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Abstract. Various co-rotational schemes for solid, shell, bending plate, and beam
elements have been proposed so far. Nevertheless, this approach has rarely been utilized for
membrane problems. In this paper, a new quadrilateral element will be suggested for solving
nonlinear membranes. Simplicity, rapid convergence, and high accuracy of the formulation
are the three main characteristics of the presented element. It is worth emphasizing that
the recommended element can solve structures with irregular geometry and distorted mesh.
This element is insensitive to aspect ratio. In addition, using this element leads to high-
accuracy results. Several numerical examples will be tested to prove the high precision of
the element in coarse distorted meshes with a large aspect ratio.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Extensive researches have been carried out to present
e�cient elements. The aim has been to �nd simple
elements, which lead to results with engineering ac-
curacy in coarse meshes [1]. Convergence, invariance
to coordinate, rank su�ciency, similar accuracy in
displacements and strains, insensitivity to geometric
distortion, and ability to mix with other elements are
the main characteristics of high-performance elements.
Additionally, these elements can be extended simply
and usefully in solving nonlinear problems [2]. Free
formulation aims to directly construct the entries of
the sti�ness matrix responsible for satisfaction of the
patch test. In this procedure, the sti�ness matrix is
divided into two parts: basic and high order. Bergan
et al. studied this kind of methods for a decade [3].
In 1984, by using the results of these works, Bergan
and Nygard conducted the free formulation based
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on incompatible displacement and individual element
test [4,5]. A high-performance �nite element for
structural mechanics is a simple element that can �nd
the results with engineering accuracy for the coarse
meshes. This simple element should have a few degrees
of freedom. In 1986, Park and Stanley employed an
assumed natural strain formulation to propose high-
performance elements [6]. This technique was based
on the independent displacement and strain �eld. A
good merit of this strategy was the sti�ness matrix
that never su�ered from rank de�ciency. However, it
did not respond adequately to the individual element
test [7].

It should be noted that combining free formu-
lation with the assumed natural strain formulation
leads to the assumed natural deviatoric strain tech-
nique. Militello and Felippa have fully explained
how to construct an element by employing assumed
natural deviatoric strain method [8,9]. By utilizing free
parameters, continuous space of elastic functionals is
de�ned. Inserting eigenvalues for free parameters forms
the well-known elastic functionals such as potential
energy, Hellinger-Reissner, and Hu-Washizu. Utiliz-
ing the free formulation and assumed natural strain
formulation will make stationary of the parametrized
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functional. In this way, parametrized algebraic form of
the sti�ness matrix, called �nite element template, can
be established [10,11].

The optimization procedure of the �nite element
template is complicated and requires innovation. Large
number of free parameters, index processing, and
optimization of the matrix patterns are the main draw-
backs of �nite element template method. To achieve
simplicity and accuracy in analysis of mega structures,
researchers try to �nd high-performance elements with
low-order �elds. As a result of these attempts, var-
ious types of membrane quadrilateral elements have
been presented. The structures that have irregular
geometry can be easily meshed with the help of four-
node elements. By employing strain gradient notation
tactic, optimality constraints such as insensitivity to
geometric distortion, rotational invariance, satisfying
equilibrium equations, and elimination of the parasitic
shear error can be included into the formulation of the
element [12-15].

To extend these properties into geometrical non-
linear problems, co-rotational technique is deployed.
Co-rotational scheme is a simple procedure for creating
elements suitable for geometric nonlinear analysis.
Taking advantage of this strategy provides the possi-
bility of utilizing the linear formulation for nonlinear
behavior. Up to now, di�erent co-rotational elements
such as solid, shell, bending plate, and beam have been
proposed. Nevertheless, this approach has rarely been
utilized for membrane problems. Separation of the
element movement into two parts, namely, rigid body
motion and the one with pure deformation, forms the
main idea of the co-rotational tactic. In other words,
the fundamental concept of co-rotational description is
decomposition of the reference con�guration into rigid
body and deformational motions. By splitting the body
motions into the aforementioned parts, the co-rotation
con�guration is attained. The Cartesian coordinates,
associated with this con�guration, move with the ele-
ment. The pure deformation is measured with respect
to these coordinates. In addition, a transformation
matrix is required to correlate the base coordinates
with the co-rotational coordinates. Most formulations
are complex. Hence, it is not easily possible to convert
them from linear form to the nonlinear one. One of the
well-known complicated formulations was proposed by
Felippa [16].

Several researchers have utilized quadrilateral
elements for the analyses of membrane problems.
Eight-nodded serendipity element and nine-nodded
Lagrangian quadrilateral element have been used for
numerous times [17-21]. The number of degrees of free-
dom in these elements is high. Increasing the number
of degrees of freedom intensi�es the complexity of the
elements. As a result, it leads to extra computational
cost, and it adds to the complexity of the nonlinear

analyses. Fortunately, the proposed element has a few
degrees of freedom.

In structural nonlinear problems, sensitivity to
the geometric distortion leads to considerable errors in
results. For achieving appropriate outcome, it is some-
times essential to remesh the body. This process is very
expensive. On the other hand, the geometric distortion
is inevitable in huge structures with irregular geometry.
In this paper, several numerical tests are performed
to prove the e�ciency of the proposed formulation
in the nonlinear analysis. The proposed element
has insensitivity to the aspect ratio and geometric
distortion. Having these properties in hand increases
the accuracy of the obtained results. It should be
reminded that only a few benchmark problems related
to the nonlinear membrane are available. To overcome
this shortage, the authors were forced to include some
beam problems in the numerical tests. However, all
�ndings clearly demonstrate that the suggested element
is e�cient.

2. Formulation for linear behavior

Contrary to displacement tactic, Taylor series of the
strain functions is deployed in strain gradient notation
technique. For two dimensional problems and in xy
plane, three strain functions are existed. Taylor's series
expansions of these functions, around the origin of
coordinates, have the following form:

"x(x; y)=("x)�+("x;x)�x+("x;y)�y + ("x;xx)�(
x2

2
)

+ ("x;xy)�(x:y) + ("x;yy)�(
y2

2
) + :::;

"y(x; y)=("y)�+("y;x)�x+("y;y)�y + ("y;xx)�(
x2

2
)

+ ("y;xy)�(xy) + ("y;yy)�(
y2

2
) + :::;

xy(x; y) =(xy)� + (xy;x)�x+ (xy;y)�y

+ (xy;xx)�(
x2

2
) + (xy;xy)�(xy)

+ (xy;yy)�(
y2

2
) + :::: (1)

In this equation, ("x)� denotes the magnitude of axial
strain "x in the origin. In addition, ("xx)� and ("xy)�
are the rate of "x variation in x and y directions, in the
origin's vicinity, respectively. It should be mentioned
that the magnitudes of the strain gradient at the origin
are named the strain states. In 2D states, three rigid
motions are possible. These rigid motions lead to zero
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strain states. As a result, the rigid body motions are
not considered in Taylor series of the strain �eld. The
displacement �eld is expressed in terms of strain states
when strain gradient notation method is utilized [22].
To achieve this goal, stress-strain relationship of the
membrane structures and rotation function of the
geometrically linear problem are applied. Using these
functions leads to the following results:

"x =
@u
@x
; "y =

@v
@y
; xy =

@u
@y

+
@v
@x
; (2)

rr =
1
2

�
@v
@x
� @u
@y

�
: (3)

By calculating the coe�cients of the displacement
interpolation �eld in terms of the strain states, the �eld
functions of the element can be written as follows:8>>>>>><>>>>>>:

u = u� + ("x)�x+ (xy=2� rr)�y + ("x;x)�x2=2
+("x;y)�xy + (xy;y � "y;x)�y2=2 + :::

v = v� + (xy=2 + rr)�x+ ("y)�y
+(xy;x � "x;y)�x2=2 + ("y;x)�xy
+("y;y)�y2=2 + :::

(4)

At this stage, the high-performance strain states should
be identi�ed. For this purpose, several optimality con-
straints are employed. To �nd the optimum bending
template, the planar pure bending test is proposed
by Felippa [16,23,24]. By deploying planar Euler-
Bernouli beam, Felippa investigated the responses of
membrane element's template for planar bending in
x and y directions. To achieve this goal, the energy
ratios (r) are measured. In planar bending in x and y
directions, the internal energy of the rectangular part
(b � a) of this beam about x and y, namely, Upanel

x
and Upanel

y , can be accurately obtained. The strain
energy of the aforementioned part under two bending
moments, namely, Mx and My, is calculated. They are
shown by Ubeam

x and Ubeam
y for bending under Mx and

My, respectively. The exural energy ratios for the
x and y directions are calculated as rx = Upanel

x
Ubeam
x

and

ry = Upanel
y

Ubeam
y

, respectively.
In order to study bending e�ect in x direction,

a beam shown in Figure 1, with two Mx bending
moments applied to its both ends, is considered. The
cross-section of the structure is a rectangle with b and h

dimensions. Bending moment, M(x) = Mx, is constant
throughout the length of the beam. This causes the
following stress �elds:

�x =
�Mxy
Ib

; (Ib =
hb3

12
); �y = �xy = 0:

It is noticeable that the mentioned relationships
of the stress functions are valid for the elastic behavior
of the structure. Considering these equations, interior
energy accumulated in the part a � b of the beam is
determined as follows:

Ubeam
x =

6aMx
2

Eb3h
: (5)

On the other hand, the strain energy caused by Mx in
the part a� b has the following relationship:

Upanel
x =

1
2
DT
bxKDbx: (6)

In this paper, all matrices are written in the bold script.
In the last equations, K is the sti�ness matrix of the
rectangular element and Dbx is the nodal displacement
vector corresponding to the bending moment Mx. The
nodal displacements, Dbx, should be determined. As
they are shown in Figure 1, the stress �elds produced
by bending moments, Mx, can be formulated in the
following form:

�x = �12Mxy
b3h

; �y = 0; �xy = 0: (7)

After �nding the stresses, the strain �eld can be
obtained. Then, displacement function can be found by
integrating the strains. The energy ratios in x direction
are calculated as follows:

rx =
Upanel
x

Ubeam
x

: (8)

The proposed element can model bending in any
arbitrary direction when rx or ry equals 1. The element
is exible when r is greater than 1. On the other hand,
it is sti� if r < 1. If r equals 1 for each aspect ratio
of the aforementioned part, the element is optimum
in bending. In the case that a >> b and rx >> 1,
shear locking may occur in x direction. The parameters
a and b are dimensions along the x and y directions,
respectively. In y direction, shear locking may happen

Figure 1. Planar pure bending test in x direction.
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when a << b and ry >> 1. For performing pure
bending test in strain gradient notation method, it is
necessary to compare real strain states with existing
strain states of the beam subjected to pure bending in
x and y directions [12]. In the case that Mx is applied,
the real strain �eld includes u�, v�, (rr)�, ("x)�, ("y)�,
("x;y)�, and ("y;y)�. Furthermore, uo, vo, (rr)�, ("x)�,
("x;x)�, and ("y;x)� parameters are necessary for the
element to correctly model bending behavior underMy.
No geometry and mesh limits exist in bending tests
based on the strain states.

In rotational invariant elements, rotating the co-
ordinate axes does not change any characteristics of the
elements. In general, rotating elements can be used to
mesh a structure. As a result, it is essential to employ
the rotational invariant elements. It is well-known that
incomplete interpolation polynomials lead to strain
states that are not invariant with the rotation [10].
If the strain �eld includes all terms with no algebraic
order, then the corresponding element will be strain
invariant. For instance, selection of the strain �eld
with zero complete order leads to invariant rotational
element in a case that the strains are constant.

Appearance of axial strain states in shear strain
interpolation polynomial leads to errors, which arise
from parasitic shear. These errors make the element
sti� [15]. When strain gradient notation is employed
to formulate the elements, the parasitic shear errors
can be easily removed by omitting the incorrect strain
states from shear strain polynomial. Fining the meshes
decreases the parasitic shear errors. It should be noted
that the parasitic shear errors should be eliminated in
coarse meshing to achieve high accuracy. When inter-
polation functions with complete order are deployed,
the parasitic shear errors will not arise [12]. Incomplete
�eld polynomial may lead to incapability of the element
to include Poisson's e�ect of strain states. Based on
the previously investigated optimality constraints, the
following strain states are employed for formulation:

u�; v�; (rr)�; ("x)�; ("y)�; (xy)�; ("x;x)�;

("x;y)�; ("y;x)�; ("y;y)�; (xy;x)�; (xy;y)�: (9)

In the isotropic elastic plane stress or strain problems,
the equilibrium equations in the element have the
following shapes:(

@�x(x;y)
@x + @�xy(x;y)

@y + Fx(x; y) = 0
@�xy(x;y)

@x + @�y(x;y)
@y + Fy(x; y) = 0

(10)

where element's force �elds in x and y directions of
the coordinate systems are shown by Fx(x; y) and
Fy(x; y), respectively. They are usually ignored in
the equilibrium equations. By employing the stress-
strain relationships, Eq. (10) can be expressed in terms

of the strain �elds. According to Hooks' law for
isotropic elastic states, the following relations are held
for membrane structures:

�x = 2G"x + �("x + "y);

�y = 2G"y + �("x + "y);

�xy = Gxy: (11)

For the plane strain and stress states, � is equal to
�E

(1+�)(1�2�) and �E
(1+�)(1��) , respectively. In addition,

G,
p

, and E denote shear modulus, Poisson�s ratio,
and elasticity modulus, respectively. By using Eq. (10),
ignoring body forces, and substituting Relations (11)
into Eq. (10), the equilibrium equations lead to the
next constraints:(

(xy;y)� = � (2G+�)("x;x)�+�("y;x)�
G

(xy;x)� = ��("x;y)�+(2G+�)("y;y)�
G

(12)

It is obvious that (xy;x)� and (xy;y)� can be expressed
in terms of other strain states. By utilizing these rela-
tions, not only the number of unknowns will decrease,
but also the e�ciency of the element will increase.
Herein, the formulations will be carried out based on
the remaining 10 strain states. The vector of the strain
states has the following shape:

qT =
�
u� v� (rr)� ("x)� ("y)� (xy)�

("x;x)� ("y;x)� ("x;y)� ("y;y)�
�
: (13)

Accordingly, strain interpolation �eld can be written
in the matrix form as shown in Box I. Moreover,
the matrix form of the displacement interpolation
�eld has the shape shown in Box II. By inserting
nodal coordinates into Eq. (16), the nodal displacement
vector can be obtained as follows:

D = Gq:q; (18)

q = G�1
q :D: (19)

By deploying Eqs. (14), (16), and (19), the displace-
ment and strain interpolation �elds can be written in
terms of the nodal displacements. The obtained �elds
have the following forms:

u =Nq:q =Nq:(G�1
q :D)= N:D; (20)

N = Nq:G�1
q ; (21)

" = Bq:q = Bq:(G�1
q :D) = B:D; (22)

B = Bq:G�1
q : (23)
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" = Bq:q; (14)

Bq =

240 0 0 1 0 0 x 0 y 0
0 0 0 0 1 0 0 x 0 y
0 0 0 0 0 1 � (2G+�)

G y � �
Gy � �

Gx � (2G+�)
G x

35 : (15)

Box I

u = Nq:q; (16)

Nq =

"
1 0 �y x 0 y

2
x2

2 � (2G+�)y2

2G � (G+�)y2

2G xy 0
0 1 x 0 y x

2 0 xy � (G+�)x2

2G
y2

2 � (2G+�)x2

2G

#
: (17)

Box II

The sti�ness matrix, K, can be expressed in terms of
elasticity matrix, E, by minimizing the strain energy
function. The achieved sti�ness matrix has the follow-
ing shape:

K =
Z

BT :E:BdV : (24)

The formulation needs 10 nodal unknowns. Accord-
ingly, a general �ve-node quadrilateral element is
considered. Therefore, each node has two degrees of
freedom. Four nodes are placed at the corners and
the �fth one is located at element's centroid of area.
With the help of mathematical operations, the degrees
of freedom related to the �fth node can be eliminated.
To establish the element formula, Hq, is assumed to be
the inverse matrix of Gq, which can later be divided
into two parts. It should be added that the terms with
subscripts 1 and 2 are related to the �rst four nodes
and the �fth one, respectively:

G�1
q = Hq =

�
Hq1 Hq2

�
: (25)

The dimensions of matrices Hq1 and Hq2 are 10 � 8
and 10� 2, respectively. Based on Eqs. (21), (23), and
(25), the following relationships are obtainable:

B = Bq:G�1
q = Bq:Hq =

�
B1 B2

�
;

B1 = Bq:Hq1; B2 = Bq:Hq2; (26)

N = Nq:G�1
q = Nq:Hq =

�
N1 N2

�
;

N1 = Nq:Hq1; N2 = Nq:Hq2: (27)

Using Eqs. (24) and (26), the subsequent relationship
for the sti�ness matrix can be achieved:

K =
Z �

BT
1

BT
2

�
:E:
�
B1 B2

�
dV =

�
K11 K12
K21 K22

�
: (28)

Therefore, the next well-known governing relation can
be formed:�

K11 K12
K21 K22

� �
D1
D2

�
=
�
P1
P2

�
: (29)

In this equation, D1 and D2 are the nodal displacement
vector for the �rst four nodes and the �fth one,
respectively. Omitting the nodal displacement vector
for the �fth node, the following equations will be
obtained:

K11:D1 + K12:D2 = P1; (30)

K21:D1 + K22:D2 = P2: (31)

Calculating the nodal displacement vector for the �fth
node D2 and substituting Eq. (31) into Eq. (30) lead
to the following result:

K11:D1 + K12:K�1
22 :(P2 �K21:D1) = P1

(K11�K12:K�1
22 :K21):D1 =P1�K12:K�1

22 :P2: (32)

Finally, the sti�ness matrix for the four-node model,
�K, is achieved as follows:

�K = K11 �K12:K�1
22 :K21: (33)

3. Co-rotational formulation

To achieve the geometrical sti�ness matrix and internal
force vector, the co-rotational formulation is employed.
In order to obtain the linear sti�ness matrix of the
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proposed element, the local coordinate system is de-
ployed. It is assumed that the local axes are parallel
to the axis of the global coordinate system (�x � �y).
The origin of the local coordinate system is located at
element's centroid of area. Rigid translations in �x and �y
directions are demonstrated by �uo and �vo, respectively.
Moreover, � denotes rigid rotation. By utilizing these
rigid motions, the relationship between the base and
the co-rotational coordinates can be written as follows:�

ui
vi

�
=
�

cos � sin �
� sin � cos �

� �
�xi + �ui � �x� � �u�
�yi + �vi � �y� � �v�

�
�
�
xi
yi

�
; i = 1; 2; 3; 4: (34)

In this relation, u and v denote displacements in
co-rotational frame. By counterclockwise rotating of
the local coordinates with the amount of �, the co-
rotational coordinates, x � y, can be obtained. The
displacements in the global frame are shown by �u
and �v. Furthermore, the coordinates of use of the
centroid are shown by �xo and �yo. To calculate �,
4P
i=1

(u2
i + v2

i ) is minimized. Note that ui and vi denote

the nodal displacements of the ith node in the co-
rotational coordinate system [25]. The �rst derivative
of the aforementioned equation with respect to � is set
equal to zero. As a result, the following relation is
obtained:

tan � =

4P
i=1

[xi(�yi + �vi � �y� � �v�)�yi(�xi + �ui � �x� � �u�)]
4P
i=1

[xi(�xi + �ui � �x� � �u�)+yi(�yi + �vi � �y� � �v�)]
:
(35)

By solving this equation for �, the extreme points are
achieved. These points are � and �+�. Among the at-

tained values, the angle which minimizes
4P
i=1

(u2
i + v2

i )

is chosen. Based on the fact that the virtual work
in the co-rotational and global frames is the same,
the tangential sti�ness matrix and internal forces in
the global coordinate system can be calculated by
employing a transformation matrix. Note that this
matrix relates the co-rotational coordinates to the
global one. The governing equations of the element
in co-rotational and the global coordinate systems are
shown by Eqs. (36) and (37), respectively:

F = KD; (36)

�Fg=Kg�Dg: (37)

In co-rotational coordinate system, force vector, sti�-
ness matrix, and displacement vector are demonstrated

by F, K, and D, respectively. By employing the above-
mentioned transformation matrix, the following result
is obtained:

�D = T�Dg: (38)

In this equation, Dg denotes the displacement vector
in the global coordinate system. In addition, the
transformation matrix is shown by T. To achieve the
transformation matrix, the �rst derivative of Eq. (34)
should be calculated as follows:�

�ui
�vi

�
=
�

cos � sin �
� sin � cos �

� �
��ui � ��u�
��vi � ��v�

�
+
�
yi + vi
xi + ui

�
��:
(39)

The equivalent value of can be obtained by deploying
Eq. (35):

�� =
4X
i=1

1
4P
i=1

[xi(xi + ui) + yi(yi + vi)]

��yi xi
�

�
cos � sin �
� sin � cos �

� �
��ui � ��u�
��vi � ��v�

�
:

(40)

It is worth emphasizing that pure translational motion
causes no rotation. Hence, ��uo and ��vo can be ignored.
By utilizing Eqs. (39) and (40), the transformation
matrix can be computed as follows:

T = PET ; (41)

P = I�AG; (42)

A =
��y1 � v1 x1 + u1 �y2 � v2 x2 + u2

�y3 � v3 x3 + u3 �y4 � v4 x4 + u4
�T ; (43)

G =
1

4P
i=1

[xi(xi + ui) + yi(yi + vi)]��y1 x1 �y2 x2 �y3 x3 �y4 x4
�
;
(44)

E = diag(R;R;R;R); R=
�
cos � � sin �
sin � cos �

�
: (45)

By using Eqs. (36) to (38), the tangential matrix and
internal force vector in the global coordinate system
can be expressed in the following form:

Fg = TTF; (46)

Kg = TTKT+Kh; Kh =
@(TTF)
@Dg

; (47)

Employing Eq. (41) and ATGT = I leads to the Kh
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Table 1. Deection of beam subjected to pure bending.

Elements
Regular mesh Distorted mesh

Maximum u Maximum v Maximum u Maximum v

ALLMAN {0.6 1.5 {0.498 1.215
QM6 {0.6 1.5 {0.554 1.384

IB {0.6 1.5 {0.459 1.124
NSSQ8 {0.6 1.5 {0.6 1.5

Exact [28] {0.6 1.5 {0.6 1.5

matrix, which has the following shape:

Kh= �EPTF + E�PTF = E(�HTG�GTHP)ET:
(48)

It should be added that H vector can be obtained as
follows:

PTF =
�
a1 a2 a3 a4 a5 a6 a7 a8

�T ; (49)

H=
�
a2 �a1 a4 �a3 a6 �a5 a8 �a7

�T: (50)

4. Geometrical nonlinear numerical tests

To prove the e�ciency of the proposed technique in
geometrical nonlinear analysis, several numerical tests
will be performed. In these examples, coarse mesh
with a high aspect ratio is used. In addition, some of
the following examples severely su�er from geometric
distortion. Some of them have previously been ana-
lyzed by employing the robust beam element. In the
reference papers, all parameters of the benchmarks are
provided without units. All units of the problems are
consistent. The elements used throughout this paper
are mentioned below:

1. Four-node isoparametric element; Q4 [26];
2. Mixed four-node elements based on the Hu-Washizu

functional; HW14-S, HW18-SS [27];
3. Modi�ed non-conforming isoparametric element

with internal parameters; QM6 [26];
4. Non-conforming isoparametric element with inter-

nal parameters; Q6 [26];
5. Element with internal parameters and formulated

by the QACM; AGQ6-I [26];
6. 4-node quadrilateral element with one-point

quadrature integration procedure; Qnew [25];
7. Nonlinear four-node quadrilateral element based on

strain states; NSSQ8.

4.1. Higher-order patch test
The high-order patch test uses a straight beam under
pure bending. The length and width of the beam
are 10 and 1, respectively. Regular and distorted

Figure 2. Meshing and loading of straight beam
subjected to pure bending.

meshes, both consisting of six elements, are used to
analyze the structure. Meshing and loading of the
structure are shown in Figure 2. u and v show the
displacements in x and y directions. The maximum
values of displacements are listed in Table 1. The exact
answers are obtained by the beam theory [28]. Ac-
cording to Table 1, NSSQ8 element presents accurate
results in both regular and distorted meshes. Moreover,
analyzing the response of mesh by one NSSQ8 element
is equal to the exact answer. This test demonstrates
rapid convergence rate of suggested elements.

4.2. L-shape frame
The geometry of this structure and the applied load
pattern are shown in Figure 3(a). One end of the
aforementioned frame is completely �xed. At the other

Figure 3. Geometry, load pattern, and mesh of the
L-shape frame.
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Figure 4. Load-displacement diagram of the L-shape
frame.

end, a horizontal distributed load with the value of
F is applied. Elasticity modulus and Poisson's ratio
are 30000000 and 0.3, respectively. All units of the
problem are consistent. For analyzing this structure,
the following �ne and coarse meshes are employed. In
the coarse mesh, 19 elements are employed and 304
elements are utilized in �ne mesh. Figures 3(b) shows
the �ne mesh.

Previously, QM6 and Qnew elements were utilized
for analysis of this frame. For this analysis, nonlinear
co-rotational method was employed [25]. The diagrams
of the responses of the NSSQ8, QM6, and Qnew overlap
when the �ne mesh is deployed. It should be reminded
that NSSQ8, QM6, and Qnew are used to analyze
this frame. Moreover, these elements are applied in
both �ne and coarse meshes. The obtained results are
illustrated in Figure 4. According to the �ndings for
the coarse mesh, the NSSQ8 element leads to more
accurate results than QM6 and Qnew elements.

4.3. Slender cantilever beam under in-plane
shear force

This structure is shown in Figure 5. The length,
width, and thickness of the beam are 100, 1, and 1,
respectively. Poisson's ratio and elasticity modulus
are 0.3 and 1000000, respectively. Again, all units
of the problem are consistent. Note that 1 � 100
meshes are utilized for analysis. In other words,
the numbers of elements in x and y directions equal
100 and 1, respectively. In this mesh, the aspect

Figure 5. Cantilever beam under in-plane shear force.

ratio of the elements is 1. The horizontal and ver-
tical displacements of the free end have previously
been calculated. Other researchers have employed
HW14-S and HW18-SS elements. They have used
1 � 100 meshes [27]. Furthermore, the responses of
this beam are evaluated by applying Timeshenko's
�nite rotation beam element [27]. The horizontal and
vertical displacements of the aforementioned beam are
demonstrated in Figures 6 and 7, respectively.

For the analysis of this structure with 1� 20 and

Figure 6. Load versus horizontal displacement for the
cantilever beam.

Figure 7. Load versus vertical displacement for the
cantilever beam.
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Figure 8. Geometry, load pattern, and mesh of the ring.

1� 100 meshes, the NSSQ8 element is used. In 1� 20
meshes, the aspect ratio of elements equals 4. The
results obtained by utilizing the NSSQ8 element with
1 � 20 and 1 � 100 meshes are fairly similar to the
outcomes of the analysis by employing Timeshenko's
�nite rotation beam element. Furthermore, it is
obvious that the authors' solutions are analogous to
the responses of HW14-S and HW18-SS elements.

4.4. Slender ring
In this section, a semicircle ring will be analyzed. Both
ends of this ring are �xed. A concentrated load with the
value of 2F is applied to the ring. The aforementioned
load and the geometry of the ring are illustrated in
Figure 8. Due to the symmetry of the structure, only
half of it is assessed. Thickness, elasticity modulus, and
Poisson's modulus are 1=

p
12, 2000, and 0, respectively.

As before, consistent units are utilized. To analyze this
structure, both coarse and �ne meshes are deployed.
The �ne and coarse meshes include 4 � 80 and 1 � 20
meshes, respectively. Figure 8 demonstrates the coarse
mesh.

For �ne and coarse meshes, the responses of
QM6 and Qnew elements have previously been com-
puted by using the geometrical nonlinear co-rotational
method [25]. In �ne mesh, the responses obtained
from employing NSSQ8, QM6, and Qnew are totally
similar. Based on Figure 9, it is obvious that using
these elements in coarse meshing leads to negligible
errors.

4.5. Cantilever beam subjected to shear force
at its free end

A cantilever beam is shown in Figure 10. The length
and width of this structure are 10 and 0.1478, re-
spectively. In addition, the thickness of this beam
equals 0.1. The elasticity modulus and Poisson's ratio
are 100000000 and 0, respectively. A shear force
with the value of 269.35 is applied to the free end.
As before, consistent units are utilized. For analyz-
ing this structure, two coarse meshes are employed.
These meshes include 1 � 10 and 1 � 20 elements,
respectively. The aspect ratios of these meshes are

Figure 9. Vertical displacement of the ring at point A.

Figure 10. Geometry, load pattern, and mesh of the
cantilever beam.

6.8 and 3.4, respectively. Hence, this numerical test
investigates the capability of the elements in meshes
with a high aspect ratio. Rectangular, parallelogram-
shape, and trapezoidal meshes, which include 1�10 and
1 � 20 meshes, are deployed to assess the sensitivity
of the elements to the geometric distortion. These
meshes are illustrated in Figure 10. For each of these
structures, the responses of the Q4, Q6, QM6, and
AGQ6-I elements have previously been calculated by
using the complete Lagrangian geometrical nonlinear
technique [26]. These results are presented in Table 2.
Furthermore, the responses obtained from geometrical
nonlinear co-rotational analysis by utilizing NSSQ8 are
given in Table 2. Based on this table, it is obvious that
NSSQ8 and AGQ6-I are insensitive to the geometric
distortion. Employing Q4, Q6, and QM6 elements
in parallelogram-shape and trapezoidal meshes leads
to considerable errors. In Table 2, u and v denote
displacements in x and y directions, respectively.

4.6. Beam under eccentric axial load
Figure 11 demonstrates the geometry of the beam
structure. The elasticity modulus and the thickness
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Table 2. Displacements of the cantilever beam.

Elements Regular Parallelogram Trapezoidal
1� 10 1� 20 1� 10 1� 20 1� 10 1� 20

Q4 0.1131, 1.444 1.069, 4.166 0.01616, 0.6049 0.1651, 1.748 0.006383, 0.4174 0.06272, 1.129
Q6 5.149, 7.883 5.511, 8.152 3.995, 6.847 5.136, 7.794 0.05401, 1.080 0.3698, 2.630

QM6 5.149, 7.883 5.511, 8.152 3.924, 6.769 5.079, 7.741 0.01731, 0.6498 0.1107, 1.501
AGQ6-I 5.149, 7.883 5.511, 8.152 4.850, 7.736 5.471, 8.137 5.142, 7.859 5.543, 8.171
NSSQ8 5.158, 7.894 5.440, 8.141 5.167, 7.910 5.454, 8.157 5.135, 7.878 5.451, 8.149

Reference [26] 5.546, 8.185

Figure 11. Geometry, load pattern, and mesh of the
beam.

Figure 12. Load-displacement curve of the cantilever
beam.

of the cantilever beam are 12 and 1, respectively.
In solving this problem, consistent units are utilized.
Previously, beam elements have been employed to
analyze this structure [29]. Herein, this cantilever beam
is solved with the NSSQ8 membrane element using
1 � 20 meshes. The diagrams of the aforementioned
beam displacements are shown in Figure 12. In this
�gure, the vertical axis illustrates F=Fcr. In this
problem, Fcr = 0:000247. The positive directions
of the displacements are demonstrated in Figure 11.
In the 1 � 20 mesh, the numbers of elements in
the horizontal and vertical directions are 20 and 1,
respectively. In this mesh, the aspect ratio of the
membrane elements equals 5. To investigate the
e�ciency of the proposed element, a coarse mesh with
a high aspect ratio will be utilized. Based on Figure 12,
it is obvious that using the NSSQ8 membrane element
in 1 � 20 mesh leads to the results compatible with

the obtained ones from employing the beam elements.
For comparison, a �ne mesh for the beam, with
1 � 100 meshes, is analyzed by NSSQ8 membrane
element.

4.7. Shallow arch subjected to concentrated
load

The shallow arch structure is demonstrated in Fig-
ure 13. It is assumed that the elasticity modulus of
the structure is 2000. The cross-sectional area of the
arch is equal to 1. Furthermore, the moment of inertia
is 1. Yang and Kuo [30,31] analyzed this structure by
deploying beam elements. They used a mesh which
included 26 elements. To attain this mesh, the arch
was divided into 25 sections. Afterwards, the middle
element was separated into two sections to gain a new
node. This node was placed at the middle of the arch,
and the concentrated load was applied to it. To satisfy
the support conditions, two rows of elements should be
used in the mesh. The demonstrated mesh in Figure 13
is utilized for analysis of this structure by deploying the
membrane quadrilateral elements. The aspect ratio of
this mesh is equal to 2.3. To utilize the membrane
element, the rectangular cross sectional dimensions are
presumed to be

p
12� (1=

p
12). The dimensions of the

cross-section are calculated based on the given moment
of inertia and cross-sectional area. As a result, the
thickness of the structure equals (1=

p
12). As before,

consistent units are utilized.
In this numerical test, two load cases are applied.

For the perfect loading case, it is assumed that the
load is applied precisely to the middle node. For the
imperfect loading case, it is presumed that the load is
applied to the node nearest to the middle node. For
analysis of the arch, NSSQ8 is used. The obtained
results are shown in Figures 14 and 15. In these �gures,

Figure 13. Geometry, mesh, and load pattern of the
shallow arch.
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Figure 14. Load-displacement curve in the perfect
loading case.

Figure 15. Load-displacement curve in the imperfect
loading case.

the displacements of point A, for both mentioned cases,
are demonstrated; for comparison, the results found
by Yang and Kuo are illustrated [30,31]. High aspect
ratio of the mesh and curved geometry of the structure
cause some errors. It should be reminded that straight
elements are deployed to model the arch. The outcomes
are compared with the results of �ne mesh. There are
116 NSSQ8 membrane elements in the �ne mesh (25�
8).

4.8. Simply supported semicircle arch
Figure 16 shows the semicircle arch, which is subjected
to the concentrated load. Elasticity modulus, moment
of inertia, and cross-sectional area of this structure
are 2000, 1, and 1, respectively. Based on the cross-
sectional area and moment of inertia, it is assumed that
the cross section is a

p
12 � (1=

p
12) rectangular. For

analyzing this structure, the quadrilateral membrane
elements are employed. The thickness of the structure
is (1=

p
12). For this problem, consistent units are

utilized. Yang and Kuo [30,31] analyzed this structure

Figure 16. Geometry, mesh, and load pattern of the
simply supported semicircle ring.

by deploying 26 beam elements. They divided the
structure into 25 equal parts. Afterwards, the middle
part was separated into two sections.

Two load cases are employed, which are asym-
metric loading and symmetrical load case. In the
symmetrical load case, a concentrated load is applied
to the middle node. In the asymmetric load case, the
concentrated load is applied to the nearest node of the
middle one, as it is shown in Figure 16. Herein, two
rows of quadrilateral elements are employed to satisfy
the support conditions. On the other hand, the 2� 50
meshes are constructed by dividing the semicircle arch
into 50 parts. In this meshing, the aspect ratio is 1.8.
Note that straight elements are deployed in modeling of
this structure. In fact, curved geometry of the structure
leads to errors. The displacements of node A are shown
in Figures 17 and 18 under the aforementioned load
cases. Under symmetrical load case, the responses
of the NSSQ8 element and beam elements are similar.
However, the outcomes are fairly the same when the
asymmetric load case is applied. For comparison, a �ne
mesh, containing 2 � 100 NSSQ8 membrane elements,
is utilized.

Figure 17. Load-displacement curve of the ring under
symmetric load.
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Figure 18. Load-displacement curve of the ring under
asymmetric load.

5. Conclusion

By using co-rotational method, the formulation of the
suggested element was transformed from linear space
into the nonlinear one. In this study, the equilibrium
equations of the new quadrilateral membrane element
were satis�ed. To enhance the ability, several opti-
mality constraints were included. Insensitivity to the
coordinates and aspect ratios were the two valuable
properties of the presented elements. Moreover, this
element did not su�er from the parasitic shear error.
Furthermore, the formulation was insensitive to the
geometric distortion. In the geometrical nonlinear
analysis, all �ndings showed the insensitivity of the
element to aspect ratio and mesh distortion. It
was clearly demonstrated that utilizing the proposed
element led only to slight errors in the coarse meshes.
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