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Abstract. In recent years, controlled blasting has turned into an e�cient method for
evaluation of soil liquefaction on a real scale and of ground improvement techniques.
Predicting blast-induced soil liquefaction using collected information can be an e�ective
step in the study of blast-induced liquefaction. In this study, to estimate residual pore
pressure ratio, �rst, a multi-layer perceptron neural network is used in which error (RMS)
for the network was calculated as 0.105. Next, a neuro-fuzzy network, ANFIS, was used for
modeling. Di�erent ANFIS models are created using Grid Partitioning (GP), subtractive
clustering (SCM), and Fuzzy C-Means clustering (FCM). Minimum error is obtained using
FCM at about 0.081. Finally, Radial Basis Function (RBF) network is used. Error of this
method was about 0.06. Accordingly, RBF network has better performance. Variables,
including �ne-content, relative density, e�ective overburden pressure, and SPT value, are
considered as input components, and residual pore pressure ratio, Ru, was used as the only
output component for designing prediction models. In the next stage, the network output
is compared with the results of a regression analysis. Finally, sensitivity analysis for RBF
network is tested, and its results reveal that �0v0 and SPT are the most e�ective factors for
determining Ru.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Severe incidents, such as earthquakes, impacts, vi-
brations, and explosives, can cause liquefaction. In
this paper, liquefaction is de�ned as a geotechnical
phenomenon that occurs most often in loose, saturated
sandy soil due to decreasing shear resistance, following
the increasing pore pressure [1]. Blast, especially
subsurface blasts, can lead to huge ruptures due to
liquefaction. In 1935, the rupture of the SWIR III dam
in Russia which occurred by involuntary liquefaction
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was caused by blast operations in its vicinity; therefore,
liquefaction reduced soil dam slope from 2:1 to 10:1.
Liquefaction due to nuclear tests in the coral reefs of
Eniwetok and Bikini in the Paci�c Ocean in 1950 was
observed with witnesses such as broad and shallow pits,
considerable subsidence, and sand boils [2]. Another
example of liquefaction-related incidents can be found
in the documentation of Charlie et al. [3].

In geotechnical engineering, controlled blasting is
used to model soil liquefaction on the real scale in
order to improve the ground by densifying sandy soils
to increase bearing capacity and decrease permeability
coe�cient, subsidence, and even liquefaction potential
in lique�able soil.

Many studies are conducted in this context such
as densifying sub-foundation soil of the Franklin Falls
dam in New Hampshire [4], densifying loose soils in
40 m depth under Jebba dam in Nigeria [5], improving



618 F. Asvar et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 617{631

e�ectiveness of soil reinforcement methods in order
to decrease liquefaction in New Zealand [6], evaluat-
ing liquefaction potential in relatively dense clay-rich
sand deposits [7], considering critical lines in lique�ed
soil such as pipelines and airport infrastructure [8].
In addition, many experimental studies have been
conducted regarding blast-induced liquefaction of soil.
More information in this regard is reported in the
literature, e.g. [1,9-13]. Unlike experimental studies,
limited numerical research has been conducted in this
regard. Recently, several techniques have been devel-
oped for liquefaction modeling. Byrne et al. [14,15]
used UBC soil liquefaction model in FLAC-2D software
to predict soil liquefaction in sand under dynamic
centrifuge test. Gohl in [16] used PGI's single-charge
2D blast-induced liquefaction model in the LS-DYNA
�nite-element software for 2D symmetrical simulation
of soil liquefaction caused by single blasts. Taylor
[17] and Bell et al. [18] presented Taylor's e�ective
stress material model for saturated soils in the CTH
code. Taylor model was speci�cally suggested for
impact loadings with high magnitude similar to short-
term blasts to predict soil liquefaction. Unfortunately,
Taylor model and CTH code are not commercially
available. Lewis [19] developed FHWA's LS-DYNA
soil material model 147. This is a scienti�c acces-
sible model for predicting blast-induced liquefaction
of soil. In addition, several case studies have been
conducted in this context. Wang et al. [20] developed
a three-phase soil model for simulating stress wave
propagation due to blast loading. This model has
unique ability to simulate blast-inducted liquefaction
of soil, but unfortunately is not available commercially.
Wang et al. [21] conducted numerical simulation of
quasi-static and shock tests to investigate liquefaction.
Simulation was conducted using three-phase soil model
and hydrocode AUTODYN. They sought to prove
the ability of three-phase soil model and hydrocode
AUTODYN in simulating impact and shock-induced
liquefaction of soil. Wang et al. [2] performed another
numerical study to consider the e�ect of blast-induced
soil liquefaction on surface structure. In this study,
the three-phase soil model and hydrocode AUTODYN
were used. Lee [16] conducted �eld tests of blast-
induced liquefaction in Vancouver to determine soil
characteristics under severe and subsequent blasts to
simulate big earthquakes. He simulated the relevant
tests using LS-DYNA �nite-element software.

Amount of pore water pressure is a key factor in
liquefaction. Based on the review of technical literature
and available sources, several experimental models
have been presented to predict pore pressure response
due to blasting. Experimental models of Charlie et
al. [22], Kummeneje and Eide [23], and Studer and
Kok [24] for single blast and Rollins model [25] as
cited by [26] were introduced for multiple blasts. The

experimental models suggested by researchers, except
that of Kummeneje and Eide [23], do not consider soil
characteristics in the prediction of Ru.

Field blast tests of performance on the real scale
have high costs and many limitations. Moreover,
results of experimental models show great dependency
on site conditions and experiment method. Under
these conditions, statistical methods and AI-based
methods (arti�cial neural networks and fuzzy systems)
with available data have opened up a new world for
researchers. Arti�cial neural network and neuro-fuzzy
system, despite its low cost (relative to experimental
methods used to predict blast-induced liquefaction),
are e�cient and reliable methods in data processing,
even despite various e�ective parameters and their
complex relations.

By multiple regression analysis, Eller [26] consid-
ered predicting pore pressure response in liquefaction
studies using controlled blasting.

The arti�cial neural networks and neuro-fuzzy
system have not brought substantial development for
the prediction of blast-induced liquefaction potential.
The neural network is a powerful prediction tool and
is more accurate than other conventional methods for
complex problems such as liquefaction, where the rela-
tionship between variables is not clear [27]. Arti�cial
neural networks are used in various geotechnical �elds
such as liquefaction [28-30], soil behavior modeling,
earth-retaining structures, prediction of bearing ca-
pacity of piles, settlement of structures, slope stabil-
ity, designing tunnels, and hydraulic conductivity of
soil [31]. Another appropriate method in the prediction
of liquefaction potential is the neuro-fuzzy system,
which is a combination of neural networks and fuzzy
logic to determine parameters of fuzzy systems using
neural network training algorithm [32]. Fuzzy systems
have successful application in geotechnical problems
such as prediction of uncon�ned compressive strength
of compacted granular soils [33], prediction of foun-
dation response [34], swelling potential of compacted
soil [35], estimation of sand permeability [36], and
evaluation of liquefaction potential [37]. Other neuro-
fuzzy applications were reported by Cabalar et al. [37].

The present study aims to predict blast-induced
liquefaction potential using Multi-Layer Perceptron
neural networks (MLP), Radial Basis Functions (RBF),
and the Neuro-Fuzzy (NF) model and comparing the
e�ciencies of these methods. Furthermore, sensitivity
analyses on input network variables have been carried
out to identify e�ective parameters in liquefaction.

2. Materials and methodology

2.1. Collected datasets
In this study, the data required for designing neural
networks and neuro-fuzzy system are obtained from
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Table 1. Features of the proposed MLP model.

Parameter Description
Type neural network Feed forward
Training algorithm Back propagation

Function error Mean Square Error (MSE)
Optimization method Levenberg-Marquardt (LM)

Hidden layers 2
The number of neurons in the �rst hidden layer 15

The number of neurons in the second hidden layer 5
Transfer functions of the hidden layer Tansig
Transfer functions of the output layer Tansig

Number of training data 292 sample (70%)
Number of validation data 62 sample (15%)

Number of test data 62 sample (15%)

results of multiple blasts on the real scale performed
in seven di�erent parts of the world (1997-2007), as
cited by Eller [26].

The following is a brief description of the experi-
ments:

1. Controlled blasting for inducing liquefaction with
the purpose of evaluating seismic performance of
Japanese airport infrastructures in 2007 [38,39];

2. Controlled blasting for evaluating performance of
vertical composite earthquake drains to reduce
potential of liquefaction caused by earthquake in
the vicinity of Massy Tunnel in Vancouver in
2004 [40,41];

3. Experiment for evaluating liquefaction potential of
Coralline sands in Mawi, Hawaii in 2004 [25];

4. Blast experiment for evaluating performance of
piles, pipelines, and quay walls against lateral
spreading of static and seismic loads in Japan
(2002) [42];

5. Testing blast-induced liquefaction with the purpose
of investigating liquefaction potential of problem-
atic soils such as low-plasticity silts in Canada
(2000) [11];

6. Blast testing to improve deep foundations design
under lateral loadings caused by an earthquake in
San Francisco, California (1998) [9,43,44];

7. Controlled blasting for simulating earthquake-
induced ground movements in Canada (1997) [45].

2.2. Neural network models
2.2.1. Multi-layer perceptron networks
Perceptron network or MLP is one of the mostly used
neural networks. This network consists of three layers,
i.e. input, hidden, and output layers. The MLP net-
work is a feed-forward network with a back-propagation
training procedure. Back propagation means that after
determining the network output, if there is a di�erence

Figure 1. Optimal model of MLP perceptron network.

between obtained output and desired output, weights
of the last layer are corrected �rst, and then weight
correction procedure goes toward input layers [46]. To
determine network coe�cients, Levenberg-Marquardt
(LM) algorithm [47] was used. This algorithm is
considered a classic method for optimization. Data are
inputted into the network in a normalized form in three
parts of training (70%), validation (15%), and testing
(15%). Number of hidden layers and neurons of every
layer is obtained via trial and error to minimize network
error. MLP optimal network is shown in Figure 1.
In the hidden and output layers, the tansig transfer
function is used due to continuity and di�erentiability.
A summary of MLP parameters and speci�cations is
shown in Table 1.

2.2.2. Fuzzy system
Zadeh [48] �rst proposed the Fuzzy system. In classic
logic, truth value of a proposition is either 0 or 1, while
truth value of a proposition can be a value between
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Figure 2. The Sugeno fuzzy model [37].

zero and one in fuzzy logic. In fact, propositions can be
relatively true [37]. Neural networks function is based
on the data whose pattern is not known. Fuzzy rules
are expressed in IF-THEN form [37].

Two types of Fuzzy inference systems have been
used in various applications such as Mamdani and
Takagi-Sugeno-Kang (TSK). In the Mamdani system,
both the antecedent and consequent of rules are ex-
pressed as fuzzy sets, while the antecedent part of rules
is fuzzy in the Sugeno system, and the consequent part
is nonfuzzy and in the form of accurate mathematical
relationship of linear combination of input variables.
For fuzzy system with two inputs x and y and output
z, Eq. (1) is used as in per [37]:

Rule 1: If x is A1 and y is B1, then:

f1 = p1x+ q1y + r1; (1a)

Rule 2: If x is A2 and y is B2, then:

f2 = p2x+ q2y + r2; (1b)

where pi, qi, and ri are consequent parameters of ith
rule. Ai, Bi, and Ci are linguistic labels representing
fuzzy sets, shown in Figure 2.

In this study, Sugeno Fuzzy Inference System
(FIS) has been used. The inference process in Sugeno
fuzzy system is performed in three main steps [37]:

a. Determining membership degree of input data: In
other words, fuzzi�cation of input signals is done
using membership functions;

b. Determining weight of every rule: In this stage, the
relationship between input and output is expressed
with rules such as IF-THEN;

c. Determining system output: Output is determined
in a non-fuzzy form using OR and AND operators.

2.2.3. Neuro-fuzzy system
Jang et al. [32] �rst introduced neuro-fuzzy system.
This method is a combination of fuzzy logic and
neural network training methods. The neuro-fuzzy
system used in this study, ANFIS (adaptive neuro-
fuzzy inference system), is a Sugeno-type neuro-fuzzy
inference system.

In this study, the ANFIS model was created in
three methods of Grid Partitioning (GP), subtrac-
tive clustering (SCM), and Fuzzy c-Means cluster-
ing (FCM). In GP, every part of premise variables
is suggested independently. To develop this expert
model, membership functions of all premise variables
are de�ned based on former knowledge and experience.
Membership functions are designed to create a concept
for linguistic expressions in certain content. In most
systems, no special knowledge is available for this
classi�cation. In such cases, the domain of antecedent
variables can simply be classi�ed into equal spaces
and membership functions with equal forms. Using
available input-output data, membership function pa-
rameters can be adjusted and optimized. Chiu [49]
�rst introduced the SCM method. When the number
of clusters that should be chosen for data sets is not
clear, SCM is a quick method for determining number
of clusters and their centers.

The FCM method was �rst introduced by Bezdek
(1981) [50] and is the most popular fuzzy clustering
technique. FCM has improved SCM performance.
In this method, data are grouped based on their
degree of membership. FCM has improved SCM
performance [51].

Collected information is classi�ed into two sets of
training and testing. 335 data items (80% of data)
were considered in train stage, and 81 data items (20%
of data) were considered for test.

2.2.4. Radial basic function networks
A Radial Basis Function network (RBF) is a function
in which every output is produced corresponding to
desired input and with a certain radial distance [52].
Figure 3 schematically shows RBF network. It is a
type of monolayer neural networks. Inputs enter the
hidden layer space with a non-linear mapping. Outputs
of cells in the hidden layer after being multiplied by
related weights enter an adder, which is an output for
the neural network. The RBF function can be de�ned
in the form of the following mathematical equation:

y = w:�(x) = wT�(x); (2)

where y is network output and � is activation function.
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Table 2. Ranges of input and output variables with basic statistics.

Basic Input variables Output

statistics R=W 0:33 SPT �0v0 DR FC variable Ru
Max 20.57 16 136 70 40 1

Min 1.78 1 13.60 12 5 0.02

Mean 6.05 7.49 70.54 31.83 7.57 0.52

SD 3.82 3.71 33.60 14.45 2.97 0.30

Figure 3. Structure of RBF network.

These functions strongly inuence network perfor-
mance, taking the input into the hidden space. The
activation function used in design of RBF network is
Gaussian function shown in Eqs. (3) and (4) [53]:

�(x) = (�1(x); �2(x); :::; �M (x))T ; (3)

�i(x) = exp
�kx� cik2� ; (4)

where ci denotes center of Gaussian function which is
better to be chosen from data. x is an input variable.
80% of available data (333 data items) are considered
for network training and 20% (83 data items) are
considered for experiment. The Root Mean Square
Error algorithm (RMSE) is used for training. Network
training continues until error of total squares is less
than the speci�ed target error, or until the maximum
speci�ed neuron count is reached. The error that we
expect the network to reach is 0.007. The assumed
neuron count is equal to the default value.

3. Input and output parameters

3.1. Input parameters
Input parameters of neural network are chosen in
such a way as to have appropriate overlapping in
evaluating blast-induced liquefaction potential. Four
factors inuence residual pore pressure ratio (eval-
uation criterion of soil liquefaction). These factors

include soil type, soil density, soil saturation degree,
and vibration magnitude [26]. Table 2 shows range
of changes for input and output variables. On this
basis, the parameters a�ecting liquefaction potential
(parameters input to the neural network) are used as
follows:

1. Scaled distance (R=W 0:33): In this study, Hop-
kinson of scaled distance, Eqs. (4) and (5) [16],
has been used to express speci�cation of blast load
(amount of energy needed for liquefaction):

for single explosions:

SD = R=W 0:33; (5)

for subsequent explosions:

R=W 0:33 =
�RP
W 0:33

=

�
R1+R2+:::+Ri

NI

�
P�

W1 +W2 + :::+Wi

�0:33 ; (6)

where W and Wi are weights of TNT explosive and
R is the distance between explosive and point of
observation;

2. SPT (N1)60 value;
3. E�ective overburden pressure, �0v0 (kPa);
4. Initial relative density, DR (%);
5. Fine content FC (%).

3.2. Output parameter
To evaluate potential of liquefaction due to earthquake,
various criteria are provided. Some of these criteria
are cyclic shear stress [54], cyclic shear strain [55],
and energy required for soil liquefaction [37], used
as evaluation criteria to predict liquefaction. The
typical criterion applied to investigate blast-induced
soil liquefaction uses the residual pore pressure ratio,
Ru [2,16,21,26]. In this study, Ru is used as the only
output parameter according to Eq. (7):

Ru =
�u
�0v0

; (7)
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where �u is residual pore pressure. In non-drained
conditions, increased Ru leads to decreased �0v0, when
Ru = �0v0, the soil loses its shear resistance and
liquefaction occurs. Ru greater than zero means excess
pore pressure in soil, and Ru = 1 means the occurrence
of complete soil liquefaction [28]. Given the above
criterion, the following conditions are considered when
evaluating soil liquefaction [2]:

1. �u
�0v0

= 0:1 is considered as a secure range (based on

conducted experiments, in some cases, up to �u
�0v0

=
0:6 is allowed);

2. �u
�0v0

= 0:8 has been assumed as a dangerous range;

3. �u
�0v0
� 1 shows the range where contact between soil

granules disappears; soil loses its shear resistance
and liquefaction occurs.

Neural network training using raw data results in
reduced network speed and accuracy. Thus, to achieve
the desired error level, data were standardized before
entering the network using Eq. (8) [56]:

xN =
(x� xmin)

(xmax � xmin)
; (8)

where xN is the normalized value of x, and xmax and
xmin are the maximum and minimum values of every
variable.

4. Evaluation criteria

To evaluate e�ciency of neural network models and
compare their e�ectiveness, the following statistical
indicators have been used:

1. Correlation coe�cient (R2): It represents the de-
gree of relationship between predicted values of
neural network and observed values:

R2 =

nP
i=1

(~yi � �y)2

nP
i=1

(yi � �y)2
; (9)

where yi represents observed values, ~yi is computed
values, and �y is mean of observed values.

2. Root Mean Square Error (RMSE): It shows the
di�erence between the value predicted by network
and actual value:

RMSE =

vuut 1
n

nX
i=1

e2
i ; (10a)

ei = yi � ~yi; (10b)

where ei is the error between actual and predicted
values.

3. Mean Absolute Error (MAE):

MAE =
1
n

nX
i=1

ei: (11)

4. Maximum Absolute Error (MAX):

MAXAE = Max (jeij): (12)

Using the above mentioned indicators, the ability
of network in identifying liquefaction incident can
be investigated.

The parameters given in Eqs. (13) and (14) for
this study are given as follows:
� Positive (1): Conditions when soil is lique�ed;
� Negative (0): Conditions when soil is secure

(non-lique�ed);
� TP (True Positive): Number of liquefaction

samples correctly reported as lique�ed soil;
� TN (True Negative): Number of non-lique�ed

samples reported as soil without liquefaction
conditions;

� FP (False Positive): Number of non-lique�ed
samples falsely reported as lique�ed soil;

� FN (False Negative): Number of lique�ed sam-
ples falsely reported as non-lique�ed soil.

Meaning of these parameters can be expressed in
Table 3;

5. TPR (Sensitivity): Percentage of lique�ed samples
which were truly reported as soils having liquefac-
tion conditions.

True Positive Ratio (TPR) = Sensitivity

= Recall = TP=(TP + FN): (13)

6. PPV (accuracy): Percentage of samples for which
the predicted liquefaction conditions are true:

Positive Predictive Value (PPV)

= Precision = TP (TP + FP ): (14)

7. TNR (characteristic): Percentage of non-lique�ed
samples truly reported as safe soil (non-lique�ed).

True Negative Rate (TNR) = Speci�city

=
TN

TN + FP
: (15)

Table 3. De�nition of FN , FP , TN , and TP parameters.

Predicted 1 Predicted 0

True 1 TP FN
True 0 FP TN
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8. Accuracy: Percentage of samples for which liquefac-
tion and non-liquefaction conditions were properly
predicted:

Accuracy =
TN + TP

TN + FP + TP + FN
: (16)

5. Results and discussion

5.1. MLP
In this study, to calculate Ru, di�erent models of
MLP were created to determine the optimal number of
neurons in the hidden layers and transfer functions. In
Figure 4, a training curve for selective MLP network
with two hidden layers is given. By investigating
Figure 4, the following results are obtained:

1. Mean square error is small;
2. Error of experiment set shows a behavior similar to

that of evaluation set;
3. No �tting has occurred until iteration 21.

To evaluate MLP network performance, regression
coe�cient �gure for training and testing data is drawn
in Figure 5, and evaluation criterion for MLP model
is shown in Table 4. For test data, the network
has produced three incorrect predictions (accuracy =

Figure 4. MLP network training curve.

Table 4. Evaluation criteria for MLP.

R2 RMSE MAE MAXAE

Training set 0.906 0.089 0.057 0.436
Testing set 0.899 0.105 0.07 0.456

PPV TPR TNR Accuracy

Testing set 0.979 0.959 0.923 0.952

Figure 5. Scatter plots of measured and predicted Ru
(residual pore pressure ratio values) using MLP: (a)
Training set and (b) testing set.

0:952). In two cases where soil was lique�ed, the
network predicted non-liquefaction, and the prediction
was opposite to the former in the other case.

5.2. ANFIS
ANFIS is the second prediction model used in this
study, whose results are reported. Figure of correlation
coe�cient for three di�erent algorithms of ANFIS is
shown in Figures 6 to 8. The most e�cient coe�-
cients for training datasets were obtained via GP
(R2 = 0:935) and FCM (R2 = 0:931) for testing
datasets. Index values of evaluation for three methods
are provided in Table 5. Given the results shown in the
table, the �rst point to consider is that GP method per-
formed better compared with the two other methods for
training dataset, while FCM shows better performance
for test data. Predictions made by GP, SCM, and
FCM were incorrect in 9, 3, and 1 cases, respectively.
Therefore, the best performance in detecting incidence
or non-incidence of liquefaction corresponded to FCM
and then to SCM. GP performed more poorly than the
two other methods.
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Figure 6. Scatter plots of measured and predicted Ru
(residual pore pressure ratio values) using (ANFIS (GP)):
(a) Training set and (b) testing set.

Table 5. Evaluation criteria for ANFIS network.

R2 RMSE MAE MAXAE
Training set:

GP 0.935 0.076 0.049 0.435
SCM 0.931 0.079 0.05 0.447
FCM 0.916 0.086 0.054 0.44

Testing set:
GP 0.88 0.113 0.068 0.516

SCM 0.9 0.094 0.06 0.36
FCM 0.931 0.081 0.057 0.331

PPV TPR TNR Accuracy
Testing set:

GP 0.953 0.909 0.852 0.89
SCM 1.000 0.952 1.000 0.950
FCM 1.000 0.982 1.000 0.988

5.3. RBF
Besides MLP and ANFIS, another type of neural
network called RBF was used. To make a balance
between accuracy and training time, the target error
(goal) was considered 0.007. The considered prediction

Figure 7. Scatter plots of measured and predicted Ru
(residual pore pressure ratio values) using (ANFIS
(SCM)): (a) Training set and (b) testing set.

Table 6. Evaluation criteria for RBF network.

R2 RMSE MAE MAXAE

Training set 0.915 0.088 0.056 0.456

Testing set 0.942 0.06 0.042 0.202

PPV TPR TNR Accuracy

Testing set 1 0.985 1 0.988

quality of RBF model for training and testing data
sets, actual values of Ru, is drawn versus network
prediction values in Figure 9. In addition, in Table 6,
evaluation criterion for RBF model is shown. Based
on the table results, it could be inferred that network
error for both datasets is little (RMS (train) = 0:088,
RMS (test) = 0:060). In addition, all error criteria for
testing have been obtained less than training. Using
the criterion given in Table 6, RBF performance in
detecting incidence or non-incidence of liquefaction
can be evaluated. Network accuracy for test data
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Figure 8. Scatter plots of measured and predicted Ru
(residual pore pressure ratio values) using (ANFIS
(FCM)): (a) Training set and (b) testing set.

was 0.98, showing its good performance. In fact,
for 98% of test data, correct prediction analysis has
been performed. The network prediction corresponded
to non-incidence of liquefaction (Ru = 0:68) only
in one case where soil was lique�ed (Ru = 0:94).
High values of correlation coe�cient (R2(test) =
0:942; R2(train) = 0:915) show a good relationship
between the predicted values of Ru and observed
values.

6. Comparison of neural network results with
�eld results and Eller regression analysis

Based on regression analysis by the datasets used for
designing neural networks, an equation was obtained
by Eller [26] for calculating residual pore pressure ratio
caused by blast load. To evaluate the performance of
the given network, its output along with the observed
data and results of regression analysis are provided
in Table 7, in which in columns 2, 4, and 6, lique-

Figure 9. Scatter plots of measured and predicted Ru
(residual pore pressure ratio values) using RBF: (a)
Training set and (b) testing set.

faction potential of soil in all three mentioned cases
is given. As seen from the results of Table 7, the
network is more accurate than regression analysis. As
observed, in detecting soil liquefaction potential for
83 test data items (data in Table 7), the network is
incorrect in one item and regression is incorrect in 10
items.

7. T -test

To compare the mean of a quantitative variable in
two groups, t-test is used. In this study, for two
datasets, i.e. Ru observed from experiments and Ru
from network prediction, t-test was performed with
the results displayed in Table 8. Given the values of
table, critical t-value for 95% probability is 1.97. As
observed, the calculated value is less than the critical
value. Therefore, results of t-test show that with 95%
con�dence interval, no considerable di�erence exists
between these two groups.
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Table 7. Comparison of network simulation with �eld results and regression analysis.

No. Field results Network simulation Regression analysis
Ru Liquefaction Ru Liquefaction Ru Liquefaction

1 0.5 No 0.57 No 0.60 No
2 0.73 No 0.79 No 0.81 Yes
3 0.37 No 0.41 No 0.32 No
4 0.44 No 0.51 No 0.55 No
5 0.36 No 0.42 No 0.58 No
6 0.04 No 0.06 No 0.03 No
7 0.07 No 0.07 No 0.09 No
8 0.16 No 0.16 No 0.25 No
9 0.3 No 0.23 No 0.27 No
10 0.32 No 0.29 No 0.52 No
11 0.42 No 0.34 No 0.33 No
12 0.95 Yes 0.89 Yes 0.60 No
13 0.8 No 0.83 Yes 0.89 Yes
14 1 Yes 0.85 Yes 0.66 No
15 0.09 No 0.09 No 0.03 No
16 0.37 No 0.41 No 0.44 No
17 0.99 Yes 0.94 Yes 1.09 Yes
18 0.31 No 0.29 No 0.52 No
19 0.12 No 0.14 No 0.23 No
20 0.94 Yes 0.95 Yes 0.87 Yes
21 0.54 No 0.52 No 0.56 No
22 0.62 No 0.54 No 0.49 No
23 0.31 No 0.51 No 0.71 No
24 0.85 Yes 0.92 Yes 0.64 No
25 0.34 No 0.36 No 0.56 No
26 0.89 Yes 0.87 Yes 0.82 Yes
27 0.98 Yes 1.03 Yes 0.65 No
28 0.59 No 0.55 No 0.59 No
29 0.42 No 0.43 No 0.50 No
30 0.37 No 0.56 No 0.54 No
31 0.24 No 0.24 No 0.30 No
32 0.1 No 0.10 No 0.02 No
33 0.31 No 0.26 No 0.48 No
34 0.07 No 0.06 No 0.09 No
35 0.23 No 0.20 No 0.39 No
36 1 Yes 0.91 Yes 0.69 No
37 0.32 No 0.29 No 0.22 No
38 0.48 No 0.52 No 0.65 No
39 0.51 No 0.50 No 0.64 No
40 0.3 No 0.32 No 0.85 Yes
41 0.46 No 0.29 No 0.45 No
42 0.2 No 0.20 No 0.45 No
43 0.65 No 0.64 No 0.52 No
44 0.93 Yes 0.91 Yes 0.88 Yes



F. Asvar et al./Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 617{631 627

Table 7. Comparison of network simulation with �eld results and regression analysis (continued).

No. Field results Network simulation Regression analysis
Ru Liquefaction Ru Liquefaction Ru Liquefaction

45 0.5 No 0.50 No 0.64 No
46 0.73 No 0.66 No 0.55 No
47 0.27 No 0.29 No 0.34 No
48 0.72 No 0.72 No 0.51 No
49 0.5 No 0.48 No 0.53 No
50 0.13 No 0.17 No 0.23 No
51 0.32 No 0.35 No 0.55 No
52 0.9 Yes 0.89 Yes 0.93 Yes
53 0.8 No 0.81 Yes 0.56 No
54 0.48 No 0.50 No 0.54 No
55 0.19 No 0.22 No 0.30 No
56 0.12 No 0.10 No 0.28 No
57 0.18 No 0.23 No 0.43 No
58 0.75 No 0.74 No 0.57 No
59 0.28 No 0.22 No 0.34 No
60 0.09 No 0.10 No 0.16 No
61 0.25 No 0.32 No 0.41 No
62 0.84 Yes 0.68 No 0.74 No
63 0.09 No 0.16 No 0.29 No
64 0.09 No 0.09 No 0.09 No
65 0.2 No 0.21 No 0.08 No
66 0.9 Yes 0.87 Yes 0.86 Yes
67 0.7 No 0.75 No 0.78 No
68 0.25 No 0.26 No 0.32 No
69 0.18 No 0.17 No 0.23 No
70 0.69 No 0.64 No 0.66 No
71 0.67 No 0.55 No 0.68 No
72 0.68 No 0.63 No 0.65 No
73 0.92 Yes 0.96 Yes 0.79 No
74 0.87 Yes 0.82 Yes 0.54 No
75 0.35 No 0.38 No 0.58 No
76 0.27 No 0.34 No 0.50 No
77 0.1 No 0.12 No 0.27 No
78 0.26 No 0.28 No 0.34 No
79 0.33 No 0.28 No 0.33 No
80 0.6 No 0.67 No 0.68 No
81 0.12 No 0.13 No 0.23 No
82 0.96 Yes 0.97 Yes 0.88 Yes
83 0.6 No 0.65 No 0.47 No

8. Sensitivity analysis

The parameters mentioned regarding soil speci�cation
(network input parameters) include SPT value, e�ec-
tive overburden pressure, relative density, and �ne

content. To consider the e�ect of these parameters
on residual pore pressure ratio, sensitivity analysis
using RBF network was done. The reason for using
RBF network is that the analysis results of this model
are better than those of the two networks of ANFIS
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Table 8. Investigation of neural network model compared
to actual values.

Ru-observed Ru-predicted

Mean 0.468313 0.46878
Variance 0.085041 0.079251
Observations 83 83
Hypothesized
mean di�erence

0

Df 164
t stat -0.01049
P (T <= t) 0.991646
t critical 1.974535

Table 9. Sensitivity analysis of parameters pertaining to
soil speci�cations.

R2 RMSE MAE MAXAE

The best ANN 0.966 0.06 0.042 0.202
ANN no SPT 0.895 0.094 0.063 0.392
ANN no �0v0 0.903 0.087 0.066 0.200
ANN no DR 0.940 0.070 0.050 0.274
ANN no FC 0.930 0.073 0.054 0.227

and MLP. Analysis results are given in Table 9. As
it is observed, maximum error is for the case where
SPT parameter is removed. This means that SPT is
the most e�ective parameter in determining Ru. The
second e�ective factor is �0v0. DR and FC parameters
compared with other two parameters have lower e�ect
on network output.

9. Conclusion

In this paper, using MLP and RBF neural networks and
ANFIS model, values of pore water pressure response
due to blasting were estimated. Five input vari-
ables and one output variable were used for designing
prediction models. The best structure of all three
networks was selected based on trial and error. For
MLP network, the best model was obtained with two
hidden layers, 15 neurons in the �rst hidden layer,
and �ve neurons in the second hidden layer (5-15-5-1).
The ANFIS neuro-fuzzy model was tested with three
algorithms of FCM, SCM, and GP. Among neuro-fuzzy
models constructed, FCM, SCM, and GP had a better
performance in terms of prediction quality and the time
required for solving. GP model is very slow. So, it is
recommended that FCM and SCM methods be used
for problems with 5 and more input components (as in
the present study). That is because as input variables
increase, number of fuzzy rules created in the GP model
increases exponentially.

Results of this study show that for all evaluation

criteria, RBF has the highest accuracy, and ANFIS
(GP) has the lowest accuracy in predicting the results.
The networks designed in this paper are of the following
order based on the above-mentioned evaluation criteria
and their performance: RBF, ANFIS (FCM), ANFIS
(SCM), MLP, and ANFIS (GP), respectively.

Networks' ability in predicting incidence or non-
incidence of liquefaction was investigated using accu-
racy, TPR, PPV, and TNR criteria. For RBF and
ANFIS (FCM), identical results were obtained.

In the next stage of the study, network output
was compared with actual values and formula obtained
from statistical analysis. Neural networks can provide
predictions with smaller errors than conventional re-
gression methods. In fact, it could be suggested that
the network has shown an acceptable performance in
data simulation.

In addition, t-test was done between observed and
predicted data. Results showed that the assumption
about the equality of means with 95% probability is
con�rmed. Finally, sensitivity analysis was carried out
for RBF (the most suitable model) in order to identify
the most e�ective parameters in the production of pore
water pressure. Results of sensitivity analysis showed
that SPT number is the most e�ective parameter.

While the designed models have appropriate per-
formance, the results could be improved by increasing
the number of data. Neural network model can be
a suitable tool for evaluating the potential of soil
liquefaction caused by blast loads.
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