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Abstract. Side weirs are hydraulic structures that are used as discharge adjustments to
divert the surplus water owing from the main channel. Predicting the discharge coe�cient
is one of the most important parameters in the side weir design process. In practical
situations, it is preferred to predict the discharge coe�cient with simple equations. The goal
of this study is to develop accurate standard equations for use in predicting the discharge
coe�cient of a high-performance, modi�ed triangular side weir. The Particle Swarm
Optimization (PSO) algorithm was used to optimize the parameters of the equations.
Four di�erent forms of the equations and two non-dimensional input combinations were
used to develop the most appropriate model. The results obtained by our simple standard
equations optimized by the PSO algorithm were compared with those of complex nonlinear
regression equations, and our equations were more accurate in modeling the discharge
coe�cient. Our method reduced the error in the results by as much as 43% compared to
the regression methods, and its simplicity makes it useful in solving practical problems.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

In some rivers, water and wastewater, irrigation, and
drainage channel zones, the ow rate may exceed the
tolerance capacity of a river or channel. In such a
case, discharge control structures, such as side weirs,
can be used to control the ow and prevent overows.
Side weirs are also used to keep oods away from
dam reservoirs and the diversion of ow for the sake
of protection. The study of side weirs dates back to
the early 20th century when De Marchi [1] laid the
groundwork for other studies with his mathematical

*. Corresponding author.
E-mail addresses: amirzaji@gmail.com (A.H. Zaji);
bonakdari@yahoo.com (H. Bonakdari);
shahab1396@gmail.com (Sh. Shamshirband)

doi: 10.24200/sci.2017.4198

model of side weirs. The equations he developed to
describe side weirs were based on the assumption that
the speci�c energy was the same before and after the
weirs.

In this paper, a model with a decreasing discharge
equation is presented for a rectangular channel with
a horizontal bed and a spatially-varied ow. The
equation is:

dy
dx

=
Q

gb2y3

��dQ
dx

�
1� Q2

gb2y2

=
Qy
��dQ

dx

�
gb2y3 �Q2 ; (1)

where dy=dx is the depth change along the channel, Q is
the discharge of the ow, y is the depth of the ow, b is
the width of the main channel, dQ=dx is the discharge
change along the channel, and g is the acceleration of
gravity. The discharge per unit length over the side
weir equals:
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�dQ
dx

=
2
3
CM

p
2g(y � w)1=5; (2)

in which CM is the discharge coe�cient, also known
as the De Marchi coe�cient. By assuming that the
speci�c energy is constant, the discharge in the channel
would be:
Q = by

p
2g(E � y): (3)

By inserting Eqs. (2) and (3) into Eq. (1), we obtain:

dy
dx

=
4
3
CM
b

p
(E � y)(y � w)

3y � 2E
: (4)

Integrating the above equations and assuming CM
independent of x direction, we will have Eq. (5):

x =
3b

2CM
�(y;E;w) + c; (5)

where � is obtained from Eq. (6). Therefore, CM
obtained in the laboratory is calculated by substituting
� through Eq. (5) as follows:

�(y;E;w)=
2E�3w
E�w

s
E�y
y�w�3 sin�1

r
E�y
E�w: (6)

Moreover, the length of the side weir is obtained from
Eq. (7):

L = x2 � x1 =
3
2

b
CM

(�2 � �1); (7)

in which �1 and �2 are obtained from Eq. (6) for
upstream and downstream of the weirs, respectively.
Assuming that Q1 and Q2 are the upstream and down-
stream discharges, the amount of side weir discharge is
obtained from Eq. (3).

Following De Marchi [1], many researchers have
tried to calculate the side weir coe�cients (CM ), and
most of them have considered CM as a function of the
upstream Froude number (Fr1) [2-6].

A signi�cant number of researches have been
conducted to increase the e�ciency of the side weir
by changing its geometrical situation, i.e. changing its
rectangular crest to triangular, circular, or elliptical,
causing an increase in both the length of the weir and
the discharge coe�cient. Borghei and Parvaneh [7]
designed a modi�ed triangular side weir whose dis-
charge coe�cient that was 2.33 times higher than
a conventional side weir's in a rectangular channel.
The authors used 200 test measurements and, �nally,
using the nonlinear regression method, determined an
equation for the modi�ed triangular side weir discharge
coe�cient, i.e. Eq. (8):

CM =
�
�0:18

�
Fr1

sin �0
�0:71

� 0:15(Fr1)0:44 +
�
w
Y1

�0:7�
�
�
�2:37 + 2:58

�
w sin �0
Y1

��0:36�
:

(8)

Soft computing methods are used as a new tool for
calculating the side weir coe�cient, and many re-
searchers have considered their application in predict-
ing scour depth [8-13], determining ow characteristics
in di�erent open channels [14,15], modeling rainfall
and predicting stream ow [16-22], modeling coastal
algal blooms [23], evapotranspiration [24,25], combined
open channel ow [26,27], sediment transport [28,29],
predicting ground water levels [30], and forecasting the
demand for water [31-33]. In estimating the side weir
coe�cient, Bilhan et al. [34] studied di�erent Arti�cial
Neural Network (ANN) methods, and found that they
have much higher accuracy than multiple nonlinear
and linear regression models do. Using Radial Basis
Neural Network (RBNN), Regression Neural Network
(RNN), and Genetic Expression Programming (GEP),
Kisi et al. [35] predicted the triangular side weir
discharge coe�cient. The results were compared with
2500 laboratory measurements, and it was found that
ANN and GEP gave better results than regression
methods. To determine side weir discharge coe�cients,
Emin Emiroglu et al. [36] used an adaptive neuro-fuzzy
technique (ANFIS), the results of which indicated the
high accuracy of the ANFIS method for modeling the
side weir discharge coe�cient. Some other studies have
been published on modeling the triangular labyrinth
side weir discharge using soft computing, all of which
were proved better than the regression methods [37-42].

The objective of this study is to provide a prac-
tical, simple equation for calculating the discharge
coe�cient for a modi�ed, high-performance triangu-
lar side weir. The Particle Swarm Optimization
(PSO) algorithm was used to optimize each of the
equations considered. Four di�erent equation forms
were developed using the input parameters of Fr1
(upstream Froude number), w=L (weir height/weir
length), Fr1=sine(�0) (upstream Froude number/sine
(weir included angle/2)), w=Y1 (weir height/upstream
ow depth), and w � sine(�0)=Y1 (weir height �sine
(weir included angle/2)/upstream ow depth). Con-
sidering dimension L (length) for w, L, and Y1, it is
obvious that all of the used input parameters are non-
dimensional. Finally, the accuracy of each equation
was examined and compared.

2. Experimental setup

In this study, the laboratory model of Borghei and
Parvaneh [7] was used, including a rectangular ume
that was 11 m long and 0.4 m wide. The glass walls
of the channel were 0.66 m high. The outlet discharges
from the main and tributary channels (Q2 and Qw)
were measured by standard V notches. The accura-
cies of the water head and discharge measurements
were �1 mm and �0:0001 m3/s, respectively. The
authors performed 200 tests for di�erent geometrical
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Table 1. Interval variations in experimental tests of Borghei and Parvaneh [7].

� (�) L (m) w (mm) w=Y1 Q1 (m3/s) Fr1 Number of runs

30 0.3 50, 75, 100, 150 0.46-0.83 0.019-0.030 0.19-0.96 40
0.4 50, 75, 100, 150

45
0.3 50, 75, 100, 150

0.46-0.83 0.019-0.030 0.19-0.96 550.4 50, 75, 100, 150
0.6 50, 100, 150

60
0.3 50, 75, 100, 150

0.46-0.83 0.019-0.030 0.19-0.96 500.4 50, 100, 150
0.6 50, 100, 150

70
0.3 50, 75, 100, 150

0.46-0.83 0.019-0.030 0.19-0.96 550.4 50, 75, 100, 150
0.6 50, 100, 150

Figure 1. Plan view of modi�ed triangular side weir and the parameters used.

conditions, opening lengths (L), weir heights (w), weir
oblique angles (�0), and input discharges (Q1). All of
the tests were conducted under certain conditions in
which the upstream Froude number (Fr1) was at the
interval of 0.19-0.96. Table 1 provides the parameters
whose variation intervals are observed in the laboratory
tests. Figure 1 shows the schema of the modi�ed
triangular side weir and the parameters used.

3. Methods and materials

In this study, the Particle Swarm Optimization (PSO)
method was used to determine an accurate equation
to predict the discharge coe�cient. The design of this
method was inspired by ocks of birds or schools of
�sh, because when they stay together, the likelihood of
being caught reduces. This is called swarm intelligence.
When �sh make up a school, they follow only a few
simple, yet systematic, rules; however, their behavior
appears very complicated. In addition to the PSO
algorithm, Ant Colony Optimization (ACO), Bees
Algorithm (BA), and Arti�cial Fish Swarm (AFS) are
all considered swarm intelligence methods.

3.1. Particle Swarm Optimization (PSO)
Kennedy and Eberhart [43] introduced the PSO.
Initially, the authors intended to create a sort of
social-based computational intelligence, independent
of individual capabilities, i.e. individuals with normal
intelligence quotients could make up a very intelligent
community. Therefore, their study resulted in a reliable
algorithm for optimization called Particle Swarm Op-
timization (PSO), in which there are some particles in
space, and each particle has a potential solution to the
problem. Each particle follows a general and �xed rule
to move, called self-organization. Based on this rule,
each particle remembers the present and past situations
as well as the best-experienced situation through both
the single particle and all of the particles. The new
position of the particle is calculated from Eq. (9) as
follows:

vi[t+ 1] =wvi[t] + c1r1(xpbest[t]� xi[t])
+ c2r2(xgbest[t]� xi[t]): (9)

In this equation, the �rst term on the right side of the
equation represents a particle's movement toward its
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last movement; the second term indicates the velocity
of a particle moving toward the best-known former
position, and the third term shows the velocity of
a particle moving toward the best previous position
experienced by all particles. Herein, xpbest is the
best personal memory, and xgbest is the best collective
memory. The inertia coe�cient (w) is an arbitrary
factor that has values less than 1; r1 and r2 are random
numbers with a uniform distribution, while c1 and c2
are the individual and collective learning coe�cients,
respectively, ranging between 0-2 [43]. The three terms
are the resultant vector of the amount and direction of
and movement towards a new position. Thus, from
Eq. (10), we will get a new position of the particle as
follows:

xi[t+ 1] = xi[t] + vi[t+ 1]: (10)

Figure 2 demonstrates the steps of the PSO algorithm.
Initially, the primary population is formed; then,
the �tness function of each particle is determined.
Subsequently, pbest and gbest are determined and,
then, memorized in the particle's memory. Eq. (9)
is used to determine the particle's velocity, namely
the direction and amount of the movement of the
particle; subsequently, the velocity is added to the

Figure 2. Particle swarm optimization ow chart.

present particle's position to determine the particle's
new position. Finally, the stopping criteria of the
algorithm are checked. If the criteria have been
met, the algorithm stops the process; otherwise, the
loop is repeated. In all models here, the Number of
Function Evaluation (NFE) is considered as a criterion
for stopping the iterations at NFE = 100,000.

If the inertia parameter (w) reaches its maximum
(w = 1), the algorithm's exploration property goes
up; however, if w is low, the algorithm's exploitation
property increases. It is generally expected that the
exploration property be high at the beginning, while
it increase at the end; therefore, in the algorithm used
here, the damping coe�cient (wdamp = 0:98) was used
[44,45]. At the end of each repetition, the inertia
parameter (w) decreases gradually, and as the results
get closer to the end of the solution, w decreases,
leading to an increase in the exploitation of the model
(Eq. (11)):

w = w � wdamp: (11)

3.2. Objective function and model performance
In this study which uses the PSO algorithm, some
equations are given for modeling the discharge coef-
�cient of a modi�ed triangular side weir. The primary
goal of PSO is to reduce the error that results from
the proposed equation application, compared to the
laboratory model. Therefore, according to Eq. (12),
we have the following:

ei = fi � f̂i; (12)

where fi and f̂i are the results of the laboratory
model and the proposed equation, respectively. The
algorithm uses Mean Square Error (MSE) to determine
the iteration error, as shown in Eq. (13). In addition,
in order to investigate the models' performance, Root
Mean Squared Error (RMSE), Mean Average Error
(MAE), and Mean Absolute Percentage Error (MAPE)
are used (Eqs. (14)-(16)):

MSE =
1
n

nX
i=1

e2
i ; (13)

RMSE =

vuut 1
n

nX
i=1

e2
i ; (14)

MAE =
1
n

nX
i=1

jeij; (15)

MAPE =
Pn
i=1 jeijPn
i=1 fi

� 100
n
; (16)

where n is the quantity of the input dataset.
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4. Results

To estimate CM , four non-dimensional parameters
(Var1 to Var4) are considered as inputs in each of
the following equations. These parameters are a
combination of the upstream Froude number (Fr1), side
weir oblique angle (�0), weir height (w), and upstream
depth (Y1). As Eqs. (17) and (18) show, there are
two possible input sets, i.e. INPUT1 and INPUT2,
that can be considered for predicting the discharge
coe�cient (CM ). The di�erence between the inputs
is that INPUT2 considers the four parameters (Y1, w,
�0, Fr1) as well as the length e�ect of the side weir
(L):

INPUT1:

CM = '
�

Var1 = Fr1; Var2 =
Fr1

sin �0 ;

Var3 =
w
Y1
; Var4 =

w sin �0
Y1

�
; (17)

INPUT2:

CM = '
�

Var1 =
w
L
; Var2 =

Fr1

sin �0 ;

Var3 =
w
Y1
; Var4 =

w sin �0
Y1

�
: (18)

In order to study the e�ects of the considered input
variables in Eqs. (17) and (18) on CM , the sensitivity
analysis of partial di�erential equations is used [46,47].
In this method, the ratio of the change in CM (as the

output) to the change in the input variables considered
in Eqs. (17) and (18) is examined. For the practical
use of this method, the partial di�erential equation can
be approximated as a �nite di�erence [48] and output
values calculated for the small changes in the input pa-
rameters [49]. The sensitivities of Fr1; Fr1

sin �0 ;
w
Y1
; w sin �

Y1
,

and w
L variables are {0.66, {0.22, �0:89, {3.28, and

1.27, respectively. Thus, w sin �0
Y1

and w
L are the most

important input parameters where w sin �0
Y1

has a neg-
ative relation with CM and w

L has a positive relation
with CM . In what follows, some standard equations are
optimized to estimate the discharge coe�cient (CM ) by
the PSO algorithm; then, the error of each equation is
calculated.

4.1. Optimized equation of Borghei and
Parvaneh [7]

Eq. (19) represents the structure of Eq. (8) used by
Borghei and Parvaneh [7]. Table 2 shows the coe�-
cients, i.e. a1 to a8, proposed in this study, estimated
through nonlinear regression. In Eq. (19), INPUT1 is
considered as the input variable. MSE of the equation,
related to the laboratory results, is equal to 0.0037
(Table 2). Figure 3(a) compares the calculated and
laboratory results. The 45� line is the exact solution to
the problem, and the closeness of the scatter to this line
shows the accuracy of the model. Moreover, the �t line
equation (assuming that the equation is y = c1x+ c2)
in Figure 3(a) shows the accuracy of the model and the
deviation of the results from the exact line. Therefore,
the closer c1 is to one and c2 is to zero, the greater
the accuracy of the model will be. In Figure 3(b), the
laboratory results are compared with those of Eq. (8)

Table 2. Characteristics and statistical errors of Eq. (8).

INPUT1
Eq. (8)

a1 a2 a3 a4 a5 a6 a7 a8

{0.18 0.71 {0.15 0.44 0.70 {2.37 2.58 {0.36

MSE RMSE MAE MAPE

0.0037 0.016 0.0482 0.035

Figure 3. (a) Scatter plot of comparing the observed CM and the estimated CM by Eq. (8). (b) Comparison of the
observed CM and the estimated CM by Eq. (8).
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to estimate CM . The horizontal axis represents the
number of datasets (200 tests), and the vertical axis
shows the discharge coe�cient (CM ). Figure 3(a)
shows that, in some parts, such as experiment numbers
20 to 40 and 100 to 120, there is a greater error in
Eq. (8) than in the laboratory results. However, for
intervals with a minor sudden change in the discharge
coe�cient CM , such as experiment numbers 120 to 160,
the results are closer together:

CM = [a1(Var2)a2 + a3(Var1)a4 + (Var 3)a5 ]

� [a6 + a7(Var4)a8 ]: (19)

To �nd an accurate and e�cient equation for calcu-
lating CM , coe�cients a1 to a8 were calculated by the

PSO algorithm, instead of nonlinear regression. Table 3
shows Eq. (19.1) calculated based on INPUT1 as the
input variable. The table shows that MSE is equal to
0.0024, which is much lower than that of Eq. (8). In the
next step, the input non-dimensional parameters were
changed, and INPUT2 was used as an input variable for
Eq. (19). Table 3 shows the related results obtained by
Eq. (19.2). Since MSE decreased to 0.0021 while MSE
of Eq. (19.1) was 0.0024, it is apparent that higher
accuracy was attained using non-dimensional INPUT2.
In Figure 4(a), the results from Eqs. (19.1) and (19.2)
are given on the vertical axis; the laboratory test results
are given on the horizontal axis. In both cases, the �t
line is very close to the exact line. Eq. (19.2), calculated
based on INPUT2, has much higher e�ciency than Eq.

Table 3. Characteristics and statistical errors of Eqs. (19.1) and (19.2).

INPUT1
Eq. (19.1)

a1 a2 a3 a4 a5 a6 a7 a8

0.34 {0.37 {0.18 3.07 2.34 {0.53 0.87 {0.63
MSE RMSE MAE MAPE
0.0024 0.049 0.0386 0.029

INPUT2
Eq. (19.2)

a1 a2 a3 a4 a5 a6 a7 a8

0.37 {0.43 {0.30 0.20 2.24 {3.00 3.26 {0.30
MSE RMSE MAE MAPE
0.0021 0.046 0.0354 0.026

Figure 4. (a) Scatter plot of comparing the observed CM and the estimated CM by Eqs. (19.1) and (19.2). (b)
Comparison of the observed CM and the estimated CM by Eq. (19.2).
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(19.1). In Figure 4(b), the results of laboratory tests
are compared with those obtained from Eq. (19.2).
It is evident that the accuracy problems in Eq. (8)
(Figure 3(b)) in test numbers 20 to 40 and 100 to 120
are almost solved; the results are agreeable.

4.2. Optimized 2nd-order equation
The main objective herein is to determine equations
of high accuracy featuring simple standard forms.
Therefore, the accuracy of the 2nd-order equations was
investigated. Thus, CM equation resembles Eq. (20).
In this equation, a1 is the equation's constant value,
and a2 to a9 are the coe�cients that make the 2nd-
order equation. In Eq. (20), Var1 to Var4 are used as
inputs from INPUT1 and INPUT2. Table 4 presents a1
to a9 coe�cients as calculated from the PSO algorithm

for Eqs. (20.1) and (20.2) with INPUT1 and INPUT2
as input variables, respectively. It is apparent that
MSE in Eq. (20.2) using INPUT2 is less than that
of Eq. (20.1) using INPUT1, indicating that INPUT2
combination gives more accurate results. Note that
the very simple Eq. (20) gives much more accurate
results than the complex Eq. (8) does. Higher MSEs
in Eqs. (20.1) and (20.2) than those in Eqs. (19.1)
and (19.2) may demonstrate that Eq. (19) has an
optimized shape and is more e�cient for modeling
the discharge coe�cient of the modi�ed triangular side
weir. However, as stated above, the main advantage
of Eq. (20) is its simplicity and its standard shape.
In Figure 5(a), the estimated values of Eqs. (20.1)
and (20.2) for INPUT1 and INPUT2 are plotted on
the ordinate; the laboratory values are plotted on the

Table 4. Characteristics and statistical errors of Eqs. (20.1) and (20.2).

INPUT1
Eq. (20.1)

a1 a2 a3 a4 a5 a6 a7 a8 a9

0.25 {2.58 1.16 1.42 {0.47 0.31 0.03 2.14 {2.44
MSE RMSE MAE MAPE
0.0032 0.057 0.044 0.033

INPUT2
Eq. (20.2)

a1 a2 a3 a4 a5 a6 a7 a8 a9

1.41 {1.64 1.98 {0.53 0.020 2.67 {0.77 {4.43 2.39
MSE RMSE MAE MAPE
0.0029 0.054 0.0413 0.031

Figure 5. (a) Scatter plot of comparing the observed CM and the estimated CM by Eqs. (20.1) and (20.2). (b)
Comparison of the observed CM and the estimated CM by Eq. (20.2).
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Table 5. Characteristics and statistical errors of Eqs. (21.1) and (21.2).

INPUT1
Eq. (21.1)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

0.42 3.11 {0.13 {1.20 { 2.37 { 5.91 { 0.46 { 2.95 {
MSE RMSE MAE MAPE
0.0031 0.056 0.0439 0.033

INPUT2
Eq. (21.2)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

{0.20 0.37 {3.18 4.45 { 0.82 { 3.19 0 { 0.36 { 2.07
MSE RMSE MAE MAPE
0.0029 0.054 0.0405 0.030

abscissa. Note the excessive closeness of the �t and
exact lines of this equation to the extent that they
overlap in Eq. (20.2). The closeness between these
two lines means that errors in the data are scattered
equally around the exact line. It could be inferred
that this symmetry is due to the greater symmetry
of Eq. (20) as compared to Eq. (19). Notice that
this symmetry bears no relation to the accuracy of
the model; for example, in Eq. (19.2), MSE (0.0021)
is less than MSE of Eq. (20.2) (0.0029); however, in
Eq. (20.2), c1 and c2 coe�cients are closer to 1 and
0, respectively, making the error results completely
symmetrical. In Figure 5(b), the suggested results
derived from Eq. (20.2) are presented with bold fonts
on the ordinate, and the laboratory test results are
plotted with empty circles. The number of tests is
plotted on the abscissa. The comparison made between
Figures 5(b) and 4(b) shows that the results in areas
where CM does not experience dramatic uctuations
(e.g., experiment numbers 0 to 30) are more accurate
than those of Eq. (19.2) are. The disadvantage of using
this equation in CM modeling is clear in areas where the
discharge coe�cient undergoes a variation (experiment
numbers 100 to 120). The results indicate that this
simple equation is valid and can have practical uses
due to the non-dimensionality of the data:

CM = a1 +
�
a2(Var1) + a3(Var1)2�

+
�
a4(Var2) + a5(Var2)2�

+
�
a6(Var3) + a7(Var3)2�

+
�
a8(Var4) + a9(Var4)2� : (20)

4.3. Optimized 3rd-order equation
After studying the equation with the 2nd-order struc-
ture and having favorite equations to calculate dis-
charge coe�cient CM of the modi�ed triangular side
weir (Eqs. (20.1) and (20.2)), the standard structure of
the polynomial of a 3rd-order equation was investigated
along with the general structure, as shown in Eq. (21).
Herein, a1 is a constant, and a2 to a13 are the equation's

coe�cients. The PSO algorithm was used to solve a 13-
dimensional problem and calculate the proper values
for a1 to a13. Table 5 shows the calculated values
of INPUT1 (Eq. (21.1)) and INPUT2 (Eq. (21.2)) in
Eq. (21). From this table, as introduced in other
equations, the equation's error in which INPUT2 is
used is less than that when INPUT1 is used. Figure
6(a) shows CM results obtained from Eqs. (21.1) and
(21.2) and compares them with the laboratory values.
The comparison between Eq. (20.2) and Eqs. (21.1)
and (21.2) indicates that if the power of the multi-term
equation is changed from 2 to 3, the accuracy of the
model does not increase noticeably. As Figure 6(a)
shows, the �t and exact lines have less adaptation
than Figure 5(a) do. A comparison of Figure 5(b)
with Figure 6(b) shows that Eq. (20.2) provides more
accurate results in both areas, i.e. where the changes in
CM are uniform and where there are sudden changes in
CM . Since the objective of this study is to determine
an applicable equation to calculate CM of a modi�ed
triangular side weir and considering simplicity and
shortness as the major criteria of applicability, it can
be inferred that increasing the polynomial's power from
2 to 3 does not provide a more e�cient equation for
calculating CM :

CM = a1 +
�
a2(Var1) + a3(Var1)2 + a4(Var1)3�

+
�
a5(Var2) + a6(Var2)2 + a7(Var2)3�

+
�
a8(Var3) + a9(Var3)2 + a10(Var3)3�

+
�
a11(Var4) + a12(Var4)2 + a13(Var4)3� :(21)

4.4. Optimized nonlinear equation
A comparison of MSEs resulting from Eqs. (19.2) and
(20.2), i.e. 0.0021 and 0.0029, respectively, shows that
the lower error in Eq. (19.2) is more likely due to
the constant values considered as powers of the input
variables. If we intend to reduce MSE, the idea of
using a standard, nonlinear equation, such as Eq. (22),
may play an instrumental role. In Eq. (22), for each
input variable, one coe�cient (a8, a6, a4, a2) and one
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Figure 6. (a) Scatter plot of comparing the observed CM and the estimated CM by Eqs. (21.1) and (21.2). (b)
Comparison of the observed CM and the estimated CM by Eq. (21.2).

Table 6. Characteristics and statistical errors of Eqs. (22.1) and (22.2).

INPUT1
Eq. (22.1)

a1 a2 a3 a4 a5 a6 a7 a8 a9

0.93 {0.08 0.95 {0.20 1.19 1.06 1.44 {1.48 1.11
MSE RMSE MAE MAPE
0.0022 0.047 0.0373 0.028

INPUT2
Eq. (22.2)

a1 a2 a3 a4 a5 a6 a7 a8 a9

0.28 {0.22 9.99 {0.27 1.12 1.84 0.61 {1.66 0.91
MSE RMSE MAE MAPE
0.0020 0.045 0.035 0.026

power (a9, a7, a5, a3) were considered. As was the
case with previous equations, one constant value (a1)
was considered for all of the equations. Then, a1 to
a9 were calculated with the PSO algorithm, and the
optimization results and MSE values for INPUT1 and
INPUT2 are given in Table 6 as Eqs. (22.1) and (22.2).
As with other previous equations, the error value was
lower in INPUT2. The interesting point here is that the
error value was at its minimum compared with other
equations. Since the shape of Eq. (22) is simple and
standard, it can model the discharge coe�cient (CM )
of a modi�ed triangular side weir coe�cient with an
insigni�cant error. Figure 7(a) shows that this equation
reduces the error to a minimum; however, the �t and

exact lines do not overlap as they do in Eq. (20.2).
A comparison of Figure 5(b) with Figure 7(b) shows
that Eq. (20.2) has more e�cient performance than
Eq. (22.2) for experiment numbers 0 to 40, while
Eq. (22.2) has higher accuracy with respect to the other
experiment numbers. A comparison of Figure 4(b) with
Figure 7(b) shows that both models are too weak to
model experiment numbers 0 to 40; however, Eq. (19.2)
functions better in areas where CM experiences sudden
changes (experiment numbers 100 to 120):

CM =a1 + a2(Var1)a3 + a4(Var2)a5 + a6(Var3)a7

+ a8(Var4)a9 : (22)
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Table 7. AIC amounts for the considered models.

Eq. Nos.
(8) (19.1) (19.2) (20.1) (20.2) (21.1) (21.2) (22.1) (22.2)

SSE 0.732 0.472 0.426 0.642 0.575 0.624 0.573 0.443 0.425
k 9 9 9 10 10 14 14 10 10

AIC {1104 {1192 {1212 {1128 {1150 {1126 {1143 {1202 {1211

Figure 7. (a) Scatter plot of comparing observed CM and the estimated CM by Eqs. (22.1) and (22.2). (b) Comparison
of the observed CM and the estimated CM by Eq. (22.2).

4.5. Akaike Information Criterion (AIC)
By adding parameters to the model constantly, it
may work somewhat better; however, over�tting and
information loss concerning the real pattern may occur.
Therefore, AIC [50-52] represents a trade-o� between
the number of parameters involved in the model and
the increase or decrease of error. AIC is used to select
a model by considering not only the error, but also the
number of parameters used to develop the model. By
assuming that the errors are normally distributed in
the model, AIC equation is obtained as follow:

AIC = n log
�
SSE
n

�
+ 2k; (23)

where n is the number of observations, k is the number
of used parameters used in the model plus one, and
SSE is the Sum of Squared Errors of the model.

The parameters used in this equation for the models
developed in the present study are shown in Table 7.

According to AIC formulation, the model enjoy-
ing a better �t has lower AIC value. Based on Tables 3
and 6, Eq. (22.2) with RMSE of 0.045 performed
somewhat better than the Eq. (19.2) with RMSE of
0.049 did. However, Table 7 shows that the number
of involved parameters of Eq. (22.2) is more than that
of Eq. (19.2)'s parameters. Therefore, Eq. (19.2) with
AIC of {1212 has the best-�t score according to this
criterion.

5. Conclusions

In this research, a PSO model was developed to deter-
mine the discharge coe�cients of modi�ed triangular
side weirs. Two hundred experimental datasets were
used for the PSO model. Four di�erent equation forms
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were used to determine the most accurate form; in each
form, two non-dimensional parameters were used as
inputs to the PSO model. As shown, the second input
series provided more accurate results and included
w=L (weir height/weir length), Fr1=sine(�0) (upstream
Froude number/sine (weir included angle/2)), w=Y1
(weir height/upstream ow depth), and w�sine(�0)=Y1
((weir included angle/2)/upstream ow depth). The
equations based on the PSO algorithm were compared
with a nonlinear regression model, and it was found
that they were more accurate than the regression mod-
els. After comparing four forms of the equations used
in this study, it was determined that the performance
of the power equation is better than those of the other
forms are. It also was determined that a combination
of the PSO algorithm with a power equation could be
used successfully to compute the discharge coe�cients
of modi�ed triangular side weirs.
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