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Abstract. Delays and disruptions reduce the reliability and stability of the rail operations.
Railway tra�c rescheduling includes ways to manage the operations during and after the
occurrence of such disturbances. In this study, we consider the simultaneous presence of
large disruptions (temporary full or partial blockage of tracks) as well as stochastic variation
of operations as a source of disturbance. The occurrence time of blockage and its recovery
time are given. We designed a simulation-based optimization model that incorporates
dynamic dispatch priority rules with the objective of minimizing the total delay time of
trains. We, moreover, designed a variable neighborhood search meta-heuristic scheme for
handling tra�c under the limited capacity close to the blockage. The new plan includes
a set of new departure times, dwell times, and train running times. We evaluated the
proposed model on a set of disruption scenarios covering a large part of the Iranian rail
network. The result indicates that the developed simulation-based optimization approach
has substantial advantages in producing practical solution quickly, when compared to
commercial optimization software. In addition, the solutions have a lower average and
smaller standard deviation than the currently accepted solutions, determined by human
dispatcher or by standard software packages.

© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Railway systems are frequently characterized by high
ow density and mixed tra�c, which makes them
sensitive to various types of disturbances [1]. Railway
rescheduling deals with disturbances that create delays
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of some trains in the rail network. Rail transit systems
seek to schedule trains in order to avoid passenger
dissatisfaction and improve service reliability [2]. The
impact of larger disturbances (termed disruptions) is
more pervasive and can propagate easily in time and
space. In this situation, there is a need to update
and re-schedule train services in a short period. Train
rescheduling problem is a dynamic decision-making
process that involves dispatching decisions. The sim-
plest decisions are based on the planned timetable or-
der, or static priorities (di�erentiating between classes
of train services); however, in general, better decisions
are made based on actual data of the trains, real-time
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information of the disturbance, as well as operational
constraints. Furthermore, the exact time and location
of the disturbances may not be known in advance [3].
These facts bring many di�culties in designing train
dispatching actions or policies.

The present research is motivated by the situation
where the recovery of the train services is of our
concern. In Iranian railway network, the important
reasons for train delays are infrastructure failure, ac-
cident, engine breakdown, and unpredicted weather
condition. Because of the complexity and dynamic
behavior of the train tra�c rescheduling, simulation
modelling has become an e�ective method to assess
the e�ectiveness of train rescheduling strategies. Sim-
ulation models are powerful tools to support resolving
path conicts in train rescheduling problem [4]. The in-
tegrated simulation models and optimization methods
are able to address the complexity of real-time train
rescheduling problems [5]. We argue that the stochastic
factors, pertaining to small variations, as much as
large disruptions, should be instead studied in more
detail. To this end, we propose a simulation modeling
in combination with an optimization procedure, which
solves the train-rescheduling problem under uncertain
operating conditions and in case of facing large disrup-
tions.

Simulation modeling approaches have been used
extensively in transportation applications as a exible
and powerful method to evaluate the robustness and
reliability of the system (see [2,6-14]). However, despite
the fact that the train-rescheduling problem has been
analyzed extensively, a limited research has been di-
rected to the combination of simulation platforms with
advanced search techniques to solve train-rescheduling
problems under uncertainty. By using advanced and
exible simulation systems to control trains, improved
management of the rail transportation will be easy.
Optimization models are also trying to minimize the
cost of delay, �nding solutions to repair and restore
the disrupted scenarios and improve tra�c ow on
congested bottlenecks in the rail networks. A solution
has to respect railway operational rules and capacity
constraints, partial or full blockage during the disrup-
tion, and minimum headway constraints. The objective
is to minimize the total average delay time of trains at
rail stations. The main contributions of this study lie,
therefore, in the subject of microscopic disruption man-
agement under uncertain conditions. First, we develop
a exible stochastic simulation model, which we use
for generating disposition schedules following principles
acceptable to the local dispatchers (priorities) in a
very short time. Secondly, a dynamic priority rule
is proposed to accelerate the performance in terms of
speed and convergence of the search algorithm. Third,
a two-stage optimization method is proposed based
on meta-heuristic search, which further minimizes the

delays, with particular focus on the disrupted areas.
We also show that the combination of the dynamic
priority rule with the meta-heuristic gives particularly
good results.

The remainder of the paper is organized as fol-
lows. Section 2 presents a review of models and
approaches to railway tra�c rescheduling. In Section 3,
the problem is described in detail. Afterward, the
details of the methodology are presented in Section 4.
The framework of the simulation method is discussed in
Sections 5. We describe a real case in Section 6 to set
up a comprehensive experimental study in Section 7.
Conclusive remarks will close the paper in Section 8.

2. Literature review

The train rescheduling problem is known to be strongly
NP-hard [15]. The management of train timetable is a
complex procedure subject to the capacity and resource
constraints [16]. This problem belongs to a wide-
range class of combinatorial optimization models and
methods being called railway disruption management.
Railway disruption management mainly refers to the
models and approaches used in the railway real-time
tra�c management [17]. A variety of approaches
have been proposed, ranging from mathematical opti-
mization (mixed-integer linear programs) to simulation
techniques, heuristic and meta-heuristic methods. All
those methods have shown their value in practice
to evaluate the stability of the disturbance recovery
strategies, or to generate near-to-optimal solutions in
a reasonable computation time. Coverage surveys of
railway disturbance management practice and theory
can be found in [18-21]. In what follows, we discuss the
most related contributions in this area of the research,
according to the general structure proposed in this
latter survey paper.

Cheng [22] proposed a new integrated approach of
a knowledge-based system with an operation research
technique to solve train rescheduling problems. The
critical path method was used to �nd near-to-optimum
solutions. In order to reach a global optimum, a
feedback control function was designed to manage
the delay and resolve the resource conicts. The
problem of controlling and coordinating rail tra�c
in a whole railway network is too hard to tackle
in a reasonable time. Higgins et al. [23] applied a
local search heuristic with an improved neighborhood
structure, genetic algorithms, tabu search and two
hybrid algorithms for train-scheduling problem. The
computational result indicates that both hybrid algo-
rithms provide better results compared with the other
heuristics. A decision support system called ROMA
was designed and implemented by D'Ariano [24] based
on Alternative Graph (AG) techniques to cope with
real-time train rescheduling problem with multiple
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delays more e�ciently. The aim was to improve
punctuality through better utilization of the railway
infrastructure. The applicability of the ROMA was
veri�ed through extensive computational tests on in-
stances of the Dutch railways. ROMA system was
�rst implemented to optimize railway tra�c within a
single dispatching area. The system was extended by
Corman et al. [25] to present an innovative distributed
approach to manage train movements more e�ectively
in a multi-area dispatching setting. The performance
of the distributed approach was compared with the
existing models in terms of computation time and
reduction of total delay.

Corman et al. [26] proposed a novel approach
to deal with multiple train classes in train reschedul-
ing problem. An e�cient scheduling procedure was
adopted in order to generate feasible train timeta-
bles according to a set of priority classes. In each
step, an advanced branch and bound algorithm was
used to solve the sub-problems optimality. D�undar
and S�ahin [27] designed a decision support system
using Genetic Algorithms (GAs) and Arti�cial Neu-
ral Networks (ANNs) for real-time conict resolution
problem. The methodology was tested with actual
data extracted from train operations in Turkish State
Railways. Hassannayebi and Kiaynfar [28] proposed
three meta-heuristic algorithms based on Greedy Ran-
domized Adaptive Search Procedure (GRASP) for
�nding a near-optimal train timetable in double-track
railway lines. The output results show the e�ectiveness
of the proposed meta-heuristic algorithm in solving
large-sized instances of the train-timetabling problem.
Dollevoet et al. [29] proposed an optimization method
that solves a macroscopic delay management problem
as well as a microscopic train scheduling model. The
headway constraints were captured in the model with
full details of the railway infrastructure, especially
within the stations. The resulting disposition timetable
was evaluated thoroughly for a bottleneck segment of
the rail network. Some studies integrate the concept
of priorities, easily understood and accepted by practi-
tioners. Hassannayebi and Zegordi [30] proposed vari-
able and adaptive local search algorithms to minimize
the total and maximum waiting time of the passengers
for urban rail transit systems. Narayanaswami and
Rangaraj [3] designed a multi-agent system model with
a learning mechanism for real-time train rescheduling
in a bi-directional railway tra�c on a single-track route.
The developed framework employs a dynamic scheme
of priority assignment procedure that allows for dy-
namically dispatching the disturbed trains in real-time
and constructs a deadlock-free disposition schedule.
Hassannayebi and Zegordi [31] proposed linear and
nonlinear mathematical models for train scheduling
problem. In order to tackle large-sized instances of
the problem, variable neighborhood search approaches

were designed. The e�ciency of the meta-heuristic
algorithms was veri�ed through its application to the
Tehran metropolitan network.

The topic of railway rescheduling has attracted at-
tention mostly concerning small delays, while the study
of large disruptions and inclusion of many stochas-
tic factors have been limited so far. The dynamic
changes over time, in those situations, are quite strong;
there needs to be an inherently dynamic environment,
proposing adjustments such as rescheduling and par-
tial reordering during operations, which is currently
to be found in simulation environments. Therefore,
despite the interesting scienti�c results reached by
optimization models, there is a need to develop exible
simulation systems able to evaluate di�erent partial
reordering possibilities. Furthermore, the trade-o� be-
tween delivered schedule quality and the rescheduling
process time is of critical importance in the practical
implementation of a train-rescheduling tool. On the
other hand, even though several simulation models
have been developed for rail operation management
formerly, an acceptable solution with regard to inclu-
sion of optimized asynchronous choices has not been
attained in this aspect. To the best of our knowledge,
a direct application of the exible simulation-based
optimization approaches to train rescheduling problem
has not been found in the literature; if so, it has not
been addressed to the same extent that accounted in
the present study.

With particular regards to uncertain e�ects of
small delays and large disruptions, we merge the
descriptive power of stochastic simulations with the
easily-accepted priority-based scheduling for disruption
management. We present an advanced discrete-event
object-oriented simulation model, implemented on a
commercial event-driven simulation package. In order
to optimize the performance measures, a variable
neighborhood search technique is proposed to improve
solutions under the strong capacity limitations due
to the disruption. The developed simulation-based
optimization approach has the exibility of adjusting
train operations under time and resource constraints
in an e�cient way.

3. Problem statement and formulation

This section provides the problem statement and the
notations used for the train-rescheduling model. The
main assumptions and characteristics of the problem
are given in Table 1. It is assumed that an initial
timetable for trains on the network or by the sim-
ulation model presented in this study is given. At
the starting moment of the disruption, the trains are
in a position, considered known, and set as data
inputs for the simulation model. The considered rail
infrastructure is illustrated in Figure 1. It includes a
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Table 1. Assumptions and characteristics of the problem.

Assumptions Description

Rail infrastructure A corridor with single or double-track segments
Disruption Temporary partial or full blockage

Disturbance management strategies The sequence of trains at the disruption site and elsewhere is changed
Overtaking is permitted at stations with available capacity

Train types Passenger railway
Priority of trains Di�erent and variable over time
Travel time function per train Probabilistic
Rail capacity at stations Limited (taking into account the number of tracks and platforms)
Signaling systems Absolute �xed block signaling system between stations

Figure 1. The considered rail infrastructure.

set of stations (k = 1; 2; � � � ;m) and a set of operating
trains (i = 1; 2; � � � ; n). The segments between each
pair of stations are single/double-track block sections.
We consider absolute �xed block operations between
stations by which block sections begin and end only at
stations. Only one train is allowed on a track between
two stations. An overtaking operation is allowed only
at stations.

During the normal operations, a train can move
from the current station if the successor block section
is available and there is at least one free track segment
in the next station (absolute �xed block operations
between stations). When a disruption occurs in a
block section, the train tra�c is heavily perturbed.
At that moment, the main goal is to provide a new
disposition schedule for all operating trains at the end
of the scheduling horizon, so that the total delay cost is
minimized. The model proposed in this study produces
new disposition schedule from a combination of the
following actions (in the vicinity of the disruption, or
elsewhere): reordering (changing the sequence of trains
on the block sections), adjusting the departure times,
and changing the stop times at stations.

A main constraint is that at stations, a train is not
permitted to depart, in any case, before its scheduled
departure time. A conict happens when at least two
trains request to use the same block section at the same
time. In this case, a conict resolution procedure is
required to decide on the ordering of the trains. This
procedure aims locally (or globally) to decrease the
total delay of the trains. The total delay is de�ned

as the di�erence between the actual train arrival time
and the scheduled time at a set of prede�ned stations in
the network. Total delay of a train consists of two parts
termed as initial delay and secondary delay. The initial
delay is triggered by disruptions and longer travelling
time and cannot be recovered by rescheduling model.
The secondary delay is the extra delay needed to resolve
the potential conicts during a planning time horizon.
In this study, the train-rescheduling model considers
dynamic priority of trains during disturbed operations
in order to minimize the total delay of the train
services. The next section provides the assumptions
made on the train operations during both normal
and degraded modes. Before the disturbance occurs
(normal condition), the railway capacity utilization
is at the regular level. In the �rst state (normal-
to-disrupted situation), the utilization necessities to
be reduced to achieve a utilization level that can be
reserved during the disturbance. During the second
transition state (disrupted situation), the disruption
recovery actions should start. In this state, the new
timetable is functioned and the utilization level is
steady. The third state (disrupted-to-normal) changes
the utilization level to the normal condition. In our
research, the focus is on the second and third transition
states.

3.1. Train operation modeling during normal
operation

This section provides the assumptions made on the
train operation during the simulation experiments.
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The stochastic parameters here are train-running times
on block segments. We consider a stochastic simulation
model to account for the inherent and relevant proba-
bility distribution of the running time. In this regard,
a stochastic distribution of train running times is
estimated and used instead of the commonly considered
deterministic running time. The normal distribution,
thus, proved to be a good model for the large array
of phenomena, which can be found in real-life opera-
tions [32]. The probabilistic train-running time distri-
butions are �tted at a given level of signi�cance (95%).
From the statistical analysis, we conclude a good �t
of the experimental data with the normal distribution.
All the data sets show that the running times between
consecutive stations �t the normal distribution at the
level of signi�cance of 0.05 according to Kolmogorov-
Smirnov (KS) statistical tests. Thus, the hypothesis of
normal distribution is not rejected at the desired level
of signi�cance. However, in order to make the running
time distribution more practical, we truncated the
travel time function using the maximum train speed.

In order to formulate the running time function,
we consider distances between any consecutive stations
k and k+1(Lk). Let � and � be the mean and standard
deviation of the running time distribution. We assume
that the running time of train i between consecutive
stations k and k + 1(tik) follows a normal distribution
with average � = Lk

V ave
i

and variance �2 (minutes2),
where V ave

i and V max
i are de�ned as average and max-

imum speeds of train i, respectively. The variance can
be determined through sampling methods. It should be
noted that the running times between stations cannot
be less than the minimum technically feasible. Thus,
to ensure that all trains cannot exceed their maximum
technically speed, the minimum running time ( Lk

V max
i

)
is de�ned in Eq. (1). A similar running time function
was proposed by Nie and Hansen [33]:

tik=max
�

Normal
�
Lk
V ave
i

; �2
�
;
Lk
V max
i

�
8 i; k:

(1)

3.2. Train operations during disruptions
An infrastructure failure occurring in the route is
termed disruption, or degraded mode. Without loss
of generality, consider a single-track segment of a
railroad line between two major intersections as shown
in Figure 2. The dispatching rules on this single-
track segment manage the movement of trains for both

directions. Di�erent dispatching policies will cause
di�erent amounts of delays for trains. In this research,
the length of the train is not considered. The e�ect
of train length on train delay would be insigni�cant
if the distance of the track segment is much lengthier
than the length of the train. It is assumed that the
disruption occurs at one block section and degrades
the tra�c in partial or in full. According to railway
safety rules, no more than one train at a time is
permitted to dwell in any block section (referring to
the conict-free situation). In this article, we focus
on two frequent degraded modes in railway systems.
In the �rst degraded mode (full blockage), the normal
operation of a single-track block section is disrupted
due to an incident between two neighboring stations
as illustrated in Figure 2. In this �gure, the tra�c
ow under normal condition and the location of service
disturbance are depicted. As can be seen, there is no
possibility of passing during the disturbance. However,
during the normal condition, the tra�c between two
consecutive stations is bi-directional. After recovery
of the disturbance, trains start normal operation on
the single-track segment. According to the accepted
operational rules in Iran, the allowed control actions in
this case consist of retiming or re-routing the incoming
trains toward the disturbance location, while there is no
possibility for cancelling or short-turning trains. Thus,
in the �rst degraded mode, the main decision variables
are which train should be reordered, or delayed at what
locations.

The second degraded mode is a blockage of one
track out of a double-track block segment (Figure 3). In
this situation, trains moving toward the disrupted area
can bypass the blockage and after traversing a number
of switch points, they go back to the original route. The
reordering policy (as illustrated in Figure 3) enables the
waiting train to switch to the bypass direction track.
Crossover tracks allow trains to be transferred from one
track to another, enabling trains to bypass the incident
location. During the disruption, the system e�ectively
becomes a single-track between two consecutive switch
points, and the trains requesting to pass through this
part of route wait at stations until the single line is
suitable for their trips. After the blocked track is
repaired (which might take a long time), the system
again becomes a two-parallel-track line, and tra�c ow
returns to normal. The conict resolution of train
on the single-track segment involves sequencing the

Figure 2. The line blockage in the degraded mode #1 .
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Figure 3. Train services on the single-track segment during degraded mode #2.

inbound and outbound trains. Thus, the optimization
model aims to �nd the best crossing order of the
waiting trains and the related times of operations. We
focus particularly on �nding the order of crossing the
disrupted area, as we experimentally found out that it
has a major inuence. To this end, we de�ne meta-
heuristic procedures, explained in the remainder of the
paper.

4. An object-oriented event-driven simulation
framework for train rescheduling

Discrete event simulation systems are extensively used
for modeling the behavior of a complex dynamic system
within a discrete time framework based on an event list.
An event indicates the occurrence of a change in the
status of the rail system at a speci�c time. Di�erent
modeling approaches, e.g. process-oriented [9,34] and
object-oriented [35,36], can be used for railway sys-

tems. The object-oriented simulation model provides
a exible build-in framework that supports the design
process of railway network layout. In the present
study, we use Enterprise Dynamics (ED) simulation
software as a simulation platform due to its capability
of designing customized rail objects and ability to
implement optimization algorithms. Enterprise Dy-
namics is a leading object-oriented simulation platform
to design and implement simulation models [37]. It has
also a built-in programming language called 4DScript,
which can be used for advanced modeling purposes.
Another application of the 4DScript is the capability
of programming, which allows us to include the meta-
heuristic optimization approaches right into the simu-
lation system [38].

The main procedure of the simulation optimiza-
tion of the train dispatching is presented in Table 2.
When a train enters a waiting queue, a dispatching
algorithm is applied to check the operational and safety

Table 2. The main procedure of the simulation-optimization.

Step 1: Initialize necessary simulation parameters
(Con�dence level 1� �, number of replications)
Set simulation clock (t = 0)
Initialize system state
Prepare event list (ascending order of time)

Step 2: Perform several simulation runs using dynamic dispatching rules
Step 3: Use a look-ahead procedure to �nd out a new event (either stop at the

current station or move to the next station)
Step 4: Update the priority of the train according to the accumulated delay when

it arrives at a station
Step 5: Aggregate simulation results and store them in the database
while stopping criteria is not met do

Load aggregated parameters into simulation system
Solve the optimization model using VNS
Write new decision variables corresponded to the re-ordering and adjusted
priority to the database
Load new decision rules into simulation model
Perform several simulation runs to evaluate the solution
Aggregate simulation results and store them in the database

end-while
Load the best found solutions
Generate output reports
� New rescheduled train graphs (time-station diagrams)
� Estimate the expected value and the variance of the train delays

at destinations.
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constraints. If all conditions are satis�ed, then the
train is allowed to move to the successor block section
according to its route. Else, an event is created to
execute dispatching algorithm and the involved train
waits in the current position until all conditions are
met. The conditions are the available free track on the
next segment and a free platform for the train that has
a stopping plan at the next station.

5. Simulation-based optimization approach

The proposed two-stage simulation-based optimization
framework for train rescheduling problem is illustrated
in Figure 4. As can be seen, it follows a kind
of black-box approach to tackle large and complex
simulation-based optimization problems. We consider
solutions based on either the static timetable order
or priority based. Furthermore, the priorities can
be static or dynamic. The latter is generally more
exible and can deliver better solutions with regard
to delays. Concerning dynamic priorities, we restrict
ourselves to dispatching algorithms that calculate and
assign priorities based on time-based parameters. Our
procedure works in two stages. In the �rst stage,
the initial random solutions are generated based on
heuristic dispatching rules based on dynamic priority.
At this point, the goal is to reach a relatively good new
disposition schedule in order to handle the disrupted
tra�c conditions on the route in a short period of time.
In the second stage ,the initial generated schedules are
evaluated by their total average delays (considered a
reliability index) via simulations' experiments. The
best solution from this stage is regarded as a starting
point for further optimization. A meta-heuristic algo-
rithm (variable neighborhood search) is used in order to
improve the solution to the train rescheduling problem
algorithm in terms of mean and variance of delay
times. During stage 1, due to time constraints, the
number of simulation replication must be determined
carefully for solving train-rescheduling problem. The

updated values of the decision variables refer to control
actions such as retiming and reordering of train at rail
segments. At each iterative step of the meta-heuristic
optimization algorithm, a set of new departure times is
decided, and a new tentative schedule is tested by the
simulation model. Given a train scheduling solution,
the simulation model obtains statistical bounds on the
objective value, and the optimization model iteratively
improves the expected value until the time limit is
reached. At the end of each simulation run, the current
solution is evaluated based on the quality and reliability
criteria. The process continues to achieve a desired
response plan with respect to time constraint. The
objective function is de�ned as the total average delay
of train services at all visiting stations.

5.1. Dynamic priority rule-based heuristic
This sub-section gives the explanation regarding how
to resolve the conicts and generate good-quality initial
rescheduled plans rapidly by means of dynamic priority
scheduling. For this purpose, heuristic dispatching
rules are proposed that change the priorities of the
operating trains dynamically in order to reduce the sec-
ondary delays. As we observe, train dispatchers in dif-
ferent railway companies mostly perform a preference-
based process of conict detection and resolution. The
traditional dispatching rules do not take into account
the updated information of the trains and may fail to
�nd appropriate solutions. Consequently, it is essential
to recognize the decision-making process in order to
develop innovative conict resolution models. The
application of the dynamic priority rule-based model
presented in this study seems to be an e�ective method
to meet this objective. In what follows, we explain
our method of train conict resolution. As mentioned
earlier, an initial static priority class is assigned to each
train before the implementation of the rescheduling
procedure. In the simulation experiments, the static
priority class is then updated in order to further adjust
the importance and urgency of the train service to-

Figure 4. The proposed two-stage simulation-based optimization framework for train rescheduling problem.
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Table 3. Notations used in dynamic priority rule-based heuristic method.

Symbol De�nition
pi The initial priority of train i
fi The accumulated delay of train i
ai The allowed (maximum) delay of train i
�i The surplus delay regarding the maximum allowed delay
U The utility function
a0i; a1i The start and end break points of the utility function
L The total number of train conicts in the schedule

wards the objective value. Our dynamic priority-based
train rescheduling is a type of scheduling algorithm
in which the train priorities are computed during the
execution of the simulation model. The main goal
of dynamic scheduling is to adjust to dynamically
dispatching order and design a good quality solution
in an adaptive approach. The proposed framework
is an iterative probabilistic procedure for determining
the dispatching priorities. The dynamic priority of a
speci�c train is calculated as a function of the initial
priority class, the actual (accumulated) delay, and the
allowed (maximum) delay time. Notations of dynamic
priority rule-based heuristic are summarized in Table 3.
Every time a conict happens, one train should be
delayed to resolve the conict. The resolving of the
conicts is mainly based on train priorities. The
proposed dynamic priority rule preserves the overall
delay of the trains and resolves the train conicts in a
short period.

The initial values of the train priorities are based
on the train classes. The adjusted priorities impose
additional challenges on the optimization problem so
that the priority of a particular train may change
several times during a single simulation run. In the
�rst step of the heuristic method, a new conict-free
disposition schedule is constructed through a conict
resolution model by the adjusted priorities. An initial
train schedule is represented by a set of potential
conicts (C). Cj represents the jth conict as it occurs
in time. Train conicts are resolved according to the
relative priority ratio chronologically. The adjusted
priorities are calculated according to the calculated
values of accumulative delay of trains. A piecewise
linear utility function (U) is used to determine the
adjusted train priority in terms of the deviation from
the allowed delay. The train priorities update whenever
they depart from or arrive at stations according to
Eq. (3). U(x) consists of K linear pieces joined
together at breakpoints 0 � di � 1. The priority
of the trains increases when the accumulated delay
exceeds the allowed delay. Using the initial set of train
weights or initial priority, it is possible to calculate
dynamic priority, pi, of any train, i; a conict is
resolved according to their value with a higher value
resulting in a higher priority to reserve the path. In

the second step, the objective function of the generated
solution is measured by the reliability criteria. Once
the limit is reached, the heuristic algorithm terminates
and provides the best solution found by the heuristic
method. We consider a time limit of 10 minutes to
execute the algorithms:

C = fC1; C2; � � � ; CLg; (2)

pi pi+U(maxffi�ai; 0g)=pi+U(maxf�i; 0g);
(3)

U(x) = a0k + a1kx; (4)

dk�1 � x � dk; k = 1; 2; � � � ;K: (5)

5.2. Variable neighborhood search algorithm
In this section, we explain the proposed variable
neighborhood search algorithm. This is speci�cally
introduced to deal with the strong shortage of capacity
near the blockage, which asks for more sophisticated
optimization approaches. The Variable Neighborhood
Search implemented here �xes the full order for trains
going on the disrupted area, possibly overriding (dy-
namic) priorities. In the improvement stage of the
proposed two-stage simulation-based optimization ap-
proach, a local search algorithm is required to perform
a sequence of local moves in neighborhood N(x) of
initial solution x to improve the performance value
until a local optimum solution (x0) is obtained. The
basic function of the local search algorithm can be im-
proved in order to avoid trapping in local optima. One
of the most practical extensions of the local search is
Variable Neighborhood Search (VNS). In this method,
the systematic changes in neighborhood structure are
performed to escape from the local optima. VNS
method was originally introduced by Mladenovi�c and
Hansen [39]; after that, it received increasing attention
both in theoretic extension and large-scale optimization
problems [40]. VNS has been applied to a wide-
range of combinatorial optimization problems including
capacitated vehicle routing problems [41].

The notations are given in Table 4 to better
explain the method. Moreover, the pseudo code
of the proposed variable neighborhood (a Variable
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Table 4. Notations of the proposed VND method.

Symbol De�nition

k The counter of the neighborhood structures (k = 1; 2; � � � ; kmax)
kmax The total number of neighborhood structures
x The candidate solution for local search
xo The initial solution
xbest The best incumbent solution
Nk(x) The set of solutions in the kth neighborhood structures
F (x) The �tness function
Rp The number of simulation replications to evaluate the objective function
i The index of algorithm iteration
Itermax The maximum algorithm iterations

Table 5. Pseudo code of the proposed variable
neighborhood search method for train rescheduling.

1 Input (kmax; xo; Itermax; Rp)
2 x := xo;
3 i := 1;
4 k := 1;
5 While i � Itermax do
6 While k <= kmax do
7 x0 := BestImprovement (x; k);
8 F (x0) := simulation (Rp; x0);
9 i := i+ 1;
10 If F (x0) < F (x) then
11 xbest := x0;
12 k := 1;
13 Else
14 k := k + 1;
15 EndWhile
16 k := 1;
17 EndWhile
18 Return (xbest);
19 End.

Neighborhood Descent (VND)) method, in the termi-
nology of Mladenovi�c and Hansen [39], is provided in
Table 5. In our implementation, the search method
changes the neighborhoods in a deterministic way. The
VNS algorithm starts with the best-found solutions
from the �rst stage optimization. VNS algorithms
start with iteratively changing the properties of an
incumbent solution. A neighborhood search heuristic is
performed by picking initial solution, xo, determining
a search direction of descent from this solution within
a neighborhood, N(x), and continuing to the minimum
of F (x) within neighborhood space, N(x). In Step 7,
neighborhood N(x) of x is explored completely. The
highest direction of descent is related to be the best

Table 6. Pseudo code of best improvement (highest
descent) heuristic.

Function BestImprovement (x)
1 repeat
2 x0  x
3 x argminfF (y)g; y 2 N(x)
4 until (F (x) � F (x0))
5 return x

improvement that is summarized in Table 6. The
process of a move from a basic solution to a possibly
better one is guided by the evaluation of the �tness
function value. Since the problem considered in this
study has a stochastic nature, each potential solution
of the problem is evaluated using the discrete-event
simulation model. In Step 8, the simulation function is
employed to evaluate each solution like x. The result is
the average �tness value of the solution that is stored
in F (x).

In what follows, the neighborhood structures
proposed in this paper are described in detail. A
move alters the current solution to the neighboring
one by shifting the relative order of some trains. We
propose a combined remove-insertion with a variable
step-size mechanism to alter the order of trains. In
order to explain better the way that the search method
performs, we provide an illustrative example. In this
example, six trains approach the disrupted location.
We report them along a time axis (horizontal) and
space axis (vertical), with two stations; trains can
overtake each other only at stations. Thus, each train
(a � f) is a line crossing the diagram from top to
bottom, or vice versa. The blockage has occurred on
a single-track segment between stations k and k+ 1 as
illustrated with a shaded rectangular block in time and
space. Let fa; b; c; d; e; fg be the initial order of train
incoming to the disturbance location. Each of them
has an origin and an initial priority (P0). If there is
no change in the train orders, then the resulting time-
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Figure 5. The disposition schedule based on the static train order.

Figure 6. The disposition schedule associated to one neighbor with k = 1 (train b).

Figure 7. The disposition schedule associated to one neighbor with k = 3 (train a).

station graph is illustrated in Figure 5. In this graph,
the train departs with the same order and follows the
First-Come, First-Serve (FCFS) dispatching rule.

Now, consider the case that train order changes by
insertion operators. The kth neighborhood structure
is de�ned as the neighbors described by k shifts
performed in the train orders. For example, the �rst
neighborhood structure only performs one shift in the
sequence. In this case, a single train is selected ran-
domly, removed from the sequence, and inserted either
immediately before or immediately after its original
position. For example, an adjusted sequence using one-
step move operator is fa; c; b; d; e; fg where train b is
selected and inserted after train c (Figure 6). Another
example is to perform a three-step (k = 3) move.
Assume that train a is removed from the sequence
and inserted after train d. The adjusted train order
is fb; c; d; a; e; fg as illustrated in Figure 7. As can be
seen, train a faces with the highest delay after the order
adjustment.

In the cases presented in Figures 5 to 7, each sta-
tion (between segments k and k+1) hosts three trains.

In longer blockage periods, station capacities may be
insu�cient to host all the visiting trains. We explain
how simulation model deals with these occasions. In
case of higher tra�c volume, the trains must wait at
the former stations to be ready to dispatch when the
next station has a free track (or a free platform in case
of passenger load/unloading). The main objective of
applying the above-mentioned moves is the attempt to
recover the train schedule in terms of reducing total
average delay time. In this regard, the validity of the
proposed solution method is demonstrated in the next
section.

6. Test case description: Tehran-Razi corridor

6.1. Infrastructure
Tehran-Razi corridor is considered as a case study.
This corridor is one of the most congested ones in Iran.
The infrastructure considered is a main part of the
railway network in the west of the Iran. As presented
in Figure 8, the network is composed of three major
stations with dense tra�c: Tehran, Tabriz, and Razi.
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Figure 8. The considered Iranian railway network (Tehran-Tabriz-Razi corridor).

Table 7. The priority classes of static priority set S.

Priority
class
(wi)

Train type
description

Number
of trains

1 Local 12
2 Intercity 16
3 Express 18

Other intermediate stations in the network are also
considered in our simulation model. The line between
Tehran and Razi (eastbound route) serves the two main
tra�c directions to Tehran (westbound route). The
network comprises a combination of single and double
tracks of di�erent length, with a maximum distance
between two end stations of about 930 km. Tehran-
Razi corridor consists of 62 stations, 57 single-track
blocks, and 4 double-track block sections. The total
number of daily operating trains is 46. Overall, there
are more than 202 track segment and 90 platforms
(i.e., track segments and platforms are actually used
at stations). The networks operate based on absolute
block operations, i.e. only one train is allowed at all
times in the segment between two stations for each
track. The prede�ned classes of the static priority set
are given in Table 7.

6.2. Disruptions scenarios
Due to the unknown nature of the disruptions, di�erent
possibilities for the start time and location of the
disturbance are probable. We consider the most
e�ective disruption scenarios, which start before the
most congested period of the day, in the bottlenecks
with the highest tra�c. Formally, we identi�ed those
locations and times by computing a Congestion Factor

(CF) as the number of train conicts in a schedule
during a speci�ed interval. Because of the high den-
sity of tra�c through bottleneck segments, the bu�er
times added in the initial timetables are de�cient to
absorb train delays caused by unpredicted disruptions.
According to the above explanation, the identi�ed test
cases are summarized in Table 8. The disruption
scenarios are characterized by the location, type of the
degraded mode, the expected duration, and hours of
the blockage.

7. Computational results

7.1. Performance
This section provides the computational results on the
simulation model and the meta-heuristic technique pro-
posed in this study. The simulation runs are executed
via Enterprise Dynamics 8.2.5. All the experiments are
performed on an Intel(R) Core2 Due personal computer
with 3.3 GHz and 4 GB of RAM.

We report the performance of the proposed
VNS method compared with those obtained from
the simulation-optimization methods embedded in Op-
tQuest package. OptQuest is a well-known registered
optimization solution of OptTek Systems, Inc. (avail-
able in www.opttek.com). OptQuest works iteratively
using a black-box approach as a general-purpose opti-
mizer that performs a series of simulation experiments
to �nd optimal or near-optimal solutions. OptQuest
utilizes a mix of meta-heuristics algorithms, including
Scatter Search (SS), Genetic Algorithm (GA), Tabu
Search (TS), and neural network learning algorithms,
to �nd the global optimum [42]. In the present study,
OptQuest is employed which takes advantage of the
decision-support features of the Enterprise Dynamics
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Table 8. The disruption scenarios and the associated speci�cations.

Disruption
scenario #

Location Degraded mode
Expected
duration
(hour)

Blockage
interval

1 Qazvin-Kohandezh Full blockage 1 7:00-8:00
2 Qazvin-Kohandezh Full blockage 2 7:00-9:00
3 Qazvin-Kohandezh Full blockage 3 7:00-10:00
4 Zanjan-Khorram pey Full blockage 1 2:00-3:00
5 Zanjan-Khorram pey Full blockage 2 2:00-4:00
6 Zanjan-Khorram pey Full blockage 3 2:00-5:00
7 Karaj-Rabet One out of two tracks 2 7:00-9:00
8 Karaj-Rabet-Aprin One out of two tracks 3 6:00-9:00
9 Abyek-Ziaran Full blockage 1 20:00-21:00
10 Abyek-Ziaran Full blockage 2 20:00-22:00

Table 9. Result of the proposed two-stage simulation-based optimization method versus FCFS and OptQuest solver.

Disruption
scenario

Total average delay (hours) Total traveling time (hours)

FCFS�
VNS with
dynamic
priority

OptQuest FCFS
VNS with
dynamic
priority

OptQuest

1 43.01 27.16 32.72 391.43 388.71 393.91
2 54.32 38.83 42.69 398.19 392.95 397.23
3 65.83 42.34 47.51 410.58 394.70 398.02
4 36.38 29.86 33.62 370.42 365.52 370.46
5 54.73 45.02 47.09 353.62 348.04 358.90
6 76.17 62.30 71.77 382.66 380.17 383.47
7 37.05 24.33 29.02 394.98 385.46 391.06
8 44.00 23.75 32.55 396.45 389.13 386.24
9 39.23 28.31 31.76 391.61 390.99 394.12
10 66.54 44.41 49.82 381.83 394.06 399.77

Average 51.73 36.63 41.86 387.18 382.97 387.32

simulation software with the use of global optimization
algorithms. The experimental results of the proposed
two-stage simulation-based optimization method and
OptQuest solver are given in Table 9. In this table,
two performance metrics are calculated:

1. Total average travelling time;

2. Total average delay.

The cumulative delay time is de�ned as the sum of
total delays at all relevant locations. It measures for
all train the positive arrival time with the due date
employed to measure the train delay with respect to
the time at which the operation is planned, i.e. the
arrival of a train at a planned stop or its planned
exit from a relevant point. The best-found solutions
with 10 minutes of execution are reported in this table.
As can be seen in this graph, disruption scenario #6

has the most disruptive impact on the performance
measure compared with the other disruption scenarios.
To compare the computation e�ciencies of the VNS
and OptQuest, we recorded the computation time of
the two methods when solving the train-rescheduling
problem. Both the solution quality and computational
performance are compared to the OptQuest. According
to the data in Table 9, the total average delay time of
all trains at all stops is reduced by almost 12.48% and
29.18% compared with the FCFS and the OptQuest,
respectively. Furthermore, the total average travelling
time of all trains is decreased by nearly 1.12% and
1.09% compared with FCFS and OptQuest, corre-
spondingly. It should be noted that the total travelling
time averaged over all test instances is nearly similar
for VNS and OptQuest as well as FCFS.

As mentioned earlier, a two-stage simulation-
based optimization method was proposed that incor-
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Table 10. Computational results of two-stage VNS versus single-stage and static priority-driven scheduling methods.

Disruption
Scenario

Single-stage:
VNS+planned
timetable order

Two-stage:
VNS+orders updated

on static priority

Two-stage:
VNS with orders updated

by dynamic priority
1 29.71 30.98 27.53
2 44.90 43.82 39.32
3 45.12 48.66 42.72
4 32.84 33.29 30.32
5 47.31 45.48 45.20
6 67.38 69.01 63.05
7 26.35 25.58 24.40
8 28.98 26.39 24.17
9 29.34 31.18 28.73
10 47.75 46.36 44.85

porates a dynamic priority rule-based algorithm to �nd
the initial solutions. In what follows, we analyze the
performance of the VNS without heuristic method, i.e.
considering as initial solution the train order speci�ed
o�ine in the original timetable. This approach is
being called single-stage VNS throughout the article.
Furthermore, it is worth showing the signi�cance of
our contribution by testing the performance of two-
stage VNS, i.e. with a starting solution optimized. In
this case, we refer to a static priority-driven scheduling
method against the proposed dynamic priority schedul-
ing approach. The computational results of two-stage
VNS versus single-stage VNS and a static priority-
driven scheduling method are given in Table 10. This
table provides the objective value (the expected value
of the total average delay in hours) of the best-found so-
lutions obtained for each algorithm within 10 minutes.
The outcomes indicate that the average improvement
gained by the dynamic priority method is about 7.6%
compared with the single-stage VNS and the two-stage
VNS with static priority. As can be seen, the two-
stage VNS outperforms the single-stage VNS and static
priority-driven scheduling methods in all disruption
scenarios. This �nding veri�es the applicability and
improvement of the dynamic scheduling method over
the single-stage VNS and static priority-driven train
rescheduling.

7.2. Convergence analysis
In case of an unexpected disruption, it is vital that
dispatchers speedily provide a good solution in order to
reduce the annoyance for the travelers. Thus, a faster
convergence rate results in a better and more realistic
solution to the real-time train-rescheduling problem.
We provide the plot of solution quality against time,
which accounts for the convergence analysis of the
proposed as well as benchmark algorithms. The search
pro�les of the VNS and OptQuest, which are both

Figure 9. The search pro�les of the two-stage VNS,
single-stage VNS, and OptQuest (scenario #6).

iterative procedures, are illustrated in Figure 9. The
graph shows the best objective value over search time
for scenario No. 6. We remark that the computation
time is analogous to considering the iterations, as each
simulation replication takes a nearly constant time.
The computation result of the proposed VNS plus
heuristic method (dynamic priority) illustrates that it
could �nd better solutions with improved computa-
tional e�ciency compared with OptQuest. The VNS
plus heuristic method (dynamic priority) converges
faster than the pure VNS as well as the algorithms
of OptQuest to �nd the solution of train rescheduling
problem. It can be seen that the proposed two-stage
simulation-based optimization method is superior in
terms of solution quality and convergence performance.

7.3. Statistical analysis
This section provides a reliability-oriented evaluation
of the generated solutions. As mentioned earlier,
the designed system can stochastically evaluate train
schedules by means of simulation. It is important to
draw attention to the fact that while train-rescheduling
strategies will aim at optimizing e�ciency, the impact
of stochastic variables during a rescheduling procedure
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Table 11. Statistical analysis of the best-found solution by VNS under di�erent disruption scenarios.

Disruption
scenario #

Total average
delay time

(hour)

Standard
deviation

(hour)

LBa

(95%)
UBb

(95%)

Minimum
value
(hour)

Maximum
value
(hour)

1 27.53 1.14 26.53 28.53 24.09 30.21
2 39.32 1.81 37.73 40.91 35.93 44.51
3 42.72 0.57 42.22 43.22 37.83 45.31
4 30.32 1.41 29.08 31.56 25.51 33.08
5 45.2 0.69 44.60 45.80 44.55 50.12
6 63.05 0.59 62.53 63.57 58.89 67.66
7 24.4 2.83 21.91 26.89 18.35 29.34
8 24.17 0.14 24.05 24.29 20.87 26.91
9 28.73 1.18 27.69 29.77 23.79 33.99
10 44.85 1.77 43.29 46.41 41.07 49.56

aLB: Lower bound, bUB: Upper bound.

is mostly neglected. In the present study, by applying
discrete-event simulations, the solutions are analyzed
statistically in a test environment. The result of
statistical analysis of the best-found solution under
di�erent disruption scenarios is summarized in Ta-
ble 11. The reported results include the expected value,
standard deviation, minimum and maximum values,
and the value of the (lower and upper) 95% con�dence
intervals (reported as LB and UB, respectively). The
reliability of the result is represented by con�dence
interval that indicates the probability (e.g., 95%) that
the response variable is within the range speci�ed. For
every performance measure (PFM), observation wi is
collected after each observation period i. Each statistic
is estimated based on raw data w1; w2; � � � ; wn, where n
is the number of replications [43]. The lower and upper
bounds of the Con�dence Interval (CI) are obtained by
Eq. (6). Values tn�1;1�1=2� and �1�1=2� are obtained
from a table of t-values where � = 1� Reliability:

CI =

8><>:
�w � tn�1;1�1=2�: spn n � 30

�w � �1�1=2�: spn n > 30
(6)

For example, in the �rst scenario, the standard devi-
ation of delay time is reduced by 60% compared to
the OptQuest best-found solution. For the second
scenario, the blockage takes 2 hours, and the standard
deviation of delay time decreases by 47% compared
to the OptQuest best-found solution. In the third
case, which imposes longer duration of disruption,
the standard deviation of the delay time decreases
by more than 40% compared to the OptQuest best-
found solution. The result of the simulation model
indicates that the average and standard deviations of
the delay times are a�ected by the duration of the
blockage. Compared to the results in Table 12, the

standard deviation of the delay times calculated with
the proposed VNS method is on average 1.95 hours
less than that with the OptQuest package. It can be
concluded that the approach proposed in this paper has
more dominant optimizing capability compared with
the OptQuest. From the computational results, we
also conclude that the performance of the proposed
simulation-based optimization method is robust be-
cause of the less variance of delays. We also remark
that the performance of FCFS is much less attractive
compared to the other two; therefore, we skip reporting
it in full.

8. Conclusion

Railway systems operate growingly at maximum ca-
pacity, timetables are becoming further at risk of
instabilities, and delays propagate and reduce the
service level perceived by the passengers. This makes
real-time train tra�c planning become more and more
challenging as a result motivating the developing rail-
way decision support systems. The procedure of
disturbance management in rail transportation systems
faces di�erent challenges, e.g. the irregular occurrence
time, the strong limitation of capacity for long period,
and the presence of many other stochastic phenomena
of smaller magnitude occurring in the network. This
study developed an object-oriented discrete-event sim-
ulation model, which is able to model heavy disruption
and small stochastic variations due to smaller delays,
which optimizes tra�c by means of dynamic priorities
rules and further employs a variable neighborhood
search algorithm as a global conict resolution method
in order to decrease the total delays after line blockage
disruptions. The computational experiments along
with a discussion about practical strengths and limi-
tations of the proposed simulation-based optimization
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Table 12. Statistical analysis of the best-found solution by OptQuest under di�erent disruption scenarios.

Disruption
scenario #

Total average
delay time

(hour)

Standard
deviation

(hour)

LB
(95%)

UB
(95%)

Minimum
value
(hour)

Maximum
value
(hour)

1 31.31 2.89 28.74 33.88 26.61 38.88

2 40.88 3.45 37.81 43.95 35.86 44.64

3 45.57 0.95 44.72 46.42 39.15 49.96

4 32.71 3.33 29.74 35.68 27.69 40.20

5 46.97 4.94 42.58 51.36 38.86 53.53

6 70.33 2.26 68.32 72.34 66.94 77.42

7 27.92 4.89 23.57 32.27 22.23 37.83

8 30.82 2.64 28.47 33.17 25.25 34.54

9 30.42 2.79 27.93 32.91 28.59 32.41

10 49.59 3.46 46.51 52.67 43.44 57.43

approach were conducted on real-world test cases of
the Iranian railway network. The outcomes indicate
that the proposed variable neighborhood search meta-
heuristic outperforms the commercial OptQuest opti-
mization toolbox in both solution quality (delays and
their deviation) and computational time. Computa-
tional results of the developed model on an important
part of the Iranian railway network illustrate that the
simulation-based optimization approach is capable of
�nding near-optimal solutions in a reasonable compu-
tation time.

As accounted for the future research, many of
the modeling characteristics can be adapted to more
realistic situation. One important extension of the
current study is to consider the network case. The
determination of train priority can be handled through
a comprehensive predictive model, or a more abstract
optimization approach could be implemented, based,
for instance, on robust or stochastic programming. In
addition, it is worth mentioning that the simulation
model can be extended to analysis of other performance
measures such as punctuality and robustness. Finally,
a still open challenge for the railway community is the
development of exact algorithms for scheduling tra�c
under stochastic factors.
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