. Leighly [12] employed
this idea for the �rst time to estimate the shear stress
distribution. He mapped the channel cross-section by
lines of constant velocity (isovels) and their orthogonal
curves. He then de�ned the subsections as the area
between two consecutive orthogonal curves. Since the
velocity gradient across orthogonal curves is zero, these
curves are assumed to be \surfaces of zero shear";
however, the presence of secondary ows causes mo-
mentum exchange and, consequently, resistance force
along these surfaces. The interaction among main ow,
secondary ows, and shear stress distribution is well
investigated by Chiu and Chiou [13] and Yang [14].

Following Leighly [12], several researchers [15-17]
developed methods for predicting shear stress distribu-
tion considering zero-shear division lines on the channel
cross-section. According to this assumption, the cross-
section of a channel can be separated by two zero-shear
division lines into three parts: bed area, left wall area,
and right wall area. In this assumption, the component
of the uid weight in each area is assumed to be
balanced by the resistance of the channel boundaries
in contact with that area.

Yang and Lim [8] proposed that the surplus
energy of a unit volume of uid in a three-dimensional
channel is dissipated at the \closest" wall boundary.
Based on this assumption, they developed a linear im-
plicit equation for the zero-shear division lines. Later,
Gou and Julien [6,11] employed the di�erential form
of momentum and mass conservation equations to for-
mulate shear force distribution between walls and bed
of a rectangular channel. Deriving this formulation is
straightforward using the integral form of these conser-
vation equations. Employing the Schwarz{Christo�el
transformation, they formulated the orthogonal curve
to isovels drawn from the channel bottom corner and
assumed it as a zero-shear division line. Their proposed
equation, as stated by the authors, did not capture
the dip phenomenon, and implied that the maximum
velocity occurred on the water surface. Their assumed
curve as an orthogonal trajectory did not conform with
the experimental data of Nezu and Nakagawa [18].
Therefore, Gou and Julien [6] introduced two lumped
empirical correction factors to correct the error caused
by neglecting the secondary currents and deviation of
division curves from the experiments.

In the present paper, �rstly, the importance of
di�erent terms of momentum equation on a control
volume surrounded by an isovel and a control volume
between two curves perpendicular to the isovels is
explained. The possibility of neglecting the secondary
currents is examined next, showing that assuming zero-
shear division lines is not acceptable. Finally, a new
method is introduced to calculate the percentage of
shear force acting on the channel bed and sidewalls.
The proposed subdividing method is applied to uni-
form rectangular open channels with fully developed
turbulent ows. However, the general concept can be
extended to other cross-sectional shapes.

2. Theoretical consideration

For an arbitrary control volume on the cross-section
of a rectangular channel (Figure 1), assuming a steady
uniform ow, the continuity and momentum equations
can be written as follows:I

�(V:n)dl = 0; (1)

�gAS +
I
�nxdl �

I
�u(V:n)dl = 0; (2)

where � is density and A is area of the control surface
on y � z plane, g is gravitational acceleration, S is
channel slope, V is velocity component of ow on
y� z plane, n is unit normal vector pointing outside of
the control volume, l is length along the boundary of
surface, and �nx is shear stress in the ow direction
x applying on the plane perpendicular to n. Flow
velocity components u, �, and w are in longitudinal,
lateral, and vertical (i.e., x, y, and z) directions,
respectively.

For a control volume surrounded by an isovel (i.e.,
constant u), the momentum equation (Eq. (2)) can be
rewritten as follows:

�gAS +
I
�nxdl � u

I
�(V:n)dl = 0: (3)

Figure 1. An arbitrary control volume in a channel
cross-section.
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Figure 2. Isovels and orthogonal curves for b=h = 2
(isovels are calculated following Chiu and Hsu, 2006 [26]).

Considering Eq. (1), the third term of Eq. (3), which
represents the e�ect of secondary ows, vanishes and
Eq. (3) reduces to:

�gAS +
I
�nxdl = 0: (4)

Eq. (4) shows that the gravity component of a control
volume limited to an isovel is balanced only by the
shear stress acting on its surface due to velocity gradi-
ents. On the other hand, if the momentum equation is
applied to a control volume surrounded by two curves
(polygon MNOM in Figure 2), which are orthogonal to
isovels, one can write:

�gAMNOMS +
I

MNOM

�nxdl �
I

MNOM

�u(V:n)dl = 0;
(5)

where AMNOM is the area of the control volume
surrounded by the polygon MNOM , and both in-
tegrals are calculated along the same polygon. The
�rst integral on the left-hand side of Eq. (5) can be
calculated on subsections of the polygon MNOM as
follows:Z
MNOM

�nxdl =
Z
MN

�nxdl +
Z
NO

�nxdl +
Z
OM

�nxdl:
(6)

�nx can be assumed as follows:

�nx = �(�t + �)
@u
@n

; (7)

where � and �t are kinematic and turbulent viscosity
of water, respectively. Since NO and OM are orthog-
onal to isovels, @u=@n is zero along them; therefore,
integrals

R
NO and

R
OM are zero, too. Considering

the average shear stress on MN as �MN , its length as
�PMN , and Eq. (5), we can derive:

j�MN j = 1
�PMN

0@�gAMNOMS�
I

MNOM

�u(V:n)

1A dl:
(8)

For a known 3D velocity �eld, one can calculate
the shear stress distribution on the channel boundary
employing Eq. (8); however, usually, all 3 velocity
components are not known. Note that viscosity does
not show up in Eq. (8); however, its e�ects are
considered through the velocity �eld.

Based on the above discussion, shear resistance
cannot be neglected neither on a control volume
surrounded by isovels nor surrounded by orthogonal
curves to isovels. Thus, it seems unlikely to �nd a
series of zero shear curves in the cross-section of an
open channel. The channel centerline, however, is an
exception at which both the shear resistance caused
by secondary currents and velocity gradient are zero
due to symmetry. If secondary currents are neglected,
despite their indisputable e�ect, Eq. (8) becomes:

j�MN j = �gAMNOMS
�PMN

: (9)

Eq. (9) describes Leighly's assumption, which is proved
not be accurate. Guo and Julien [6] employed the same
assumption to propose a �rst approximation for mean
shear stress on the channel bed and walls.

Regardless of the secondary currents, the dis-
tribution of the main velocity, u, should be known
to calculate the orthogonal curves to isovels and,
consequently, the distribution of shear stress on the
channel boundary. It is well known that, in an open
channel, the maximum velocity may occur at a point
below the water surface [19]. The location of the
maximum velocity is important, because it is the point
of concurrency of the isovel orthogonal trajectories.

Several researchers have proposed methods to
calculate the velocity distribution in an open channel.
The method of Maghrebi and Rahimpour [20], similar
to that of Houjou and Ishii [21], predicts the location
of the maximum velocity to be below the water surface
for b=h < 2, where b is the channel width and h is
the ow depth. This result is due to the fact that an
open channel with b=h = 2 is half of a square conduit,
in which the velocity pro�le is symmetrical in y and z
directions [21]. De Cacqueray et al. [22], who examined
the formulation of Guo and Julien [6] using a detailed
computational uid dynamic simulation, reported that
the maximum velocity occurs on the ow surface for a
channel with b=h = 2 for their numerical experiments.
However, it is widely reported that the dip phenomenon
is observed for channels with b=h < 5 [23-25].

The velocity distribution proposed by Chiu and
Hsu [26] is employed in the present paper to calculate
the shear force distribution. Chiu and Hsu [26]
presented an entropy-based approach to calculate the
velocity distribution. This method relies on a pa-
rameter which could be found according to various
hydraulic parameters of the channel, such as the ratio
of the average velocity to the maximum velocity and
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the location of the maximum velocity. The location of
the maximum velocity can be measured or calculated
through the method from Yang et al. [27] as follows:

"
h

= 1� 1
1 + 1:3e�b=2h ; (10)

in which " is the depth of the maximum velocity.
The isovels and their orthogonal curves for a

channel with b=h = 2 calculated by Chiu and Hsu [26]
method based on Eq. (10) are shown in Figure 2. The
slope of the isovel orthogonal trajectories at any point
can be calculated from tan(�) = (@u=@z)=(@u=@y).
Starting from a certain point on the boundary and
following the slope, the orthogonal trajectories can
be drawn. If the momentum exchange generated
by the secondary currents on the isovel orthogonal
curves is neglected, the gravity component of the mass
surrounded by the closed polygon BOEB (Figure 2)
remains unbalanced, which leads to the underestima-
tion of the total shear force on the channel bound-
ary.

Figure 3 compares the estimation of Eq. (9) for
%SFb with the empirical equation presented by Knight
et al. [28]. As is illustrated in Figure 3, neglecting the
secondary currents leads to underestimating the bed
shear force and is not acceptable. The location of the
maximum velocity moves toward the ow surface in
wider channels; therefore, predictions of Eq. (9) become
more accurate for larger b=h.

Figure 3. Comparison of %SFb predicted by neglecting
secondary currents with the empirical equation presented
by Knight et al. (1984) [28].

3. The present methodology

Eq. (8) can be employed to calculate the mean shear
on the bed and sidewalls of an open channel if the
e�ect of the secondary currents can be calculated. If
the orthogonal trajectories to the isovels are drawn
from the channel corners, they will intersect in the
maximum velocity location (P2 curves in Figure 4).
The weight component of water in the area limited to
P2 curves and channel bed, Abmin, must be less than
the shear force acting on the bed, since P2 curves are
orthogonal to isovels, with no velocity gradients and,
consequently, no shear stress acting on them. However,
there are secondary ows passing across these curves
that cause momentum exchange. Secondary currents
enter this area close to the channel centreline [19],
where the main ow velocity is maximum. Due to
the continuity, the ow entering this area close to the
channel centerline leaves this area to locations where
ow velocity is smaller. Therefore, the acting force due
to the momentum transfer is in the ow direction. It
will be shown later that the measured bed shear force
is in excess of the weight component of the water in
this area (Abmin).

Gessner and Jones [29] suggested that the sec-
ondary ow cells in the corners of rectangular ducts
are divided by the corner bisector. Experimental data
presented by Tominaga et al. [30] show that secondary
ows are strong in a region within a distance equal
to 0:65h from the channel bottom corners. Zheng
and Jin [31] and Jin et al. [32] assumed the same
structure for corner secondary currents as Gessner [29]
did in rectangular open channels, with the boundary of
y=h = 0:65 and z=h = 0:65. It was assumed that the
secondary ow cells have negligible e�ect on the ow
mechanism out of this boundary [32]. The e�ective
area of the secondary currents on the wall side can be,
therefore, limited to the sidewall, bisector and a vertical
line at y=h = 0:65 (region CJKBC, Figure 4). The
weight component of water in this region must be less
than the wall shear force, because it is assumed that
secondary ows do not pass through the boundaries of
this area; therefore, there is no momentum exchange
due to secondary currents across these boundaries.
However, there could be momentum exchange due to

Figure 4. Dividing the channel cross-section by bisectors (CJ) and isovels orthogonal curves (P1 and P2).



3034 S. Tavakkol and A.R. Zarrati/Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 3030{3041

the shear force in the ow. Since, in general, ow
velocity decreases toward the sidewall, the shear force
acting on the CJK is in the ow direction and its value
is added to the weight component of CJKBC and does
help balance it. This area, called Awmin, can be easily
calculated as follows:

Awmin = 2�
�
h+ 0:35h

2
� 0:65h

�
= 0:65(1:35h2) � 0:8h2 for b=h>1:3:

(11)

In channels with b=h < 1:3, the corner bisectors
intersect below z = 0:65h. This case will be discussed
later.

According to these assumptions, CJK and P2 in
Figure 4 split the minimum share of sidewalls and
bed from total shear force respectively. However, the
weight component of the area between these two curves
is assumed to be balanced partially by shear force
acting on the sidewalls and partially with the shear
force acting on the bed. The shared areas are divided
into A1 and A2 by P1 curve (Figure 4). P1 is the
orthogonal curve to isovels drawn from upper corners of
the channel cross-section. Let the share of the sidewalls
from weight components of A1 and A2 be denoted by
�1 and �2, respectively. One can, therefore, calculate
%SFw and %SFb as follows:

%SFW =
2�wh
�gAS

100%

=
100%
At

(Awmin + �1A1 + �2A2); (12)

%SFb =
�bb
�gAS

100%

=
100%
At

(Abmin + (1� �1)A1 + (1� �2)A2);
(13)

where �b and �w are mean bed and wall shear stresses,
respectively, and At is the channel cross-sectional area.
To determine �1 and �2, A1 and A2 must be calculated
�rst. To calculate these areas, equations for P1 and
P2 must be known. P1 can be approximated by a
parabola. P1 passes through (0; h) and (b=2; h � ").
It is also perpendicular to the channel sidewall as an
isovel; therefore, its derivative is zero in (0; h). The
equation of P1 can therefore be written as follows:

z = � "
(b=2)2 y

2 + h: (14)

Similarly, P2 passes through (0; 0) and (b=2; h � ").
At the corner, P2 must be perpendicular to both the

channel bed and wall, which is not possible. To remove
this conict, following Chiu and Chiou [13], the channel
corner is assumed as a quarter circle; therefore, the
slope of P2 in the corner is assumed equal to 1.

Contrary to P1, P2 cannot be approximated by
a parabola. A parabolic approximation signi�cantly
deviates from P2 for larger b=h and may even exit
the water surface. To avoid this problem, P2 is
approximated by a parabola starting on the channel
corner and a straight line following the parabola at a
point to be determined, say (yi, zi). Considering these
boundary conditions, P2 can be expressed as follows:

z = a0y2 + b0y + c0 y � yi; (15a)

z = a00y + b00 y > yi; (15b)

where:

a0 =
zi � yi
y2
i

; b0 = 1; c0 = 0;

a00 =
h� "� zi
b=2� yi ; b00 = h� "� a00 b

2
:

The slopes of the parabola and the line are equal at
their intersection point. This condition results in the
following equation between yi and zi:

y2
i �

�
zi +

b
2

+ (h� ")
�
yi + zib = 0: (16)

For a given zi, one can calculate yi from Eq. (16) and,
consequently, the unknown coe�cients a0, a00, and b00.
zi is found by employing the least squares regression
between Eq. (15) and isovel orthogonal curves obtained
based on Eq. (10). Plotting zi=(h � ") against b=h
indicates that zi=(h� ") is almost constant and can be
assumed equal to 0.93 for di�erent values of b=h with
about 2% averaged relative error. Figure 5 compares
Eq. (15) with the Chiu and Hsu's [26] equations while
assuming that zi=(h� ") = 0:93.

Figure 5. Comparison of Eq. (15) for zi=(h� ") = 0:93
with numerical data calculated through Chiu and Hsu
(2006) method [26].
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According to the equations found for P1 and P2,
A1 and A2 can be presented as follows:

A1 = bh�Awmin �Abmin �A2; (17)

Abmin = 2
�
a0y3

i
3

+
y2
i
2

+
zi + h� "

2

�
b
2
� yi

��
; (18)

A2 = 2
�
b
6

("� "0)
�

=
b
3

("� "0) ; (19)

where "0 is the vertical distance between the inter-
section points of P1 and CJK from the water surface
(Figure 4). "0, shown in Figure 4, can be calculated
from Eq. (16) as follows:

"0 =
"

(b=2)2 (0:65h)2: (20)

The theory can be extended to b=h < 1:3 while
considering necessary changes in the equations. For
a channel with b=h < 1:3, the bottom corner bisectors
intersect at the channel axis in a point like N, and two
di�erent patterns may occur (Figure 6). The maximum
velocity may be below point N (Figure 6(a)), meaning
that h � " < b=2 < 0:65h. This pattern is similar
to that of the channel cross-section with b=h > 1:3;
however, Eqs. (11) and (19) must be substituted by
Awmin = b(h � b=4) and A2 � 0, respectively. The
maximum velocity may occur above point N, which
means that b=2 < h� " < 0:65h (Figure 6(b)). In this
case, Awmin is limited to P2 and sidewall, and Abmin
is limited to the bisectors and channel bed and can,
therefore, be easily calculated.

Employing Eq. (10) to calculate " shows that,
in b=h = 1:16, point N conforms to point O. In
this particular and interesting case, the bottom cor-
ner bisectors and P2 conform and, therefore, can be
assumed as actual division lines across which there
is no shear stress due to velocity gradient, or no
momentum exchange due to secondary currents. In
this case, �1 and �2 are eliminated from Eq. (12),
and %SFw is equal to %71. Figure 7 compares this

Figure 6. Possible cross-sectional division lines for
b=h < 1:3.

Figure 7. Comparison of %SFw for b=h = 1:16 with
experimental results.

value with experimental results derived from di�erent
researches for b=h values close to 1.16. As seen from
this �gure, %SFw calculated from the present theory
is surrounded by the experimental results. A Gaussian
weighted average from the shown experimental results
in Figure 7 gives %SFw = 69% for b=h = 1:16 which is
very close to the predicted value of the present model.
However, estimation of Knight et al.'s [25] empirical
equation and Guo and Julien [15] is 63.2% and 62.9%,
respectively.

4. Calibration

Figure 8 compares the result of Eq. (12) with experi-
mental data presented by Knight et al. [28] from various
researchers [33-39]. For �1 = �2 = 0, Eq. (12) gives the
minimum possible value of %SFw; for �1 = �2 = 1, it
gives the maximum possible value of %SFw. It can be
seen in Figure 8 that the experimental data lie very
well between the predicted minimum and maximum
values for %SFw, which demonstrates the validity of
dividing the channel sections into Abmin and Awmin.
Contrary to the coe�cients used in previous related
works, coe�cients �1 and �2 are physically meaningful
and limited to a range between 0 and 1. In addition,
considering the maximum and minimum values of

Figure 8. Comparison of the present model for %SFw
with experimental data by Knight et al. [28].
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%SFw illustrated in Figure 8, it can be seen that the
present model is not signi�cantly sensitive to the values
of �1 and �2.

Employing the least squares method to estimate
the share coe�cients results in �1 = 0:40 and �2 =
0:19 with the coe�cient of determination of R2 = 0:98.
According to these obtained values for �1 and �2, %SFw
can be calculated from:

%SFw =
100%
bh

(Awmin + 0:40A1 + 0:19A2); (21)

where Awmin, A1, and A2 are calculated from Eqs. (11),
(17), and (19), respectively. In addition, %SFw values
can be read from Figure 9 given the values of b=h and
"=h.

5. Validation

The presented model is validated with several sets of
unseen data, and the results are compared with predic-
tions of Guo and Julien [6]. In order to measure how
well each equation functions, Mean Absolute Percent-
age Error (MAPE), Root-Mean-Square Error (RMSE),
and Mean Signed Deviation (MSD) are utilized, which
are de�ned as below:

MAPE =
100
n

nX
i=1

���� ŷi � yiyi

���� ; (22)

RMSE =

vuut 1
n

nX
i=1

(ŷi � yi)2; (23)

Figure 9. Values of %SFw for di�erent values of b=h and
"=h.

Figure 10. Comparison of the present model for %SFw
with unseen experimental data.

MSD =
1
n

nX
i=1

ŷi � yi; (24)

where ŷ is the predicted value of y, and n is the number
of data points. MAPE and RMSE are measures of
prediction accuracy, while MSD determines if a pre-
diction method tends to underestimate or overestimate
the values.

Figure 10 compares the present model (Eq. (21))
with experimental data of wall shear force from Seckin
et al. [40] which are neither included in the calibration
of the present model, nor in calibration of Guo and
Julien [6] model. By excluding the experiment with
b=h = 13:18 as an outlier, the MAPE for the present
model is 4.7%, while it is 7.7% for Gou and Julien [6].
The RMSE of the present model is 0.63 and its value
for Guo and Julien's model is 1.05. The MSD for both
models is positive, which means that our model and
Gou and Julien's overestimate %SFw with mean values
of 0.46 and 0.93, respectively. Eq. (21) is, therefore,
in very good agreement with the experimental data of
Seckin et al. [40].

Results of comparison of the present model
(Eq. (21)) and Gou and Julien (2005) with experi-
mental measurements of Xie [41] and Chanson [42] for
%SFw are shown in Table 1. The MAPE for the present
model is 8.6%, while it is 9.3% for model of Gou and
Julien [6].

Table 2 compares the result of Eq. (21) with
experimental data of average bed shear velocity from
experimental data of Coleman [43], Lyn [44,45], Muste
and Patel [46], and predicted values by Gou and
Julien [6]. The average bed shear velocity is calculated
from u�b =

p
�b=�. In this table, u�b;m represents the

measured values, u�b;21 is the results of Eq. (21), " is
calculated from Eq. (10), and u�b;G&J is the prediction
of Gou and Julien [6]. It can be seen that the predicted
values by the analytical models are slightly smaller
than the measured values. This is due to the fact
that the measured values are at a channel centreline;
however, the predicated values are mean bed shear
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Table 1. Comparison of the present model and Gou and
Julien (G&J) [6] for %SFw with experimental data of
Xie [41] and Chanson [42].

b=h Measured G&J Eq. (21)

Xie [41] 3.2 36 36.40 36.62

Chanson
[42]

2.9 38 39.26 39.62
3.24 37 36.05 36.25
5.32 19 23.35 22.98
5.95 18 20.99 20.50

MAPE 9.3 8.6
RMSE 2.47 2.26
MSD 1.61 1.59

velocities. The MAPE between results of Eq. (21) and
experimental data is 3.23%, while it is 3.48% for model
of Gou and Julien [6].

Coleman [43,47] reported the experiments con-
ducted in a channel with S = 2 � 103, b = 35:6 mm,
and Q = 0:64 m3/s, where S is the bottom slope and Q
is the channel discharge. The experiments are carried
out to investigate the e�ect of sediment suspension
on a velocity pro�le. Coleman reported the location
of maximum velocity in all experiments which can,
therefore, be used directly in Eq. (21).

Table 3 compares the results calculated from the
present method and model of Guo and Julien [6] with
experimental data of Coleman [43]. In this table,
u�b;21 is the result of Eq. (21) by directly substituting
" into the experiment. The total amount of sand
suspended in the ow is given in this table in Kg
as Ms. Moreover, the average volumetric suspended
sediment concentration (') of ow is calculated from
available data in Coleman [43] and is provided in the
table. It can be seen that the present model often

predicts the average shear velocities to be equal to
or slightly smaller than u�b;m; however, u�b;G&J is
always larger than u�b;m. The predicted mean values,
as mentioned before, should be slightly smaller than
the measured local values since the measurements are
made at the channel centreline. The measured shear
velocities are almost constant and equal to 4.1 cm/s,
though the aspect ratio of the channel is not constant.
This is because velocity pro�le in each experiment also
changes due to di�erent sediments in suspension. The
results, therefore, show that the bed shear velocity of
an open channel is not only a function of the channel
aspect ratio, but also a function of the location of
the maximum velocity. The present model successfully
captures this fact. It is, therefore, concluded that the
present model can be extended to other ow conditions
if the location of maximum velocity is known. The
model can be e�ectively used for the sidewall correction
procedure in ume studies, because, normally, in these
studies, some experimental information on ow is
available which can help estimate ". In cases where the
pattern of the velocity distribution is di�erent, e.g.,
in trapezoidal or vegetated channels, the idea of the
current research is still applicable by modifying the
boundaries of Awmin and Abmin. The equations for
P1 and P2 might also change based on the velocity
distribution.

It should be noted that the present method could
be used as far as the location of maximum velocity,
", is known. " may be available in experiments or
can be calculated based on other hydraulic parameters
of an open channel ow using a graph presented by
Chiu and Hsu [26]. While the equations proposed in
the present research are derived for rectangular open
channels, the proposed method of dividing the channel
cross-section into subsections can be developed for
channels with other cross-sectional shapes. Knight et

Table 2. Comparison of the present model for bed shear velocities (cm/s) with experimental data.

S � 103 b=h u�b;m u�b;21 u�b;G&J

Coleman (1986) [43] Run 1 2 2.07 4.1 4.08 4.14

Lyn
(1986, 2000)

[44; 45]

C1 2.06 4.08 3.1 3.05 3.05
C2 2.7 4.09 3.7 3.49 3.49
C3 2.96 4.64 3.6 3.51 3.5
C4 4.01 4.69 4.3 4.07 4.06

Muste
and Patel
(1997) [46]

CW01 0.739 7 2.92 2.79 2.78
CW02 0.768 7.1 2.92 2.83 2.82
CW03 0.813 7.16 2.98 2.9 2.89

MAPE 3.23 3.48
RMSE 0.13 0.14
MSD {0.11 {0.11
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Table 3. Comparison of the present model for bed shear velocities (cm/s) with experimental data from Coleman [43] for
ow with suspended sediment.

Run Ms

(kg)
'�10�4 h

(cm)
b=h

h� "
(cm)

u�b;m
(cm/s)

u�b;21

(cm/s)
u�b;G&J

(cm/s)

1 0 0 17.2 2.070 13.2 4.1 4.14 4.14

2 0.91 2.12 17.1 2.082 12.0 4.1 4.09 4.14

3 1.82 3.87 17.2 2.070 11.9 4.1 4.09 4.14

4 2.73 5.87 17.1 2.082 12.8 4.1 4.12 4.14

5 3.64 8.03 17.1 2.082 12.2 4.1 4.10 4.14

6 4.54 9.76 17.0 2.094 11.9 4.1 4.08 4.13

7 5.45 12.22 17.1 2.082 12.0 4.1 4.09 4.14

8 6.36 14.37 17.3 2.058 13.0 4.1 4.14 4.15

9 7.27 16.29 17.2 2.070 13.6 4.1 4.16 4.14

10 8.18 18.56 17.1 2.082 13.4 4.1 4.15 4.14

11 9.09 20.34 16.9 2.107 12.2 4.1 4.10 4.13

12 10 21.69 17.3 2.058 13.4 4.1 4.15 4.15

13 10.91 23.92 17.1 2.082 12.2 4.1 4.10 4.14

14 11.82 25.64 17.1 2.082 12.2 4.1 4.10 4.14

15 12.73 21.51 17.1 2.082 11.9 4.1 4.09 4.14

16 13.64 28.39 17.1 2.082 11.2 4.1 4.06 4.14

17 14.54 23.15 17.1 2.082 13.1 4.1 4.14 4.14

18 15.45 28.56 17.2 2.070 13.1 4.1 4.14 4.14

19 16.36 30.16 17.0 2.094 13.1 4.1 4.13 4.13

20 17.27 31.24 17.0 2.094 12.6 4.1 4.11 4.13

21 0 0 16.9 2.107 12.8 4.1 4.12 4.13

22 0.91 1.80 17.0 2.094 12.2 4.1 4.10 4.13

23 1.82 3.45 17.0 2.094 11.9 4.1 4.08 4.13

24 2.73 5.27 16.9 2.107 12.2 4.1 4.10 4.13

25 3.64 7.08 16.7 2.132 10.4 4.0 4.01 4.12

26 4.54 8.84 17.1 2.082 13.0 4.1 4.13 4.14

27 5.45 10.37 16.8 2.119 12.2 4.1 4.09 4.12

28 6.36 12.00 17.0 2.094 12.2 4.1 4.10 4.13

29 7.27 13.65 16.8 2.119 13.0 4.0 4.13 4.12

30 8.18 15.00 16.8 2.119 13.7 4.1 4.16 4.12

31 9.09 15.93 17.2 2.070 11.9 4.1 4.09 4.14

32 0 0 17.3 2.058 13.1 4.1 4.14 4.15

33 0.91 0.42 17.4 2.046 12.8 4.1 4.13 4.15

34 1.82 0.71 17.2 2.070 13.1 4.1 4.14 4.14

35 2.73 1.16 17.2 2.070 12.2 4.1 4.10 4.14

36 3.64 1.89 17.1 2.082 12.2 4.1 4.10 4.14

37 4.54 2.30 16.7 2.132 11.9 4.1 4.08 4.12

MAPE 0.596 1.013

RMSE 0.035 0.046

MSD 0.016 0.041
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al. [48] and Knight and Sterling [49] provided interest-
ing information about the secondary current structures
and velocity distribution in trapezoidal channels and
circular partially full channels, respectively. Khozani et
al. [5] also studied the shear distribution in circular and
trapezoidal channels. Tang and Knight [50] and Yang
et al. [51] studied the ow pattern in compound open
channels with regular and vegetated ows, respectively.
These works can be handy for researchers who might
be interested in applying our method to other cross-
sectional shapes or other ow regimes.

6. Conclusion

In the present paper, the channel cross-section was
divided into parts using channel bisectors, at which
shear force associated with secondary ows was zero
and isovel orthogonal trajectories, at which shear force
associated with velocity gradients was zero. The weight
component of water in each of these subsections should
be balanced either with bed or wall shear force. Based
on these subsections, the minimum and maximum
possible shear forces on walls and bed were calculated.
The experimental data presented by various researchers
lay well between the suggested maximum and minimum
values. Considering the secondary ow structure, the
share of the wall and bed from di�erent subsections was
calculated. An equation was �nally derived for %SFw
and %SFb. Calculated wall and bed shear forces were
in good agreement with experimental data with a mean
absolute percentage error of less than 5%.

The presented method can be used where the
location of maximum velocity, ", is known. " is
available in experiments, or can be calculated directly
from empirical dip equations or indirectly from velocity
pro�le laws in case of no velocity data. The depen-
dence of our equations on " makes it applicable to a
wide range of steady-uniform open channel ows. In
addition, the proposed equations were applied to ows
with suspended sediment, at which the location of the
maximum velocity was known with good agreement.
While our equations work only for rectangular chan-
nels, the general concept is applicable to channels with
di�erent cross-sections.

Nomenclature

A Area of the control surface
Abmin,
Awmin,
A1; A2

Subsections on the channel cross-
section

Q Discharge

R2 Determination coe�cient
S Channel slope

%SF b Percentage of the total shear force
acting on the bed

%SFw Percentage of the total shear force
acting on the walls

V Velocity component of ow on y � z
plane

b Channel width
" Depth of the maximum velocity
h Water depth
g Gravitational acceleration
l Length along the boundary of surface
n Unit normal vector pointing outside of

the control volume
�1; �2 Parameters related to A1 and A2,

respectively
� Density
' Volumetric suspended sediment

concentration
�b; �w Mean bed and wall shear stress,

respectively
u; �; w Components of mean velocity in x, y,

and z directions, respectively
u�b;G&J Shear velocity predicted by Gou and

Julien (2005)
u�b;m Experimentally measured shear

velocity
� Kinematic viscosity
�t Turbulence viscosity
u�b Mean shear velocity on bed
�nx Shear stress in the ow direction x

applying on the plane perpendicular to
n

x Longitudinal coordinate
y Vertical coordinate
z Spanwise coordinate
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