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Abstract. The railroad blocking problem emerges as an important issue at the tactical
level of planning in freight rail transportation. This problem consists of determining the
optimal paths for freight cars in a rail network. Often, demand and supply resource
indicators are assumed certain; hence, the solution obtained from a certain model might
not be optimal or even feasible in practice due to the stochastic nature of these parameters.
To address this issue, this paper develops a robust model for this problem with uncertain
demand and travel time as supply resource indicators. Since the model combines integer
variables and nonlinear functions, a branch-and-cut algorithm is used to solve the linearized
version of the robust model. The performance of the proposed algorithm in several instances
is examined and discussed. The high e�ciency and e�ectiveness of the proposed algorithm
are demonstrated through a comparison with a well-known solver. Finally, this algorithm
is applied to a blocking problem of the railways of Iran. The results show that, by ignoring
approximately 10% of the optimal value of the deterministic model, we have an optimal
solution that remains unchanged with a probability of more than 0.98.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

1.1. Railroad blocking problem
The planning problems in railway transportation are
classi�ed into strategic, tactical, and operational lev-
els [1,2]. The strategic level is concerned with long-
term planning that requires a large amount of invest-
ment. High-level managers who design and execute
strategic decisions to paint a picture of the long-term
goals of the railway system make the decisions at this
level. The tactical level supports the strategic level
by translating strategic decisions into speci�c decisions
relevant to a distinct area of railway planning. Indeed,
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the tactical level is the connection between the strategic
and operational levels. The operational level lies at the
bottom of railway planning. The decisions at this level
are focused on speci�c procedures and are made by
frontline managers.

Finding the optimal paths for freight cars, i.e.,
the so-called blocking problem, is an important issue
at the tactical planning level [3]. There are three
approaches to sending each shipment (i.e., the number
of cars with the same origin-destination pair) through
a rail network. In the �rst approach, the cars that
are associated with a shipment are assigned to the
path with the least travel time, which sends them by
a direct train that does not stop at any classi�cation
yard (which is the station with the ability to separate,
sort, and assemble trains) until reaching its destination.
If the number of cars associated with a shipment is
approximately equal to the train's hauling capacity, the
�rst approach can be reasonable; however, the number
of cars associated with a shipment is usually less than
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Figure 1. Potential blocks in a small example.

the hauling capacity of the outgoing train [4], and using
this approach will lead to dispatching trains at their
under-hauling capacities. The second approach focuses
on dispatching trains at their near-hauling capacities
by assembling the incoming cars in a classi�cation yard
as long as the number of cars does not exceed the
hauling capacity of the train. Because the cars are not
grouped at their origins based on their destinations,
the cars can stop at several classi�cation yards on the
way to their destinations, causing delay in shipments.
For instance, Barnhart et al. [5] reported that stopping
at each classi�cation yard would lead to a one-day
delay; further, Bontekoning and Priemus [6] reported
that classi�cation operations could take 10 to 50%
of train travel time. The third approach adopts
the optimization techniques allowing a train to enter
into some, but not all, classi�cation yards to improve
the performance of the rail system. In particular,
this approach involves identifying the list of visited
classi�cation yards for each shipment to minimize the
objective function (such as moving time and delay time
experienced inside the yards) while satisfying railway
restrictions. Note that the third approach can be stated
as the general form, and the two earlier approaches
are only special, extreme cases of the general form.
The railroad blocking problem focuses on solving the
general form to obtain the optimal path for each
shipment.

Four important terms with respect to the railroad
blocking problem should be de�ned. First, a block,
consisting of a sequence of physical links, is a key
element in the railroad blocking problem. If the cars
are traveling across a block, they are not classi�ed
as long as they reach the end of that block. Every
block is associated with two nodes: the start node,
where the cars are attached to the departing train;
and the end node, where the cars are released from
the train. Second, the blocking network consists of a
set of blocks and their corresponding nodes that are
origin, destination, or classi�cation yards. Third, the
blocking path of a shipment is de�ned as a sequence
of blocks that connects the origin to the destination
for that shipment. Fourth, a feasible solution to the
blocking problem is called the blocking plan, consisting
of a set of blocking paths for all shipments.

To clarify the de�nitions, consider a small rail
(physical) network with four nodes connected by three

arcs, which can be a part of a large network. Let
nodes A and B be the origins and nodes C and D be
the destinations. The four shipments are shipment 1
(from A to C), shipment 2 (from A to D), shipment 3
(from B to C), and shipment 4 (from B to D). Nodes B
and C operate as classi�cation yards in this network.
The network and the list of potential blocks are shown
in Figure 1. As an example, consider block A!D.
Through this block, a train starts moving from node
A, bypasses nodes B and C, and �nally stops at node
D. The potential blocks create four blocking plans,
as shown in Table 1. Consider blocking plan 4 with
three blocks. Shipments 1 and 2 move through block
A!C. At node C, shipment 1 reaches its destination,
while shipment 2 is released from the train at node
C. Shipments 3 and 4 move through block B!C, and
shipment 3 reaches its destination at node C, while
shipment 4 is released from the train at node C. Finally,
shipments 2 and 4 move together through block C!D
to reach their destination (node D).

1.2. Literature review of the railroad blocking
problem

Several studies have examined the railroad blocking
problem. Assad [3] initially introduced an integer
linear program model for this problem. The objective
functions of the model included the train costs (op-
erating and delay costs through the rail tracks) and
yard costs (classi�cation and delay costs inside yards).
The model included two constraints: each shipment
is shipped from its origin to its destination, and the
amount of 
ow moving through each block is bounded
by block capacity. In addition to the Assad's objective
function, other functions have been used frequently
in the literature. Bodin et al. [7] derived a delay
function in terms of car 
ow, which is added to train
costs. Marin and Salmer�on [8] considered investment to
purchase new 
eets, in addition to the train costs. The
number of visited classi�cation yards was introduced
by F�ugenschuh et al. [4] as a crucial component of
objective function.

Many realistic limitations were not presented in
Assad's work. E�orts to consider more limitations
have been undertaken, including a maximum limit on
the number of cars that can be classi�ed inside the
yards [9], a maximum limit on the number of cars that
can move through each block [10], a maximum limit
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Table 1. An illustration of blocking plans.

No. Blocking plan Blocks Shipments Blocking paths

1
A! B
B ! C
C ! D

1 A! B ! C
2 A! B ! C ! D
3 B ! C
4 B ! C ! D

2

A! C
A! D
B ! C
B ! D

1 A! C
2 A! D
3 B ! C
4 B ! D

3
A! B
B ! C
B ! D

1 A! B ! C
2 A! B ! D
3 B ! C
4 B ! D

4
A! C
B ! C
C ! D

1 A! C
2 A! C ! D
3 B ! C
4 B ! C !D

on the sum of the blocks that leave the yards [11],
a maximum limit on the time spent reaching the
destination for each origin-destination pair [12], and
the number of blocking paths with a positive 
ow for
each shipment could be more than one path [13].

Solution algorithms for the railroad blocking
problem can be categorized in two ways. One way is
to design a metaheuristic that possibly achieves a good
solution to the problem with a short running time. Re-
searchers have made great e�orts to design metaheuris-
tics for the railroad blocking problem. Some examples
include neural networks [14], genetic algorithms [15],
simulated annealing [9], ant colony optimization [16],
taboo searches [17], and local searches for three major
United States' railroads [18]. Metaheuristics iteratively
search among the feasible regions to �nd the near-
optimal solution with less computation time, compared
to the exact algorithms for integer programming. How-
ever, metaheuristics might not converge to the optimal
solution, and this 
aw points to exact algorithms
whose convergence to optimality is assured, which is
categorized as the second way.

Bodin et al. started using exact algorithms for
�nding the optimal solution to the railroad blocking
problem [7], and implemented a branch-and-bound
algorithm using data from Norfolk and Western Rail-
road. The branch-and-price algorithm was applied to
the railroad blocking problem for a major domestic
railroad in the United States [10], the Deutsche Bahn
railroad [19], and some hypothetical networks [20].
Keaton [11] initially adopted the Lagrangian relaxation

method to decompose the original problem into two
independent sub-problems for a portion of the Conrail
system in the United States. Barnhart et al. [5] also
adopted the Lagrangian relaxation method and added
inequalities to the relaxed Lagrangian problem to lift
the lower bounds. They used this algorithm for
realistic network data provided by CSX transportation.
F�ugenschuh et al. [4] presented a mixed-integer, non-
linear program and described two exact techniques and
one heuristic to improve the proposed formulation.

There has been much attention paid to the impact
of uncertainty on the results of railway planning [21-24].
Nevertheless, the blocking problem under uncertainty
has been ignored. The study of Jin [25] is currently
the only one available in the literature addressing
this problem. In this study, the author introduced
uncertainty in the nature of a demand and supply
resource indicator in a limited number of scenarios to
solve the uncertain model. Indeed, if the assumed
values of random parameters are not equal to their
values after realization, then the optimal solution might
not be optimal or even feasible anymore [26].

1.3. Uncertainty in the railroad blocking
problem

At the tactical level of railroad planning, the quantity
of input parameters is often assumed certain and
known. While the time horizon of tactical plan-
ning varies from one to three months, disregarding
uncertainty leads to a clear di�erence between the
optimal solutions of the deterministic and stochastic
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models [27]. In the deterministic model, the nominal
quantity of uncertain parameters can be calculated
using di�erent methods [28-30]; however, it has been
reported that the nominal quantity of demand is over-
or under-estimated [31], and the whole system could
face an enormous amount of unexpected costs [32].
Additionally, the travel time spent through the rail
network is severely a�ected by such factors as changing
weather, 
eet availability, passing or overtaking, and
moving of trains with higher priority (such as passenger
trains) on the same track [6]. Thus, considering the
demand and travel time as random parameters is much
closer to reality.

Sensitivity analysis is a common tool used to
address uncertainty in mathematical modeling. This
method analyzes the optimal solution by changing the
parameter values in a prede�ned range. More precisely,
it is necessary initially to solve the model with nominal
data; then, by changing only one parameter within its
range, it is necessary to ascertain whether the optimal
solution remains optimal or not. Sensitivity analysis
is assumed as the post-analysis method which only
enables us to verify possible changes to the optimal
solution as an input [33].

Stochastic programming is another tool that pro-
vides a solution and takes advantage of probability
distributions governing the data being known or able
to be estimated. This approach has two main issues.
First, the formulation of stochastic programming as-
sumes that each uncertain parameter can be modeled
as a random value with a valid probability distribution;
therefore, this approach cannot be e�ective when the
history data for the random parameter are not suf-
�cient. The second issue relates to the di�culty of
solving stochastic programming models, particularly
in the presence of integer variables and nonlinear
functions in the objective function or constraints.

Robust optimization is another approach to ad-
dressing uncertainty in operations research, which is
the focus of this paper. Several researchers have
emphasized the subject of robust optimization. Soys-
ter [34] modeled the robust counterpart of a linear
program. The proposed model was very conservative,
indicating that the di�erence between the optimum val-
ues for a deterministic model and its robust counterpart
is considerably high. In light of this issue, Ben-Tal
and Nemirovski [35] proposed a robust model for a
linear program with uncertainty, which is inherent to
technological coe�cients. The authors showed that the
new robust model is less conservative than the model
proposed by Soyster; in addition, the proposed model
allowed for the control of the degree of conservatism.

In general, the robust approach has three advan-
tages. Most importantly, the robust approach guar-
antees the protection of the obtained solution against
constraint violations due to the uncertainty parameter.

Since the blocking parameters usually change from
month to month, the deterministic blocking plan must
be subsequently re-optimized to obtain a new blocking
plan for new realizations of uncertain parameters. If
the new blocking plan is di�erent from the previous
blocking plan, then the train schedule required to
carry a new set of blocks could be di�erent from the
previous schedule, and the previous locomotive and
crew assignments might no longer be valid [36]. Second,
the application of the robust approach will result in a
model that requires less e�ort to solve, compared to
the stochastic model. Third, the robust approach only
requires a range of the uncertain parameters, rather
than having a probability function for each uncertain
parameter. It was reported that, for a stochastic
parameter, the range is estimated much easier than
probability function [37].

Our contributions made to the literature are
mainly in two aspects: modeling and o�ering a solution
algorithm. The �rst contribution of this paper is that
it proposes a robust blocking problem with uncertain
demands and travel time as the supply resource indi-
cators to produce a solution that is immunized against
any realization of uncertain parameters in the ranges.
The resulting model combines the di�culty of discrete
variables with the challenge of nonlinear functions in
constraints. It is necessary to solve this model for
realistic networks; however, the current state-of-the-art
software is not able to �nd the optimal solution or even
produce a feasible solution in a reasonable amount of
time. Therefore, the second contribution is devoted
to the development of a specialized branch-and-cut
algorithm. This algorithm involves running a branch-
and-bound algorithm and using the process to generate
a cut that is obtained by the linear approximation of
the nonlinear terms in constraints.

The rest of the paper is organized as follows.
Section 2 introduces the deterministic form of the
blocking problem. Section 3 presents di�erent sources
of uncertainty in the blocking problem and the robust
formulation of the deterministic model. Section 4 de-
scribes a branch-and-cut method for solving the robust
formulation of blocking problem. Section 5 shows
numerical examples and a case study. Finally, Section 6
presents the main conclusions of the presented work.

2. Deterministic model for the blocking
problem

To explain uncertain parameters to the railroad block-
ing problem, the presentation of the deterministic
model is required. The model proposed by Newton
et al. [10], which is one of the most commonly used
models in the railroad blocking problem with certain
parameters, is used in this section. The model is as
follows:
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Input parameters:
A The set of blocks indexed by a,
K The set of shipments indexed by k,
S The set of stations indexed by i,

Qk The set of candidate blocking paths for
shipment k 2 K indexed by q,

wai Time for separating and sorting each
car inside station i 2 S (hr),

ta Traveling time for block a 2 A (hr),
�aq 1 if block a 2 A is on blocking path

q 2 Qk and 0 otherwise,
�ai 1 if station i 2 S is the start station of

block a 2 A and 0 otherwise,

dk Demand value for shipment k 2 K
during the planning horizon (car),

�kq Travel time of path q 2 Qk
for shipment k 2 K, that is,P
a2A(ta +

P
i2S �ai wai)�aq (hr),

Vi The out
ow car capacity of station
i 2 S (car),

Wi The maximum number of blocks
directed out of station i 2 S,

ua The upper limit on car 
ows in block
a 2 A (car).

Decision variables:
za : 1 if candidate block a 2 A is selected

and 0 otherwise,

vkq : Car 
ows associated with blocking
path q 2 Qk for k 2 K (car).

Barnhart et al. [5] presented the blocking problem as
follows:

(P ) min
vkq ;za

X
k2K

X
q2Qk

�kq v
k
q ; (1)

s.t.X
k2K

X
q2Qk

�aq v
k
q � uaza; 8 a 2 A; (2)

X
q2Qk

vkq � dk; 8 k 2 K; (3)

X
a2A

�ai z
a �Wi; 8 i 2 S; (4)

X
a2A

X
k2K

X
q2Qk

�aq �
a
i v
k
q � Vi; 8 i 2 S; (5)

vkq � 0; za 2 f0; 1g; 8 k 2 K;

8 q 2 Qk; 8 a 2 A: (6)

The objective function (1) minimizes the total travel
time for shipments 
owing across the rail network.
Constraint (2) limits the sum of 
ows between many
origins to many destinations through block a 2 A
to ua. Additionally, this constraint ensures that if
za = 0, then the blocking path q 2 Qk containing
block a 2 A, i.e., �aq = 1, is not involved in the solution.
Constraint (3) conserves the car 
ows of each shipment.
Constraint (4) enforces the number of blocks directed
out of any station to limit its block capacity. Similarly,
Constraint (5) enforces the car 
ow directed out of any
station to limit its volume capacity.

Above, Barnhart et al. [5] assumed that demand
value and travel time are certain. In the rest of
the paper, we present the robust formulation of the
railroad blocking problem when these two parameters
are uncertain.

3. Robust formulation of the railroad blocking
problem

The aim of this section is to determine the optimal
blocking paths for each shipment in the presence of
uncertainty in demand value and travel time. Suppose
that demand value, ~dk, and travel time, ~�kq , are
uncertain and belong to two bounded sets, Udk , and
U�kq . The de�nition of these two sets can be written as
follows:

Udk =
n
dk + �d̂k

���� 1 � � � 1
o
; (7)

U�kq =
�
�kq + ��̂kq

��� 1 � � � 1
	
: (8)

Let dk and �kq be the nominal values of demand
and travel time, respectively, and d̂k and �̂kq be the
maximum variations of demand value and travel time.
The uncertain model for the blocking problem is given
by the following:

(RP1) min
vkq ;za

X
k2K

X
q2Qk

~�kq v
k
q ; (9)

s.t.X
q2Qk

vkq � ~dk 8 k 2 K; (10)

Eqs. (2) and (4)-(6).
To develop the robust formulation of (RP1),

the methodology initially proposed by Ben-Tal and
Nemirovski [26] is adopted. Note that these researchers
only addressed uncertainty in the standard form, in
which the technological coe�cients are the only source
of uncertainty; however, the uncertain parameters in
the blocking problem (i.e., ~dk and ~�kq ) appear in
both the objective function (9) and right-hand side of
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Constraint (10). To rewrite (RP1) in the standard
format, two modi�cations are required [38]. The
�rst modi�cation adds the objective function to the
constraint set. To do so, an unrestricted decision
variable, 	, which is equal to and greater than the
objective function (9) is introduced; then, this con-
straint is added to the constraint set. The second
modi�cation changes the role of the demand value in
the technological coe�cient in Constraint (10). To
do so, a variable, pk, is introduced for each k 2 K,
and ~dk appears as a coe�cient of pk provided that
pk = 1 always to obtain ~dkpk = ~dk. Using these two
modi�cations, model (RP1) can be rewritten in the
standard format as follows:

(RP2) min
vkq ;za;	;pk

	; (11)

s.t.

�	 +
X
k2K

X
q2Qk

~�kq v
k
q � 0; (12)

� X
q2Qk

vkq + ~dkpk � 0 8 k 2 K; (13)

	 is free; pk = 1 8 k 2 K; (14)

Eqs. (2) and (4)-(6).
Based on the work of Ben-Tal and Ne-

mirovski [26], the robust formulation of model (RP2) is
derived as follows. For further details on the conversion
of (RP2) to (RP3) see the appendix.

(RP3) min
vkq ;ykq ;xkq ;pk;sk;rk;	;za

	; (15)

s.t.

�	 +
X
k2K

X
q2Qk

�kq v
k
q +

X
k2K

X
q2Qk

�̂kq y
k
q

+ �
sX
k2K

X
q2Qk

�
�̂kq xkq

�2 � 0; (16)

�ykq � vkq � xkq � ykq 8 k 2 K; 8 q 2 Qk;
(17)

� X
q2Qk

vkq + dkpk + d̂ksk + �k
r�

d̂krk
�2 � 0

8 k 2 K; (18)

�sk � pk � rk � sk 8 k 2 K; (19)

ykq � 0; sk � 0 8 k 2 K; 8 q 2 Qk;

Eqs. (2), (4)-(6), and (14).
It has been shown that the optimal solution of

(RP3) will satisfy Constraints (12) and (13) with
probability 1 � exp(��2=2) and 1 � exp(�(�k)2=2),
respectively, where � � 0 and �k � 0 [26].

To simplify model (RP3), the substitution of pk =
1 for all k 2 K into Constraints (18) and (19) yields
the following constraints:

�X
q2Qk

vkq + dk + d̂ksk + �kd̂k
��rk�� � 0; 8 k 2 K;

(20)

�sk � 1� rk � sk; 8 k 2 K: (21)

The term jrkj introduces non-linearity to Con-
straint (20). Two continuous variables (�k1 and �k2) and
one binary variable (�k3) are introduced for each k 2 K;
then, rk and jrkj are replaced by �k1 � �k2 and �k1 + �k2
in model (RP3) [39]. To show the relationship among
�k1 , �k2 , and �k3 , the following logical constraints must
be considered, where M is an arbitrary, large value:

�k1 �M�k3 � 0; (22)

�k2 �M �
1� �k3� � 0: (23)

Thus, �nally, the robust counterpart of model (P ),
denoted by (RP4), is formulated as follows:

(RP4) min
vkq ;ykq ;xkq ;pk;sk;�k1 ;�

k
2 ;�

k
3 ;	;za

	; (24)

s.t.

� X
q2Qk

vkq + dk + d̂ksk + �kd̂k
�
�k1 + �k2

� � 0

8 k 2 K; (25)

�sk � 1� ��k1 � �k2� � sk; 8 k 2 K; (26)

�k1 ; �
k
2 � 0; �k3 2 f0; 1g ; 8 k 2 K; (27)

Eqs. (2), (4)-(6), (16), (17), (22), and (23).
After discarding the nonlinearity of Con-

straint (18), model (RP4) is an integer program with
only one non-linear constraint, i.e., Constraint (16).
However, this problem remains di�cult to solve, even
for small-sized problems; thus, an e�ective solution
algorithm is required. The next section is devoted to
development of the algorithm.

4. Solution algorithm

This section develops a specialized branch-and-cut
algorithm, that is, a branch-and-bound algorithm is
integrated into cut generation to solve the relaxation
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of model (RP4) at various branches of the branch-and-
bound tree. To solve the model (RP4), Constraint
(16) is removed from model (RP4), leaving only one
integer linear program that possibly leads to a solution
that violates Constraint (16). This violation can be
managed by deriving a cut to remove the violated
solution from the current feasible region.

The main component of the proposed algorithm
approximates the nonlinear terms involved in Con-
straint (16). If f(	; vkq ; ykq ; xkq ) is equal to:

�	 +
X
k2K

X
q2Qk

�kq v
k
q +

X
k2K

X
q2Qk

�̂kq y
k
q

+ �
sX
k2K

X
q2Qk

(�̂kq xkq )2;

then the linear approximation of this function for
variables (	; vkq ; ykq ; xkq ) about ( �	; �vkq ; �ykq ; �xkq ), using the
linear part of the Taylor series, is given by:

f
�
	; vkq ; y

k
q ; x

k
q
���

at (�	; �vkq ; �ykq ; �xkq ) � f
��	; �vkq ; �ykq ; �x

k
q
�

+
�
@f
@	

��
	� �	

�
+
X
k2K

X
q2Qk

�
@f
@vkq

��
vkq � �vkq

�
+
X
k2K

X
q2Qk

�
@f
@ykq

��
ykq � �ykq

�
+
X
k2K

X
q2Qk

�
@f
@xkq

�
(xkq � �xkq ): (28)

The derivatives of f(:) with respect to 	, vkq ,
ykq , and xkq are (-1), (�kq ), (�̂kq ), and ��̂k2

q �xkq=qP
k2K

P
q2Qk(�̂kq �xkq )2, respectively; therefore, Ex-

pression (28) can be rewritten as follows:

f
�
	; vkq ; y

k
q ; x

k
q
���

at (�	; �vkq ; �ykq ; �xkq )

� �	 +
X
k2K

X
q2Qk

�kq v
k
q +

X
k2K

X
q2Qk

�̂kq y
k
q

+ �
X
k2K

X
q2Qk

�̂k2
q �xkqr P

k2K
P
q2Qk

�
�̂kq �xkq

�2xkq

+ �
�sX

k2K

X
q2Qk

�
�̂kq �xkq

�2
�X
k2K

X
q2Qk

�̂k2
q �xk2

qr P
k2K

P
q2Qk

�
�̂kq �xkq

�2 �: (29)

Suppose that ( �	; �vkq ; �ykq ; �xkq ; �za; �sk; ��k1 ; ��k2 ; ��k3) is the op-
timal value of variables (	; vkq ; ykq ; xkq ; za; sk; �k1 ; �k2 ; �k3)
in the relaxation of (RP4). If this solution meets the
integrality of za and �k3 and yet violates Constraint
(16), the following cut, (Relation (30)), is added to
the list of constraints to cut o� this solution in the
remainder of the process:

f
�
	; vkq ; y

k
q ; x

k
q
���

at (�	; �vkq ; �ykq ; �xkq ) � 0: (30)

In the following, the detailed process of the proposed
branch-and-cut algorithm is displayed to solve model
(RP4):

Step 0 (Initialization): Set ub = +1, lb = �1
and initialize the input parameters;

Step 1 (Termination test): If the termination
condition is met, then the current solution is optimal;
hence, go to Step 6;

Step 2 (Branch selection): If � (i.e., a list of
active branches) is empty, then it indicates that all
of the possible branches have been investigated, so go
to Step 6; otherwise, choose branch i 2 � using the
best-�rst-search strategy;

Step 3 (Relaxation problem): Solve the re-
laxation of model (RP4) (which is model (RP4)
without Constraint (16) and without integrality
constraints for za and �k3) for branch i. Let
( �	; �vkq ; �ykq ; �xkq ; �za; �sk; ��k1 ; ��k2 ; ��k3) be the optimal solu-
tion and set lb = max(lb; �	);

Step 4 (Cut generation): If (�za; ��k3) is not the
integer solution, then go to Step 3. If the value of:

��	 +
X
k2K

X
q2Qk

�kq �vkq +
X
k2K

X
q2Qk

�̂kq �ykq

+ �
sX
k2K

X
q2Qk

(�̂kq �xkq )2

is strictly greater than zero, then add cut (30)
to branch i, �  �+ branch i, and go to
Step 1. Otherwise (i.e., ��	 +

P
k2K

P
q2Qk �kq �vkq +P

k2K
P
q2Qk �̂kq �ykq + �

qP
k2K

P
q2Qk(�̂kq �xkq )2 � 0),

set:

ub = min(ub;
X
k2K

X
q2Qk

�kq �vkq +
X
k2K

X
q2Qk

�̂kq �ykq

+ �
sX
k2K

X
q2Qk

(�̂kq �xkq )2);

and go to Step 1;
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Step 5 (Branching): Branch on an integer variable
with a fractional value in the optimal solution in
Step 3, add two branches to set �, and then go to
Step 1;
Step 6 (Exit): End and report the optimal solution.

The algorithm begins at Step 0 by determining
the initial value for lb and ub, and inputting the data
into the blocking network. The sets of blocks (A)
and blocking paths (Qk) for each shipment k 2 K are
among the input sets. The set of blocks is chosen from
all of the possible blocks being made from each origin
to each yard, from each origin to each destination, from
each yard to each destination, and from each yard to
another yard. There exist many blocking paths for each
shipment in the blocking network. The candidate set
of blocking paths can be chosen in di�erent fashions.
One way is to use expert judgment to choose reasonable
blocking paths. The other way is to use the k-
shortest path algorithm and, then, choose the blocking
paths with travel times that are less than the shortest
travel time multiplied by a factor for each shipment.
Barnhart et al. [5] suggested that this factor is equal
to 1.5 to remove very long paths from the candidate
set of blocking paths, assuming that no blocking path
potentially in the optimal solution is ignored.

In Step 1, two termination conditions are de�ned,
and the algorithm terminates as long as one condition
is met. These conditions are: the relative gap (i.e.,
(ub � lb)=ub) is less than "r; the absolute gap (i.e.,
ub� lb) is less than "a.

Step 2 is dedicated to choosing a branch from
set �. Two classical branch selection strategies are
the depth-�rst-search and the best-�rst-search. The
former selects the deepest branch of the tree, and the
latter follows the opposite strategy by choosing the un-
explored branches with the smallest lower bound [40].
In this paper, the best-�rst-search is used, which is the
default setting of CPLEX [41]. Step 3 computes the
solution of model (RP4) without Constraint (16) and
without integrality constraints for za and �k3 (called
relaxed model), and it obtains the optimal solution
(�	; �vkq ; �ykq ; �xkq ; �za; �sk; ��k1 ; ��k2 ; ��k3). In Step 4, a feasible
solution to (RP4) is found provided that integer-
feasible solution for za and �k3 is identi�ed and it
does not violate Constraint (16). Otherwise, the linear
approximation of this constraint (or cut (30)) is added
to the tree to cut o� the current solution from the
potential solutions. Step 5 performs the process of
splitting the integer variable, which is not integer
feasible, into two branches. For example, consider the
solution for a branch with �za = 0:4. Two branches are
created from this branch: The �rst branch is associated
with za = 0, and the second branch is associated with
za = 1. Finally, Step 6 reports the optimal solution
obtained from the procedure.

5. Computational results

This section reports the computational results of the
robust formulation of the railroad blocking problem
under uncertainty in demand value and travel time for a
number of hypothetical instances as well as the Iranian
rail network. The proposed algorithm was coded in Vi-
sual Basic and compiled with Microsoft Visual Studio,
version 2010 using CPLEX software, version 12.2, with
default settings and callback features. The experiments
were performed on a Dell Latitude computer featuring
a 2.66 Intel processor with 4 GB of RAM running
Windows 7, X32 edition. To test the e�ciency of the
proposed algorithm, the result of the algorithm was
compared with the optimal solution found by GAMS
23.5 for model (RP4) with the COUENNE solver. All
tests were run within a one-hour time limit, and "r and
"a were assumed to be 1e-4 and 1e-5, respectively.

5.1. Test instances
Our tests were performed on 14 instances to study the
e�ciency of the proposed algorithm. The instances
are labeled with (A;B;C), where A, B, and C are
the number of origins, classi�cation yards, and desti-
nations, respectively. Each instance is generated inside
an (A � 1) � 100km � (A � 1) � 100km region. Origin
a(= 1; � � � ; A), classi�cation yard b(= 1; � � � ; B), and
destination c(= 1; � � � ; C) are located at coordinates
(0; 100 � (a � 1)), (50 � (A � 1); 100A�1

B�1 � (b � 1)),
and (50� (A� 1); 100A�1

C�1 � (c� 1)), respectively. The
generic region is illustrated in Figure 2.

It is necessary to limit the number of blocking
paths for each shipment to ensure that GAMS does
not terminate due to out-of-memory error. Herein,
we assume that all blocking paths, which contribute
to achievement of the optimal solution, are in the
candidate set of blocking paths; therefore, in this paper,
the blocking paths are considered for each shipment
whose travel time is less than the shortest travel time
multiplied by 3 (instead of 1.5 reported by Barnhart et
al. [5]).

5.2. Evaluation of the proposed algorithm
Fourteen di�erent instances from (2,2,2) to (20,20,20)
were considered; � = 0:1, �k = 0:1 for all k 2 K were
assumed. The demand ( ~dk) ranges were [dk � d̂k; dk +
d̂k], where dk = 1000 and d̂k = 200 for all k 2 K; the
travel time (~�kq ) ranges were [�kq � �̂kq ; �kq + �̂kq ], where
�kq is calculated based on the average train speed being
equal to 60 km/h, and the value of �̂kq was set as a
random value between 0:1 � �kq to 0:2 � �kq . Table 2
shows the test results for 14 instances and compares
the e�ectiveness of the proposed algorithm and GAMS.

This table shows that the proposed algorithm
outperforms the GAMS results, and the algorithm is
able to solve the instances optimally within one hour.
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Figure 2. A scheme of the instances (A; B, C).

Table 2. Computational results of 14 test instances.

Instance
(A1, B2, C3)

GAMS Our algorithm
CPU
time
(s)

IP
solution4

Lower
bound

A5
gap R6

gap

CPU
time
(s)

#Cuts IP
solution

Lower
bound

Agap Rgap

2.2.2 8.31 141.93 141.92 0.01 6e-5 0.05 16 141.94 141.92 0.01 9e-5
3.3.3 37.90 347.76 347.75 0.01 5e-5 0.06 15 347.77 347.74 0.03 7e-5
4.4.4 > 1hr 909.03 907.38 1.65 1.8e-3 0.22 24 909.02 908.93 0.08 9e-5
5.5.5 > 1hr 1874.26 1870.70 3.56 1.9e-3 0.40 35 1873.98 1873.82 0.17 8e-5
6.6.6 > 1hr 3352.26 3346.66 5.6 1.7e-3 1.08 48 3351.65 3351.33 0.32 9e-5
7.7.7 > 1hr 5451.35 5443.61 7.74 1.4e-3 2.72 65 5450.53 5450.05 0.48 8e-5
8.8.8 | | | | | 5.93 72 8279.55 8278.82 0.73 8e-5
9.9.9 | | | | | 18.24 89 11947.40 11946.25 1.15 9e-5

10.10.10 | | | | | 42.48 101 16600.13 16598.53 1.60 9e-5
12.12.12 | | | | | 164.65 126 29071.42 29068.53 2.88 9e-5
14.14.14 | | | | | 439.02 142 46675.08 46670.47 4.62 9e-5
16.16.16 | | | | | 1371.9 155 70244.03 70237.05 6.98 9e-5
18.18.18 | | | | | 2389.9 156 100648.22 100638.18 10.03 9e-5
20.20.20 | | | | | 3498.3 180 138757.45 138743.65 13.80 9e-5

1. Number of origins; 2. Number of classi�cation yards; 3. Number of destinations;
4. IP optimal value of the objective function in the unit of car-hr; 5. Absolute gap; 6. Relative gap.

However, GAMS could only solve 2 of the 14 instances
optimally within one hour. Moreover, it is notable
that this software was not even able to �nd a feasible
solution for 8 of the 14 instances.

Figure 3 shows the optimal values of 
ow variables
for the deterministic and robust models in instance
(5,5,5). In this �gure, when moving away from the cen-

ter of the circle, the value of the 
ow variable increases
on the logarithmic scale. It can be observed that the
deterministic model addresses fewer paths with more

ow value, whereas the robust model addresses more
paths with less 
ow value. Speci�cally, there are 25
paths (a single path for each of 25 shipments) with
positive 
ow and the remainder of the paths with zero
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Figure 3. Illustration of number of paths for
deterministic and robust optimal solutions for instance
(5,5,5).

Figure 4. The value of the lower and upper bounds
versus the number of cuts for instance (5,5,5).

values, overlapping in the center of the circle. However,
the robust solution contains 66 paths with positive
values, and each shipment is shipped with more than
one path.

Figure 4 plots the value of the lower bound and
upper bound versus the number of cuts, for instance,
(5,5,5) in Step 4. As expected, the gap decreases as
cuts are added.

5.3. A case-study: Iran rail network
The real data were provided by studying railways
in Iran to illustrate the application of the proposed
algorithm to the blocking problem under demand and
travel time uncertainty. The Iran rail network, which
is approximately 12000 km length, has 334 stations, 44
classi�cation yards, 1883 shipments, and 5058 blocks.

Figure 5. The abstract form of Iran rail network.

An abstract illustration of the Iranian rail network is
provided in Figure 5.

Similar to Section 5.1, the set of blocking paths
for any shipment is limited by the paths with average
travel times which are three times that of the path
with the shortest average travel time for this shipment.
The Iranian network includes 1883 O-D pairs with
a demand value approximately varying from 5 to
200000 tons for a three-month horizon in the railways
of Iran. To set the value of demand 
uctuations, the
time history data provided by the railways of Iran were
analyzed. d̂k was calculated as max

o2�k
(dko�dk), where dko

is an oth observation of demand value for shipment
k; dk is the average demand value; �k is the set of
all observations for shipment k. Similarly, �̂kq was
determined by max

p2�k
q

(�kq;p � �kq ), where �kq;p is the pth

observation of travel time for q 2 Qk k 2 K; �kq is the
average travel time; �k

q is the set of all observations of
travel time. Further, it was supposed that � = 2:8
and �k = 2:8 for all of the shipments. According
to the values of � and �k, the optimal solution of
model (RP4) would be valid with Constraints (12) and
(13) with a probability more than 0.98, and the rail
manager could guarantee (with a probability of 0.98)
the practicality of the decisions to be made.

Figure 6 illustrates the values of the lower and
upper bounds for the objective function, i.e., total
travel time, obtained by the proposed algorithm for the
Iranian rail network. The algorithm hits the one-hour
time limit after adding 128 cuts and reaches the relative
gap as equal to 0.034%, which is acceptable for the real-
sized problem. The optimal value of model (P ) with
the deterministic data was approximately 4.3 million
car-hr, and the optimal value of the robust model was
approximately 4.8 million car-hr, which is roughly a
10% increase; the robust solution also guarantees the
validity of Constraints (12) and (13) with a probability
of more than 0.98. Using the values of time, the
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Figure 6. The value of lower and upper bounds for Iran
rail network versus number of cuts.

economic bene�ts of a deterministic solution can be
quanti�ed to compare it to the robust solution. It has
been reported that the value of time for freight rail
transportation is approximately 34 dollars (30 euros)
per ton-hr in Europe [42]. Therefore, the price of
robustness against uncertainty is approximately 425
million dollars in the three-month time horizon (where
net car load is 25 tons).

The optimal solution to the robust model involves
1855 selected blocks and 1937 selected blocking paths,
while the optimal solution to the deterministic model
involves 1822 selected blocks and 1903 selected blocking
paths. To emphasize the di�erence between the opti-
mal solutions of the deterministic and robust models
in detail, the optimal solutions for block variables
and 
ow variables from the two models are given in
Table 3. For the sake of convenience in showing
the results, the optimal solutions for the deterministic

Table 3. The comparison of the optimal solutions for
deterministic and robust models.

Condition Number of cases
happened

za;D = 1 and za;R = 1 1270
za;D = 0 and za;R = 1 585
za;D = 1 and za;R = 0 552
vk;Dq > 0 and vk;Rq > 0 943
vk;Dq = 0 and vk;Rq > 0 994
vk;Dq > 0 and vk;Rq = 0 960

model are denoted by za;D and vk;Dq , and the optimal
solutions for the robust model are denoted by za;R and
vk;Rq . For block variables, 1270 blocks were common
in the optimal solution of both models; however, 1137
blocks were not involved in the optimal solution of
either model. For 
ow variables, 934 paths for the
robust model were also involved in the deterministic
model; however, 960 paths in the robust solution were
equal to zero that were positive in the deterministic
solution. This observation shows that the robust
solution includes more paths than the deterministic
solution does, which is also illustrated in [43,44] for
the shortest robust path problem.

Figure 7 illustrates the number of blocking paths
with volumes greater than the amount of 
ow shown
on the horizontal axis. For example, consider the
value of 5000 cars from the horizontal axis; then,
the corresponding values on the vertical axis indicate
the numbers of blocking paths with volumes greater
than 5000 cars. This �gure illustrates that, when
moving from left to right on the horizontal axis, the
deterministic line meets the robust line at a point in

Figure 7. The volume of blocking paths for deterministic and robust models.
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the middle. It can be derived from the �gure that the
optimal solution to the deterministic model consists of
more blocking paths with a larger volume. In partic-
ular, the deterministic model yields four paths with
volumes greater than 6000 cars; however, the optimal
solution to the robust model has only one path with
a volume greater than 6000 cars. However, this �gure
also suggests that the robust solution includes more
blocking paths with less volume than the deterministic
model. The authors also generated similar �gures for
di�erent networks, and found that these �gures follow
the same trends.

6. Conclusion

The railroad blocking problem is an important issue
at the tactical planning level. This problem includes
identifying the list of visited classi�cation yards for
each shipment to improve the performance of car
shipping while satisfying railway restrictions. Because
the blocking parameters change monthly, they greatly
a�ect the quality of the deterministic solution and can
possibly render this solution meaningless in practice.
Thus, the blocking plan must be re-optimized for new
realizations of uncertain parameters; then, the next
stage problems (such as train scheduling) should also
be re-optimized. A methodology addressing this need
is robust optimization [26], which produces a solution
immunized against uncertain data. The robust model
is an optimization program with continuous 
ow vari-
ables, integer block variables, and nonlinear functions
in the constraints. To solve the program, we developed
a specialized branch-and-cut algorithm. This method
is viewed as a generalization of the branch-and-bound
method, with additional cuts generated on eligible
branches of the branch-and-bound tree. To test the
e�ciency of the proposed algorithm, the results of the
proposed algorithm were compared with the optimal
solution found by GAMS on 14 di�erent instances.
We observed that the proposed algorithm solved all
instances optimally within one hour. However, GAMS
could only solve 2 of the 14 instances optimally within
one hour, and it was not able to �nd a feasible
solution for 8 of the 14 over one hour. Finally, the
proposed algorithm was applied to a real-sized blocking
problem. It was shown that, by ignoring 10% of the
objective function of the deterministic model, which
is approximately 425 million dollars for a three-month
horizon time, we were able to develop an optimal
solution that was immune to data uncertainty with a
probability of more than 0.98. In addition, the optimal
solution of the robust model was compared with that of
the deterministic model, and our investigation showed
that there is a fundamental di�erence between the
optimal values of the block and path variables for the
two models.

References

1. Crainic, T.G. and Laporte, G. \Planning models for
freight transportation", Eur. J. Oper. Res., 97, pp.
409-438 (1997).

2. Crainic, T.G. \Service network design in freight trans-
portation", Eur. J. Oper. Res., 122, pp. 272-288
(2000).

3. Assad, A.A. \Modelling of rail networks: Toward a
routing/makeup model", Transport Res. B-Meth, 14,
pp. 101-114 (1980).

4. F�ugenschuh, A., Homfeld, H., and Sch�ulldorf, H.
\Single-car routing in rail freight transport", Transport
Sci., 49, pp. 130-148 (2013).

5. Barnhart, C., Jin, H., and Vance, P.H. \RailRoad
blocking: A network design application", Oper. Res.,
48, pp. 603-614 (2000).

6. Bontekoning, Y. and Priemus, H. \Breakthrough in-
novations in intermodal freight transport", Transport
Plan Techn., 27, pp. 335-345 (2004).

7. Bodin, L.D., Golden, B.L., Schuster, A.D., and
William, R. \A model for the blocking of trains",
Transport Res B-Meth, 14, pp. 115-150 (1980).

8. Mar��n, A. and Salmer�on, J. \Tactical design of rail
freight networks. Part I:Exact and heuristic methods",
Eur. J. Oper. Res., pp. 26-44 (1996).

9. Lin, B.-L., Wang, Z.-M., Ji, L.-J., Tian, Y.-M., and
Zhou, G.-Q. \Optimizing the freight train connection
service network of a large-scale rail system", Trans-
portation Research Part B: Methodological, 46, pp.
649-667 (2012).

10. Newton, H.N., Barnhart, C., and Vance, P.H. \Con-
structing railroad blocking plans to minimize handling
costs", Transport Sci., 32, pp. 330-345 (1998).

11. Keaton, M.H. \Designing optimal railroad operat-
ing plans: Lagrangian relaxation and heuristic ap-
proaches", Transportation Research: Part B, 23, pp.
415-431 (1989).

12. Hasany, R.M., Shafahi, Y., and Kazemi, S.F. \A com-
prehensive formulation for railroad blocking problem",
ECMS, pp. 758-763 (2013).

13. Ahuja, R.K., Jha, K.C., and Liu, J. \Solving real-life
railroad blocking problems", Interfaces, 37, pp. 404-
419 (2007).

14. Martinelli, D.R. and Teng, H. \Optimization of railway
operations using neural networks", Transport Res C-
Emer, 4, pp. 33-49 (1996).

15. Yaghini, M., Momeni, M., Sarmadi, M., Seyedabadi,
M., and Khoshraftar, M.M. \A fuzzy railroad blocking
model with genetic algorithm solution approach for
Iranian railways", Appl. Math. Model, 20, pp. (2015).

16. Yue, Y., Zhou, L., Yue, Q., and Fan, Z. \Multi-route
railroad blocking problem by improved model and ant
colony algorithm in real world", Comput. Ind. Eng.,
60, pp. 34-42 (2011).



1928 R. M. Hasany and Y. Shafahi/Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 1916{1930

17. Yaghini, M., Ahadi, H.R., Barati, E., and Saghian,
Z. \Tabu search algorithm for the railroad blocking
problem", J. Transp. Eng.-ASCE, 139, pp. 216-222
(2012).

18. Ahuja, R.K., Cunha, C.B., and Sahin, G. \Network
models in railroad planning and scheduling", Tut.
Oper. Res., 1, pp. 54-101 (2005).

19. Voll, R. and Clausen, U. \Branch-and-price for a
European variant of the railroad blocking problem",
Electronic Notes in Discrete Mathematics, 41, pp. 45-
52 (2013).

20. Yaghini, M., Rahbar, M., Karimi, M., and
Khoshkroudian, M. \A branch-and-price algorithm for
solving the railroad blocking problem", International
Journal of Engineering Science (2008-4870), 25, pp.
99-108 (2014).

21. Yang, L., Gao, Z., and Li, K. \Railway freight
transportation planning with mixed uncertainty of
randomness and fuzziness", Appl. Soft Comp., 11, pp.
778-792 (2011).

22. Gao, Y., Yang, L., and Li, S. \Uncertain models
on railway transportation planning problem", Appl.
Math. Model, 40, pp. 4921-4934 (2016).

23. Meng, Q., Hei, X., Wang, S., and Mao, H. \Carrying
capacity procurement of rail and shipping services for
automobile delivery with uncertain demand", Trans-
port Res. E-Log, 82, pp. 38-54 (2015).

24. Milenkovi�c, M.S., Bojovi�c, N.J., �Svadlenka, L., and
Melichar, V. \A stochastic model predictive control
to heterogeneous rail freight car 
eet sizing problem",
Transport Res. E-Log, 82, pp. 162-198 (2015).

25. Jin, H., Designing Robust Railraod Blocking Plans,
Massachusetts Institute od Technology (1998).

26. Ben-Tal, A. and Nemirovski, A. \Robust solutions
of Linear Programming problems contaminated with
uncertain data", Math. Prog., 88, pp. 411-424 (2000).

27. Pr�ekopa, A., Stochastic Programming, Springer Sci-
ence & Business Media (2013).

28. Wong, W.G., Niu, H., and Ferreira, L. \A fuzzy
method for predicting the demand for rail freight
transportation", J. Adv. Transport, 37, pp. 159-171
(2003).

29. Carvalho, G., Methodology for Railway Demand Fore-
casting Using Data Mining, SAS Global Forum (2007).

30. Gorman, M.F. \Statistical estimation of railroad con-
gestion delay", Transport Res. E-Log, 45, pp. 446-456
(2009).

31. Matas, A., Raymond, J.L., Gonzalez-Savignat, M.,
and Ruiz, A. \Predicting the demand: Uncertainty
analysis and prediction models in Spain", Work-
ing Paper in Economic Evaluation of Transportation
Projects, pp. 1-31 (2009).

32. Dong, Y. \Modeling rail freight operations under
di�erent operating strategies", PhD Thesis, MIT,
Cambridge, MA (1997).

33. Birge, J.R. and Louveaux, F., Introduction to Stochas-
tic Programming, Springer (2011).

34. Soyster, A.L. \Convex programming with set-inclusive
constraints and applications to inexact linear program-
ming", Oper. Res., 21, pp. 1154-1157 (1973).

35. Ben-Tal, A. and Nemirovski, A. \Robust convex op-
timization", Mathematics of Operations Research, 23,
pp. 769-805 (1998).

36. Seref, O., Ahuja, R.K., and Orlin, J.B. \Incremental
network optimization: Theory and algorithms", Oper.
Res., 57, pp. 586-594 (2009).

37. Han, J., Lee, C., and Park, S. \A robust scenario ap-
proach for the vehicle routing problem with uncertain
travel times", Transport Sci., 48, pp. 373-390 (2013).

38. Smith, J.C., Ahmed, S., Cochran, J.J., Cox, L.A., Ke-
skinocak, P., Kharoufeh, J.P., and Smith, J.C. \Intro-
duction to robust optimization", Wiley Encyclopedia of
Operations Research and Management Science, John
Wiley & Sons, Inc. (2010).

39. Nemhauser, G.L. and Wolsey, L.A. \Integer program-
ming and combinatorial optimization", W., Chich-
ester, G.L. Nemhauser, M.W.P. Savelsbergh, and G.S.
Sigismondi, Constraint Classi�cation for Mixed Integer
Programming Formulations, COAL Bulletin, 20, pp.
8-12 (1988).

40. Lee, J. and Ley�er, S., Mixed Integer Nonlinear Pro-
gramming, Springer Science & Business Media (2011).

41. ILOG, CPLEX OPTIMIZATION, INC. 2009. Using
the CPLEX Linear Optimizer.

42. Van Essen, H., Boon, B., den Boer, L., Faber, J.,
van den Bossche, M., Vervoort, K., and Rochez, C.,
Marginal Costs of Infrastructure Use - Towards a
Simpli�ed Approach, Delft (2003).

43. Bertsimas, D. and Sim, M. \Robust discrete optimiza-
tion and network 
ows", Math. Prog., 98, pp. 49-71
(2003).

44. Ben-Tal, A., El Ghaoui, L., and Nemirovski, A., Robust
Optimization, Princeton University Press, New Jersey
(2009).

Appendix

Ben-Tal and Nemirovski [26] introduced the following
methodology for generating the robust formulation
from linear model while the technological coe�cient
are uncertain. Consider the following optimization
problem [26]:

(AP1) min
nX
i=1

cixi; (A.1)

s.t.
nX
i=1

~aijxi � bj ; j = 1; � � � ;m; (A.2)

li � xi � ui; i = 1; � � � ; n: (A.3)
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Suppose that, in constraint j, ~aij = (1+"�ij)jaij j where
�ij is the independent random variables symmetrically
distributed in interval [�1; 1], " is the tolerance a�ect-
ing ~aij , and jaij j is the average value of ~aij . Ben-Tal
and Nemirovski [26] proved the following theorem to
generate the robust formulation of (AP1).

Theorem. Let x̂ be the optimal solution to the
following optimization problem:

(AP2) min
nX
i=1

cixi; (A.4)

s.t.
nX
i=1

aijxi +
nX
i=1

" jaij j yij + "
j

vuut nX
i=1

a2
ijz2

ij � bj ;

j = 1; � � � ;m; (A.5)

�yij � xi � zij � yij ; i = 1; � � � ; n;

j = 1; � � � ;m; (A.6)

li � xi � ui; i = 1; � � � ; n; (A.7)

yij � 0; i = 1; � � � ; n; j = 1; � � � ;m: (A.8)

Then, x̂ is feasible for (AP1) with probability (1 �
exp(�
2

j=2)) for constraint j where 
j is a positive
parameter [26].

Proof: Let x̂ be feasible for (AP2). Then:

Pr

"
nX
i=1

~aijxi > bj

#
(a)z}|{
= Pr

"
nX
i=1

(aij + " jaij j �ij)xi > bj

#
= Pr

"
nX
i=1

aijxi +
nX
i=1

" jaij jxi�ij > bj

#
(b)z}|{
= Pr

"
nX
i=1

aijxi +
nX
i=1

" jaij jxi�ij

+
nX
i=1

" jaij j yij�ij �
nX
i=1

" jaij j yij�ij > bj

#
= Pr

"
nX
i=1

aijxi +
nX
i=1

" jaij j (xi � yij) �ij

+
nX
i=1

" jaij j yij�ij > bj

#

(c)z}|{� Pr

"
nX
i=1

aijxi +
nX
i=1

" jaij j zij�ij

+
nX
i=1

" jaij j yij�ij > bj

#
(d)z}|{� Pr

24 nX
i=1

" jaij j zij�ij > 
j"

vuut nX
i=1

a2
ijz2

ij

35
(e)z}|{
= Pr

24 nX
i=1

�ij�ij > 
j

vuut nX
i=1

�2
ij

35
(f)z}|{
= Pr

"
nX
i=1

�ij�ij > 
j

#
(g)z}|{� exp

��
2
j
�
E

(
exp

(

j

nX
i=1

�ij�ij

))
(h)z}|{
= exp

��
2
j
� nY
i=1

E fexp f
j�ij�ijgg

(i)z}|{
= exp

��
2
j
� nY
i=1

" 1X
l=0

(
j�ij)2l

(2l)!

#
(j)z}|{
= exp

��
2
j
�

exp

 

2
j=2�

nX
i=1

�2
ij

!
(k)z}|{
= exp

��
2
j
�

exp
�

2
j=2
�

= exp
��
2

j=2
�
:

In (a), we substitute ~aij into (1 + "�ij)jaij j, in (b) we
add and subtract

Pn
i=1 "jaij jyij�ij , in (c) we consider

xi � yij � zij , in (d) we consider
Pn
i=1 aijxi +Pn

i=1 "jaij jyij + "
j
qPn

i=1 a2
ijz2

ij � bj , in (e) we
substitute �ij into jaij jzij , in (f) we assume the case ofPn
i=1 �

2
ij = 1, in (g) we use the Tschebyshev inequality,

in (h) we use independence of �ij , in (i) we use the
de�nition of expected value of EXP and symmetry of
the distribution of �ij = [�1; 1], in (j) we use Taylor
series, and in (k) we assume the case of

Pn
i=1 �

2
ij = 1. �

In the above discussion, Only the uncertainty
which is inherent in the technological coe�cients is
considered for model (AP1) (used by Ben-Tal and
Nemirovski [26]). However, the blocking problem
involves uncertainty in both the objective function and
right-hand side of the constraint. In the paper, we
applied some modi�cations to the uncertain model to
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adopt the idea of Ben-Tal and Nemirovski [26] (stated
above) to present the robust formulation for blocking
problem.
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